Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (158)

Search Parameters:
Keywords = malaria parasite detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1583 KB  
Article
Population Dynamics of Plasmodium vivax in Mexico Determined by CSP, Pvs25, and SSU 18S rRNA S-Type Polymorphism Analyses
by Lilia González-Cerón, Delfino de Jesús Gómez-Pérez, Frida Santillán-Valenzuela, Marbella Ovilla-Muñoz, Carmen Guzmán-Bracho, Angélica Pech-May, Gerardo R. Amores, Alberto Montoya-Pérez and Cuauhtémoc Villarreal-Treviño
Microorganisms 2025, 13(9), 2221; https://doi.org/10.3390/microorganisms13092221 - 22 Sep 2025
Viewed by 927
Abstract
In Mexico, Plasmodium vivax transmission has been confined to the northwestern and southern regions since 2000. Parasites from five malaria foci were analyzed using three genetic markers. The circumsporozoite gene was examined by PCR-RFLP and sequencing, and pvs25 mutations and variants of ribosomal [...] Read more.
In Mexico, Plasmodium vivax transmission has been confined to the northwestern and southern regions since 2000. Parasites from five malaria foci were analyzed using three genetic markers. The circumsporozoite gene was examined by PCR-RFLP and sequencing, and pvs25 mutations and variants of ribosomal 18S SSU rRNA S-type were also determined. Previous data from the southernmost Pacific in Chiapas were included in the analysis. Both the VK210 and VK247 types of pvcsp were detected, and VK210 had greater haplotype diversity (0.860) than VK247 parasites (0.198). Two pvs25 mutations (Q87K and I130T) yielded three haplotypes, and two ribosomal variants were detected. Gene and multilocus haplotype frequencies varied among malarious foci (p < 0.001). An AMOVA test, FST values, and Spearman’s correlation suggested a structured P. vivax population among the malaria foci. Each malaria focus across the northwestern and southern regions retained a portion of the past countrywide P. vivax population, which seems unique in Latin America. In the Lacandon region (LR), a linkage equilibrium between pvs25 haplotypes and the ribosomal variants within the VK247 or VK210 populations was observed. This region harbored the broadest reservoir of P. vivax haplotypes, and the high adaptation of parasites in the northwestern region represents a challenge for malaria elimination. These finding are relevant for monitoring and epidemiological surveillance. Full article
(This article belongs to the Special Issue Research on Mosquito-Borne Pathogens)
Show Figures

Figure 1

15 pages, 5640 KB  
Article
Visual Detection of Malaria Parasite-Parasitized Erythroblasts in Peripheral Blood via Immunization-Based Model
by Kumpei Ito, Yuki S. Tateishi, Takashi Imai, Shinya Miyazaki, Yukiko Miyazaki, Wataru Kagaya, Mai Nakashima, Miho Sase, Misato Yoshioka-Takeda, Chikako Shimokawa, Kyoko Hayashi, Kentaro Itokawa, Osamu Komagata, Ha Ngo-Thanh, Aoi Shimo, Tamasa Araki, Takeshi Annoura, Takashi Murakami and Hajime Hisaeda
Vaccines 2025, 13(9), 988; https://doi.org/10.3390/vaccines13090988 - 21 Sep 2025
Viewed by 586
Abstract
Background: Erythroblasts have recently been identified as host cells for malarial parasites, revealing a previously underappreciated host–parasite interaction. However, their extremely low abundance in peripheral blood has hindered progress, especially in elucidating the biological significance of parasitized erythroblasts (pEBs) in vivo. Methods: [...] Read more.
Background: Erythroblasts have recently been identified as host cells for malarial parasites, revealing a previously underappreciated host–parasite interaction. However, their extremely low abundance in peripheral blood has hindered progress, especially in elucidating the biological significance of parasitized erythroblasts (pEBs) in vivo. Methods: Here, we visualized pEBs in a murine model and established a method to increase their number in peripheral blood by immunizing mice with live Plasmodium yoelii 17XNL, followed by challenge with P. berghei ANKA. Results: Immunized mice were protected from cerebral malaria and survived longer, during which pEBs appeared in circulation and were detected using Giemsa-stained smears. All blood-stage parasite forms were identified within pEBs, including enucleating erythroblasts. Conclusions: This model enables in vivo/ex vivo analysis of pEB biology without bone marrow/spleen isolation, thus lowering technical/ethical barriers for the field. Full article
Show Figures

Figure 1

14 pages, 2498 KB  
Article
Molecular Profiles of Antimalarial Drug Resistance in Plasmodium Species from Asymptomatic Malaria Carriers in Gia Lai Province, Vietnam
by Hương Giang Lê, Tuấn Cường Võ, Jung-Mi Kang, Chau Van Khanh, Nguyen Thi Minh Trinh, Nguyen Thi Lien Hanh, Minkyoung Cho, Huynh Hong Quang and Byoung-Kuk Na
Microorganisms 2025, 13(9), 2101; https://doi.org/10.3390/microorganisms13092101 - 9 Sep 2025
Viewed by 483
Abstract
Asymptomatic malaria infection is a major concern in the fight against malaria, as it can act as a significant reservoir for its silent spread or transmission. Therefore, surveillance to detect asymptomatic subjects, particularly in regions with high malaria endemicity, is essential. This study [...] Read more.
Asymptomatic malaria infection is a major concern in the fight against malaria, as it can act as a significant reservoir for its silent spread or transmission. Therefore, surveillance to detect asymptomatic subjects, particularly in regions with high malaria endemicity, is essential. This study aimed to investigate the status of asymptomatic submicroscopic malaria infections in Gia Lai province, Vietnam, and to analyze molecular profiles of antimalarial drug resistance in the parasites from the asymptomatic carriers. A total of 2171 individuals were included from three districts of Gia Lai province, Vietnam, an area where malaria is endemic. Asymptomatic submicroscopic infection was confirmed by quantitative real-time PCR, and the infected Plasmodium species were confirmed by sequencing. Antimalarial drug-resistant genes, including pfk13, pfcrt, pvmdr-1, and pvcrt-o, were analyzed in the parasites from asymptomatic cases. The rate of asymptomatic submicroscopic malaria infection was 2.67%. P. falciparum and P. vivax mono-infections, as well as mixed infections of P. falciparum and P. vivax, were identified, with P. vivax being more prevalent, a significant observation given the challenge of P. vivax relapses and its contribution to sustained malaria transmission. Adults, including young, middle-aged, and older adults, were the predominant affected groups. Asymptomatic infections were more common in females than in males. Interestingly, high frequencies of mutations in genetic markers associated with antimalarial drug resistance, particularly pfk13 (C580Y, 100%), pfcrt (M74I/N75E/K76T, 100%), and pvmdr-1 (F1076L, 100%), were observed in asymptomatic individuals, which may increase the risk of spreading drug resistance. These findings emphasize the urgent necessity for improved surveillance and targeted intervention to prevent the silent spread of malaria, supporting the National Malarial Control and Elimination Program in formulating malaria elimination strategies for Vietnam. Full article
(This article belongs to the Special Issue Research on Mosquito-Borne Pathogens)
Show Figures

Figure 1

12 pages, 675 KB  
Article
Genetic Diversity of Plasmodium falciparum in Korhogo Health District, Northern Côte d’Ivoire
by Edjronké M. A. Benié, Carla Beuret, Annina Schnoz, Sara L. Cantoreggi, Xavier C. Ding, Kigbafori D. Silué and Christian Nsanzabana
Trop. Med. Infect. Dis. 2025, 10(9), 255; https://doi.org/10.3390/tropicalmed10090255 - 7 Sep 2025
Viewed by 527
Abstract
Understanding Plasmodium falciparum population genetic diversity is crucial to assess the impact of malaria control interventions. This study investigated P. falciparum genetic diversity using merozoite surface protein 1 (msp1), msp2 and glutamate-rich protein (glurp) in Korhogo district, Northern Côte [...] Read more.
Understanding Plasmodium falciparum population genetic diversity is crucial to assess the impact of malaria control interventions. This study investigated P. falciparum genetic diversity using merozoite surface protein 1 (msp1), msp2 and glutamate-rich protein (glurp) in Korhogo district, Northern Côte d’Ivoire. DNA was extracted from dried blood spots (DBSs) collected in the health district of Korhogo between 2019 and 2020. The msp1, msp2, and glurp genes were amplified by polymerase chain reaction (PCR), and amplicon sizes were determined by capillary electrophoresis. Out of 179 samples randomly selected and genotyped, 82% were successfully amplified for msp1, 85% for msp2, and 75% for glurp. For msp1, the K1 allelic family had 20 genotypes, MAD20 had 23, and RO33 had only one genotype. For msp2, there were 59 and 33 genotypes for 3D7 and FC27, respectively, and for glurp, 45 genotypes were detected. The parasite population was highly diverse with an expected heterozygosity (HE) of ≥0.9 for all 3 markers. Our study showed high genetic diversity of msp1, msp2, and glurp in P. falciparum isolates from Korhogo district, Northern Côte d’Ivoire. These data could provide baseline information on P. falciparum genetic diversity for further epidemiological studies, needed to assess interventions implemented in this area. Full article
(This article belongs to the Section Vector-Borne Diseases)
Show Figures

Figure 1

14 pages, 598 KB  
Article
Molecular Screening of Plasmodium spp. in Free-Living Ring-Tailed Coatis (Nasua nasua) and Nine-Banded Armadillos (Dasypus novemcinctus) in the Peruvian Amazon
by Gabriela M. Ulloa, Alex D. Greenwood, Omar E. Cornejo, Frederico Ozanan Barros Monteiro, Meddly L. Santolalla and Pedro Mayor
Animals 2025, 15(16), 2413; https://doi.org/10.3390/ani15162413 - 18 Aug 2025
Viewed by 480
Abstract
Identifying the diversity of wildlife hosts for malaria parasites in wildlife is crucial for understanding transmission dynamics in endemic regions where humans, vectors, and wildlife heavily overlap. We examined the presence of Plasmodium parasites in free-ranging ring-tailed coatis (Nasua nasua, n [...] Read more.
Identifying the diversity of wildlife hosts for malaria parasites in wildlife is crucial for understanding transmission dynamics in endemic regions where humans, vectors, and wildlife heavily overlap. We examined the presence of Plasmodium parasites in free-ranging ring-tailed coatis (Nasua nasua, n = 44) and nine-banded armadillos (Dasypus novemcinctus, n = 66) from an Indigenous community in the Peruvian Amazon. Nested PCR targeting the mitochondrial cytb gene detected Plasmodium spp. DNA in two coatis (4.7%). Sequencing revealed one lineage identical to Plasmodium vivax/P. simium and another to P. malariae/P. brasilianum. A subset of samples was reanalyzed using cox3-based PCR and sequencing in an independent laboratory, confirming P. malariae/P. brasilianum in one coati. No infections were observed in armadillos. These results indicate that coatis in the wild may host diverse Plasmodiidae parasites and that coatis may even carry Plasmodium spp., likely as incidental hosts. Expanding surveillance to additional non-primate mammals will help clarify their role in sylvatic malaria ecology and evaluate potential zoonotic risks. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

12 pages, 1678 KB  
Article
Molecular Surveillance of Plasmodium spp. Infection in Neotropical Primates from Bahia and Minas Gerais, Brazil
by Luana Karla N. S. S. Santos, Sandy M. Aquino-Teixeira, Sofía Bernal-Valle, Beatriz S. Daltro, Marina Noetzold, Aloma Roberta C. Silva, Denise Anete M. Alvarenga, Luisa B. Silva, Ramon S. Oliveira, Cirilo H. Oliveira, Iago A. Celestino, Maria E. Gonçalves-dos-Santos, Thaynara J. Teixeira, Anaiá P. Sevá, Fabrício S. Campos, Bergmann M. Ribeiro, Paulo M. Roehe, Danilo Simonini-Teixeira, Filipe V. S. Abreu, Cristiana F. A. Brito and George R. Albuquerqueadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 757; https://doi.org/10.3390/pathogens14080757 - 31 Jul 2025
Viewed by 830
Abstract
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial [...] Read more.
In Brazil, Plasmodium infections in non-human primates (NHPs) have been associated with P. simium and P. brasilianum, which are morphologically and genetically similar to the human-infecting species P. vivax and P. malariae, respectively. Surveillance and monitoring of wild NHPs are crucial for understanding the distribution of these parasites and assessing the risk of zoonotic transmission. This study aimed to detect the presence of Plasmodium spp. genetic material in Platyrrhini primates from 47 municipalities in the states of Bahia and Minas Gerais. The animals were captured using Tomahawk-type live traps baited with fruit or immobilized with tranquilizer darts. Free-ranging individuals were chemically restrained via inhalation anesthesia using VetBag® or intramuscular anesthesia injection. Blood samples were collected from the femoral vein. A total of 298 blood and tissue samples were collected from 10 primate species across five genera: Alouatta caraya (25), Alouatta guariba clamitans (1), Callicebus melanochir (1), Callithrix geoffroyi (28), Callithrix jacchus (4), Callithrix kuhlii (31), Callithrix penicillata (175), Callithrix spp. hybrids (15), Leontopithecus chrysomelas (16), Sapajus robustus (1), and Sapajus xanthosthernos (1). Molecular diagnosis was performed using a nested PCR targeting the 18S small subunit ribosomal RNA (18S SSU rRNA) gene, followed by sequencing. Of the 298 samples analyzed, only one (0.3%) from Bahia tested positive for Plasmodium brasilianum/P. malariae. This represents the first detection of this parasite in a free-living C. geoffroyi in Brazil. These findings highlight the importance of continued surveillance of Plasmodium infections in NHPs to identify regions at risk for zoonotic transmission. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 2113 KB  
Article
NR2F6 as a Disease Driver and Candidate Therapeutic Target in Experimental Cerebral Malaria
by Victoria E. Stefan, Victoria Klepsch, Nikolaus Thuille, Martina Steinlechner, Sebastian Peer, Kerstin Siegmund, Peter Lackner, Erich Schmutzhard, Karin Albrecht-Schgör and Gottfried Baier
Cells 2025, 14(15), 1162; https://doi.org/10.3390/cells14151162 - 28 Jul 2025
Viewed by 626
Abstract
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of [...] Read more.
Cerebral malaria (CM) is the severe progression of an infection with Plasmodium falciparum, causing detrimental damage to brain tissue and is the most frequent cause of Plasmodium falciparum mortality. The critical role of brain-infiltrating CD8+ T cells in the pathophysiology of CM having been revealed, our investigation focuses on the role of NR2F6, an established immune checkpoint, as a candidate driver of CM pathology. We employed an experimental mouse model of CM based on Plasmodium berghei ANKA (PbA) infection to compare the relative susceptibility of Nr2f6-knock-out and wild-type C57BL6/N mice. As a remarkable result, Nr2f6 deficiency confers a significant survival benefit. In terms of mechanism, we detected less severe endotheliopathy and, hence, less damage to the blood–brain barrier (BBB), accompanied by decreased sequestered parasites and less cytotoxic T-lymphocytes within the brain, manifesting in a better disease outcome. We present evidence that NR2F6 deficiency renders mice more resistant to experimental cerebral malaria (ECM), confirming a causal and non-redundant role for NR2F6 in the progression of ECM disease. Consequently, pharmacological inhibitors of the NR2F6 pathway could be of use to bolster BBB integrity and protect against CM. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

18 pages, 2850 KB  
Article
An mRNA Vaccine Expressing Blood-Stage Malaria Antigens Induces Complete Protection Against Lethal Plasmodium yoelii
by Amy C. Ott, Patrick J. Loll and James M. Burns
Vaccines 2025, 13(7), 702; https://doi.org/10.3390/vaccines13070702 - 28 Jun 2025
Viewed by 1089
Abstract
Background and Objectives: To evaluate the mRNA vaccine platform for blood-stage Plasmodium parasites, we completed a proof-of-concept study using the P. yoelii mouse model of malaria and two mRNA-based vaccines. Both encoded PyMSP119 fused to PyMSP8 (PyMSP1/8). One [...] Read more.
Background and Objectives: To evaluate the mRNA vaccine platform for blood-stage Plasmodium parasites, we completed a proof-of-concept study using the P. yoelii mouse model of malaria and two mRNA-based vaccines. Both encoded PyMSP119 fused to PyMSP8 (PyMSP1/8). One was designed for secretion of the encoded protein (PyMSP1/8-sec); the other encoded membrane-bound antigen (PyMSP1/8-mem). Methods: Secretion of PyMSP1/8-sec and membrane localization of PyMSP1/8-mem were verified in mRNA-transfected cells. As recombinant PyMSP1/8 (rPyMSP1/8) is known to protect mice against lethal P. yoelii 17XL infection, we first compared immunogenicity and efficacy of the PyMSP1/8-sec mRNA vaccine versus the recombinant formulation in outbred mice. Animals were immunized three times followed by challenge with a lethal dose of P. yoelii 17XL-parasitized RBCs (pRBCs). Similar immunization and challenge experiments were conducted to compare PyMSP1/8-sec versus PyMSP1/8-mem mRNA vaccines. Results: Immunogenicity of the PyMSP1/8-sec mRNA vaccine was superior to the recombinant formulation, inducing higher antibody titers against both vaccine components. Following challenge with P. yoelii 17XL pRBCs, all PyMSP1/8-sec-immunized animals survived, with 50% of these showing no detectible pRBCs in circulation (<0.01%). In addition, mean peak parasitemia in PyMSP1/8-sec mRNA-immunized mice was significantly lower than that in the rPyMSP1/8 vaccine group. Both PyMSP1/8-sec and PyMSP1/8-mem were protective against P. yoelii 17XL challenge, with PyMSP1/8-mem immunization providing a significantly higher level of protection than PyMSP1/8-sec immunization considering the number of animals with no detectable pRBCs in circulation and the mean peak parasitemia in animals with detectable parasitemia. Conclusions: mRNA vaccines were highly immunogenic and potently protective against blood-stage malaria, outperforming a similar recombinant-based vaccine. The membrane-bound antigen was more effective at inducing protective antibody responses, highlighting the need to consider antigen localization for mRNA vaccine design. Full article
Show Figures

Figure 1

17 pages, 3403 KB  
Article
Reduced Genetic Diversity of Key Fertility and Vector Competency Related Genes in Anopheles gambiae s.l. Across Sub-Saharan Africa
by Fatoumata Seck, Mouhamadou Fadel Diop, Karim Mané, Amadou Diallo, Idrissa Dieng, Moussa Namountougou, Abdoulaye Diabate, Alfred Amambua-Ngwa, Ibrahima Dia and Benoit Sessinou Assogba
Genes 2025, 16(5), 543; https://doi.org/10.3390/genes16050543 - 30 Apr 2025
Viewed by 1254
Abstract
Background: Insecticide resistance challenges the vector control efforts towards malaria elimination and proving the development of complementary tools. Targeting the genes that are involved in mosquito fertility and susceptibility to Plasmodium with small molecule inhibitors has been a promising alternative to curb the [...] Read more.
Background: Insecticide resistance challenges the vector control efforts towards malaria elimination and proving the development of complementary tools. Targeting the genes that are involved in mosquito fertility and susceptibility to Plasmodium with small molecule inhibitors has been a promising alternative to curb the vector population and drive the transmission down. However, such an approach would require a comprehensive knowledge of the genetic diversity of the targeted genes to ensure the broad efficacy of new tools across the natural vector populations. Methods: Four fertility and parasite susceptibility genes were identified from a systematic review of the literature. The Single Nucleotide Polymorphisms (SNPs) found within the regions spanned by these four genes, genotyped across 2784 wild-caught Anopheles gambiae s.l. from 19 sub-Saharan African (SSA) countries, were extracted from the whole genome SNP data of the Ag1000G project (Ag3.0). The population genetic analysis on gene-specific data included the determination of the population structure, estimation of the differentiation level between the populations, evaluation of the linkage between the non-synonymous SNPs (nsSNPs), and a few statistical tests. Results: As potential targets for small molecule inhibitors to reduce malaria transmission, our set of four genes associated with Anopheles fertility and their susceptibility to Plasmodium comprises the mating-induced stimulator of oogenesis protein (MISO, AGAP002620), Vitellogenin (Vg, AGAP004203), Lipophorin (Lp, AGAP001826), and Haem-peroxidase 15 (HPX15, AGAP013327). The analyses performed on these potential targets of small inhibitor molecules revealed that the genes are conserved within SSA populations of An. gambiae s.l. The overall low Fst values and low clustering of principal component analysis between species indicated low genetic differentiation at all the genes (MISO, Vg, Lp and HPX15). The low nucleotide diversity (>0.10), negative Tajima’s D values, and heterozygosity analysis provided ecological insights into the purifying selection that acts to remove deleterious mutations, maintaining genetic diversity at low levels within the populations. None of MISO nsSNPs were identified in linkage disequilibrium, whereas a few weakly linked nsSNPs with ambiguous haplotyping were detected at other genes. Conclusions: This integrated finding on the genetic features of major malaria vectors’ biological factors across natural populations offer new insights for developing sustainable malaria control tools. These loci were reasonably conserved, allowing for the design of effective targeting with small molecule inhibitors towards controlling vector populations and lowering global malaria transmission. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4686 KB  
Article
Blood Parasite Diversity and Zoonotic Risk in Captive Sun-Tailed Monkeys from Gabon
by Sarah Parfaite Ambourouet, Franck Mounioko, Patrice Makouloutou-Nzassi, Monique Nzale, Barthelemy Ngoubangoye and Larson Boundenga
Acta Microbiol. Hell. 2025, 70(2), 16; https://doi.org/10.3390/amh70020016 - 28 Apr 2025
Viewed by 715
Abstract
The present study investigates the prevalence and diversity of Plasmodium and Trypanosoma infections in Allochrocebus solatus, a vulnerable primate species native to Gabon. Using molecular techniques like nested PCR and phylogenetic analysis, we found 34.0% infection rate for malaria parasites infection, 21.3% [...] Read more.
The present study investigates the prevalence and diversity of Plasmodium and Trypanosoma infections in Allochrocebus solatus, a vulnerable primate species native to Gabon. Using molecular techniques like nested PCR and phylogenetic analysis, we found 34.0% infection rate for malaria parasites infection, 21.3% for Trypanosoma spp., and 12.8% co-infections. Additionally, Hepatocystis was exclusively detected among malaria parasites, while Trypanosoma brucei brucei, T. vivax, and T. congolense were identified. These results underscore the complex host–parasite interactions influenced by captivity and the ecological and immunological consequences of such infections, particularly the increased susceptibility associated with captivity-induced stress. This preliminary study highlights the need for ongoing surveillance to mitigate health risks in primates and prevent potential zoonotic spillovers, providing critical data for conservation efforts. Full article
Show Figures

Figure 1

9 pages, 876 KB  
Article
Molecular Identification of Anopheles (Diptera: Culicidae) Species in Native Communities of a Northeastern Region of Peru
by Eddyson Montalvo-Sabino, Marianella Villegas-Pingo, Jhon Zumaeta, Lizandro Gonzales, Rafael Tapia-Limonchi, Marta Moreno, Christian R. González and Stella M. Chenet
Microorganisms 2025, 13(4), 861; https://doi.org/10.3390/microorganisms13040861 - 10 Apr 2025
Viewed by 875
Abstract
Background: Malaria is a severe health problem in native communities of Condorcanqui in the Amazonas region of Peru. Recently, the number of malaria cases has increased considerably following a Plasmodium falciparum outbreak in 2019. However, there is no information on the anophelines acting as [...] Read more.
Background: Malaria is a severe health problem in native communities of Condorcanqui in the Amazonas region of Peru. Recently, the number of malaria cases has increased considerably following a Plasmodium falciparum outbreak in 2019. However, there is no information on the anophelines acting as Plasmodium vectors in this area. This study aimed to identify Anopheles species circulating in previously unexplored native communities of Condorcanqui. Additionally, we sought to detect the presence of DNA from P. vivax and P. falciparum parasites in mosquitoes. Methods: During three exploratory visits between March and September 2022, 453 mosquitoes were collected using Shannon traps and CDC light traps. Only specimens morphologically identified as Anopheles sp. were subjected to molecular confirmation through PCR amplification and sequencing of the Cox1 barcode region. Plasmodium parasites were detected using nested PCR targeting of the 18S rRNA subunit, while human blood meal feeding was evaluated using a human β-globin marker. Results: A total of 66 specimens were molecularly confirmed as anopheline species: An. benarrochi B, An. triannulatus, An. Costai, and An. nimbus. Six specimens of An. benarrochi B were exclusively positive for Plasmodium parasites by PCR. Moreover, four specimens tested positive for Plasmodium and the presence of human blood, suggesting the anthropophilic behavior of An. benarrochi B and its possible role as a potential malaria vector in this area. Conclusions: In conclusion, while this study provides valuable insights into the potential role of Anopheles benarrochi as a malaria vector in Amazonas, further research is essential to fully understand its behavior and transmission dynamics in the region. Full article
(This article belongs to the Special Issue Research on Mosquito-Borne Pathogens)
Show Figures

Figure 1

13 pages, 271 KB  
Article
Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates
by Ángela Ceballos-Caro, Víctor Antón-Berenguer, Marta Lanza, Justinn Renelies-Hamilton, Amanda Barciela, Pamela C. Köster, David Carmena, María Flores-Chávez, Emeline Chanove and José Miguel Rubio
Diagnostics 2025, 15(5), 620; https://doi.org/10.3390/diagnostics15050620 - 4 Mar 2025
Viewed by 1177
Abstract
Background/Objectives: Many tropical diseases such as malaria, Chagas, human African Trypanosomiasis, and Lymphatic filariasis coexist in endemic countries, affecting more than 1 billion people worldwide, and are recognised as major global vector-borne diseases. Tackling this disease requires an accurate diagnosis that is [...] Read more.
Background/Objectives: Many tropical diseases such as malaria, Chagas, human African Trypanosomiasis, and Lymphatic filariasis coexist in endemic countries, affecting more than 1 billion people worldwide, and are recognised as major global vector-borne diseases. Tackling this disease requires an accurate diagnosis that is sensitive, specific, and rapid. This study aimed to describe and validate a new highly sensitive and specific multiple-analysis system that can effectively detect numerous etiological agents in a single test. Methods: A total of 230 human blood samples were assessed retrospectively for parasite characterisation, as well as 58 stool samples from non-human primates. Primers and probes were designed in the small subunit ribosomal RNA gene, except for Plasmodium spp., for which the novel target was Cytochrome Oxidase Subunit 1. Results: The analytical specificity of the presented method was 100%, with no unspecific amplifications or cross-reactions with other blood parasitic diseases. The detection limit obtained was between 0.6 and 3.01 parasites/µL for Plasmodium species, 1.8 parasites/mL for Trypanosomatidae, and 2 microfilariae/mL in the case of Filariae. The sensitivity, specificity, predictive values, and kappa coefficient reached almost 100%, except for Filariae, whose sensitivity dropped to 93.9% and whose negative predicted value dropped to 89.5%. The operational features described a turnaround and a hands-on time shorter than the compared methods with a lower cost per essay. Conclusions: This work presents a cost-effective and highly sensitive multiplexed tool (RT-PCR-bp) capable of performing simultaneous detection for blood parasitic diseases using specific fluorescence probes, enabling the diagnosis of low parasite loads and coinfections. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
15 pages, 1430 KB  
Article
Genetic Diversity of Potential Drug Resistance Markers in Plasmodium vivax Isolates from Panama, Mesoamerica
by Vanessa Vásquez, Ana María Santamaría, Dianik Moreno, Fergie Ruíz, Chystrie A. Rigg, Luis F. Chaves and José E. Calzada
Pathogens 2025, 14(3), 231; https://doi.org/10.3390/pathogens14030231 - 27 Feb 2025
Viewed by 1029
Abstract
This study evaluated the genetic diversity and potential drug resistance markers in Plasmodium vivax isolates from Panama, a country in Mesoamerica, aiming to eliminate local malaria transmission. We analyzed 70 P. vivax samples collected between 2004 and 2020 from endemic regions in Eastern [...] Read more.
This study evaluated the genetic diversity and potential drug resistance markers in Plasmodium vivax isolates from Panama, a country in Mesoamerica, aiming to eliminate local malaria transmission. We analyzed 70 P. vivax samples collected between 2004 and 2020 from endemic regions in Eastern and Western Panama, as well as imported cases. Four drug resistance genes (pvcrt-o, pvmdr1, pvdhfr, and pvdhps) were sequenced and analyzed. Our findings reveal low genetic diversity in P. vivax populations from Western Panama, indicating clonal expansion, while Eastern Panama exhibits higher diversity, influenced by higher transmission rates and imported cases. No mutations were detected in pvcrt-o, and the prevalence of pvmdr1 mutations (Y976F and F1076L) linked to chloroquine was observed at low frequencies, primarily in imported samples. In pvdhfr, antifolate-resistant mutations S117N and S58R were detected in 14.3% of samples, predominantly from Eastern Panama near the Colombian border. Phylogenetic and haplotype network analyses highlighted distinct genetic clustering, supporting the influence of imported cases on local parasite diversity. These results provide a baseline for the molecular surveillance of P. vivax in Panama and emphasize the need for the continued monitoring of genetic diversity and drug resistance to guide regional malaria elimination efforts, particularly in areas with high cross-border migration. Full article
(This article belongs to the Special Issue Emerging Vector-Borne and Zoonotic Diseases—2nd Edition)
Show Figures

Figure 1

20 pages, 5204 KB  
Article
Autofluorescence of Red Blood Cells Infected with P. falciparum as a Preliminary Analysis of Spectral Sweeps to Predict Infection
by Miguel A. Garrido-Tamayo, Alejandro Rincón Santamaría, Fredy E. Hoyos, Tamara González Vega and David Laroze
Biosensors 2025, 15(2), 123; https://doi.org/10.3390/bios15020123 - 19 Feb 2025
Viewed by 1042
Abstract
Malaria, an infectious disease caused by parasites of the genus Plasmodium—including the most lethal species, Plasmodium falciparum—alters the physicochemical properties of host red blood cells, including their intrinsic autofluorescence after infecting them. This exploratory study aims to investigate the possibility of [...] Read more.
Malaria, an infectious disease caused by parasites of the genus Plasmodium—including the most lethal species, Plasmodium falciparum—alters the physicochemical properties of host red blood cells, including their intrinsic autofluorescence after infecting them. This exploratory study aims to investigate the possibility of using autofluorescence as a method for detecting infection in red blood cells. The autofluorescence spectra of uninfected and in vitro infected red blood cells with Plasmodium falciparum were monitored and compared across an excitation wavelength range of 255 to 630 nm. Principal Component Analysis revealed that only two wavelengths (315 and 320 nm), previously undocumented, were able to accurately differentiate infected from uninfected red blood cells, showing an increase in autofluorescence in the ultraviolet and blue regions. This phenomenon is hypothetically associated with the presence of natural fluorophores such as tryptophan, FAD, NADH, porphyrins, and lipopigments. To classify the samples, Linear Discriminant Analysis (LDA) was employed, and Wilks’ Lambda test confirmed that the discriminant function was significant, enabling correct classification of samples in more than 91% of cases. Overall, our results support the potential use of autofluorescence as an effective approach for detecting malaria parasite infection in red blood cells, with the possibility of implementation in portable devices for rapid field diagnostics. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

17 pages, 1414 KB  
Article
Antimicrobial and Anticancer Potential of Polyketides Isolated from the Caribbean Marine Sponge Plakortis halichondrioides
by Carlos Jiménez-Romero, Luis A. Amador, Gabriel Castro-Falcón and Abimael D. Rodríguez
Drugs Drug Candidates 2025, 4(1), 6; https://doi.org/10.3390/ddc4010006 - 15 Feb 2025
Viewed by 1105
Abstract
Background/Objectives: The marine sponge Plakortis halichondrioides is notable for its capacity to accumulate a large array of secondary metabolites. The present research aims at discovering new secondary metabolites from P. halichondrioides with potential applications in medicine. Methods: Plakortilactone (1) and seco [...] Read more.
Background/Objectives: The marine sponge Plakortis halichondrioides is notable for its capacity to accumulate a large array of secondary metabolites. The present research aims at discovering new secondary metabolites from P. halichondrioides with potential applications in medicine. Methods: Plakortilactone (1) and seco-plakortide F acid (2), two new polyketides, along with known manadodioxan D (3), 13-oxo-plakortide F (4), plakortide F (5), and manadodioxan E (6), were isolated from P. halichondrioides. We achieved the structural elucidation of 1 and 2 using modern spectroscopic methods. The relative stereochemistry of 1 was proposed on the basis of 1D- and 2D-NMR data in combination with molecular modeling studies. Additionally, the absolute configuration of 2 was established through chemical correlation to 5. We screened some of the isolated compounds against the malaria parasite Plasmodium falciparum 3D7 non-resistant (wild-type resistant) strain, the tuberculosis bacterium Mycobacterium tuberculosis, the prostate cancer cell line DU-145, and the melanoma cell line A-2058. Results: minimal activity was detected for 2 against these cancer cells. In contrast, 3 and 4 displayed activity against DU-145 cells with IC50 values of 1.6 µg/mL and 4.5 µg/mL, respectively, and A-2058 cells with IC50s of 2.6 µg/mL and 7.7 µg/mL, respectively. In the antiplasmodial activity assay 3 appeared more active (IC50 = 1.7 µg/mL) than 4 (IC50 = 3.1 µg/mL). Meanwhile, 2 displayed only moderate activity (IC50 = 39.3 µg/mL). In the antimycobacterial activity assay 2 exhibited moderate inhibition (MIC = 75.1 µg/mL). In contrast, a 1:1 mixture of 3 and 4 demonstrated higher activity (MIC = 26.3 µg/mL). Conclusions: the biological activity data together with ADMET predictions indicated favorable pharmacokinetic properties for 3. Full article
(This article belongs to the Collection Chirality in Drugs and Drug Candidates)
Show Figures

Graphical abstract

Back to TopTop