Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = makran subduction zone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3952 KiB  
Article
Seismic Site Amplification Characteristics of Makran Subduction Zone Using 1D Non-Linear Ground Response Analysis
by Hammad Raza, Naveed Ahmad, Muhammad Aaqib, Turab H. Jafri and Mohsin Usman Qureshi
Appl. Sci. 2025, 15(4), 1775; https://doi.org/10.3390/app15041775 - 10 Feb 2025
Viewed by 1071
Abstract
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records [...] Read more.
The Makran Subduction Zone (MSZ) is a tectonic plate boundary where the Arabian Plate is subducting beneath the Eurasian Plate. This study investigated the dynamic response in the Gwadar region, located in the eastern part of the MSZ. A suite of seismic records compatible with the Building Code of Pakistan (BCP:2021) rock design spectrum was used as the input ground motions at the bedrock. The amplification characteristics were assessed through a series of one-dimensional (1D) site response analyses utilizing a non-linear (NL) approach. The results revealed significant de-amplification in soft soils at short spectral periods. A general depth-wise decrease in the shear stress ratio and peak ground acceleration values was observed, influenced by shear-strain-induced effects and shear wave velocity reversals within the site profiles. The code spectra, compared to the proposed design spectra, underestimated the site amplification for stiff soils (i.e., Site Class D) for periods of less than 0.32 s and overestimated it for soft soils (i.e., Site Class E) across all periods. These findings underscore the necessity for site-specific ground response analyses, particularly within the framework of the China–Pakistan Economic Corridor (CPEC). Full article
Show Figures

Figure 1

33 pages, 21077 KiB  
Article
Deterministic Tsunami Hazard Assessment for the Eastern Coast of the United Arab Emirates: Insights from the Makran Subduction Zone
by Mouloud Hamidatou, Abdulla Almandous, Khalifa Alebri, Badr Alameri and Ali Megahed
Sustainability 2024, 16(23), 10665; https://doi.org/10.3390/su162310665 - 5 Dec 2024
Viewed by 3075
Abstract
Tsunamis are destructive oceanic hazards caused by underwater disturbances, mainly earthquakes. A deterministic tsunami hazard assessment for the United Arab Emirates (UAE), due to the Makran Subduction Zone (MSZ), was conducted based on the history of earthquakes in the region and considering the [...] Read more.
Tsunamis are destructive oceanic hazards caused by underwater disturbances, mainly earthquakes. A deterministic tsunami hazard assessment for the United Arab Emirates (UAE), due to the Makran Subduction Zone (MSZ), was conducted based on the history of earthquakes in the region and considering the rapid development and urbanization of the east coast of the UAE. A variety of earthquake source scenarios was modeled, involving moment magnitudes of 8.2, 8.8, and 9.2. Tsunami travel time (TTT), run-up, flow depth, and inundation maps were generated to pinpoint the areas susceptible to tsunami hazards for the eastern coastal cities of Kalba, Al Fujairah, Khor Fakkan, and Dibba. The results show that the worst-case Mw 9.2 earthquake in a full MSZ rupture scenario resulted in an average TTT of 37 min, a maximum run-up height of 2.55 m, a maximum flow depth of 2.2 m, and a maximum inundation distance of 253 m on the east coast of the UAE. The Mw 8.2 western MSZ earthquake and the Mw 8.8 eastern MSZ earthquake scenarios were of less significant impact. These findings provide new insights into tsunami hazard assessment and are expected to play a vital role in advancing sustainable development in the region by providing key information for stakeholders and authorities as they highlight the need for enhanced tsunami mitigation and preparedness measures to reduce the potential impact of future tsunamis on the UAE. Full article
Show Figures

Figure 1

21 pages, 20051 KiB  
Review
Makran Subduction Zone: A Review and Synthesis
by Peyman Namdarsehat, Wojciech Milczarek, Seyed-Hani Motavalli-Anbaran and Matin Khaledzadeh
Geosciences 2024, 14(8), 219; https://doi.org/10.3390/geosciences14080219 - 18 Aug 2024
Viewed by 4168
Abstract
This review synthesizes existing research to elucidate the factors driving the distinct tectonic behaviors in the western and eastern Makran subduction zone, focusing on seismic activity, uplift rate, convergence rate, coupling, and subduction angle. The literature identifies the asymmetry in pressure and the [...] Read more.
This review synthesizes existing research to elucidate the factors driving the distinct tectonic behaviors in the western and eastern Makran subduction zone, focusing on seismic activity, uplift rate, convergence rate, coupling, and subduction angle. The literature identifies the asymmetry in pressure and the variation in subduction angles between the western and eastern parts of the Makran as key factors in defining the region’s tectonic patterns. The western region has a steeper subduction angle, resulting in lower pressure, reduced coupling, and decreased seismic activity. This disparity arises from different interactions between the subducted and overriding plates. This article offers an overview of the Makran subduction zone, identifies some knowledge gaps, and suggests directions for future research to improve our understanding of this complex geological region. The review highlights the need for more comprehensive GPS stations and targeted studies on subduction dip angles to better understand the region’s tectonic dynamics. Full article
Show Figures

Figure 1

19 pages, 3071 KiB  
Article
Machine Learning-Based Assessment of Watershed Morphometry in Makran
by Reza Derakhshani, Mojtaba Zaresefat, Vahid Nikpeyman, Amin GhasemiNejad, Shahram Shafieibafti, Ahmad Rashidi, Majid Nemati and Amir Raoof
Land 2023, 12(4), 776; https://doi.org/10.3390/land12040776 - 29 Mar 2023
Cited by 16 | Viewed by 3781
Abstract
This study proposes an artificial intelligence approach to assess watershed morphometry in the Makran subduction zones of South Iran and Pakistan. The approach integrates machine learning algorithms, including artificial neural networks (ANN), support vector regression (SVR), and multivariate linear regression (MLR), on a [...] Read more.
This study proposes an artificial intelligence approach to assess watershed morphometry in the Makran subduction zones of South Iran and Pakistan. The approach integrates machine learning algorithms, including artificial neural networks (ANN), support vector regression (SVR), and multivariate linear regression (MLR), on a single platform. The study area was analyzed by extracting watersheds from a Digital Elevation Model (DEM) and calculating eight morphometric indices. The morphometric parameters were normalized using fuzzy membership functions to improve accuracy. The performance of the machine learning algorithms is evaluated by mean squared error (MSE), mean absolute error (MAE), and correlation coefficient (R2) between the output of the method and the actual dataset. The ANN model demonstrated high accuracy with an R2 value of 0.974, MSE of 4.14 × 10−6, and MAE of 0.0015. The results of the machine learning algorithms were compared to the tectonic characteristics of the area, indicating the potential for utilizing the ANN algorithm in similar investigations. This approach offers a novel way to assess watershed morphometry using ML techniques, which may have advantages over other approaches. Full article
(This article belongs to the Special Issue Feature Papers for Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

12 pages, 3906 KiB  
Article
Life on the Edge: A Powerful Tsunami Overwhelmed Indian Ocean Mangroves One Millennium Ago
by Valeska Decker, Carole T. Gee, Pia J. Schucht, Susanne Lindauer and Gösta Hoffmann
Forests 2022, 13(6), 922; https://doi.org/10.3390/f13060922 - 13 Jun 2022
Cited by 3 | Viewed by 2747
Abstract
In this paper, we demonstrate how subfossil mangrove wood can be used to elucidate the timing of past tsunami events. Although tsunamis generated by submarine earthquakes along the Makran subduction zone in the Arabian Sea are not unusual, rigorous age documentation is generally [...] Read more.
In this paper, we demonstrate how subfossil mangrove wood can be used to elucidate the timing of past tsunami events. Although tsunamis generated by submarine earthquakes along the Makran subduction zone in the Arabian Sea are not unusual, rigorous age documentation is generally lacking. The best known is the only instrument-recorded tsunami, which affected the coastlines of Iran, Pakistan, India, and Oman in November 1945. Eyewitness accounts of the effect along the Oman coastline assert that this tsunami was not destructive. However, a 25-cm-thick shell layer in the lagoon adjacent to the city of Sur was attributed to the 1945 tsunami, although dating of the shell deposit proved difficult, and the radiocarbon dates of mollusk shells were regarded as unreliable. Here, we reinterpret the age of this tsunamigenic layer based on the new discovery of parallel-oriented woody axes in the sedimentological context of the tsunami shell layer in the Sur lagoon. The woody axes were analyzed anatomically and identified as pertaining to the gray mangrove Avicennia. Radiocarbon dating of the wood (905–722 cal BP), along with sedimentological investigations, suggests that the deposition of the woody axes should be attributed to an older tsunami event that occurred ca. 1000 years ago, which has been documented at other locations along the Arabian Sea coastline. From this, we conclude that mangroves grew in this lagoon at that time. Very little is known about ancient mangrove distribution in this region and, so far, no records have been provided for this time window at this site. We also deduce that the tsunami event that occurred one millennium ago must have been substantially more severe than the one in 1945. More accurate dating of tsunamigenic events will aid in calculating the recurrence intervals and magnitude of tsunamis generated along the Makran subduction zone. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Graphical abstract

20 pages, 8056 KiB  
Article
Stochastic Analysis of Tsunami Hazard of the 1945 Makran Subduction Zone Mw 8.1–8.3 Earthquakes
by Payam Momeni, Katsuichiro Goda, Mohammad Heidarzadeh and Jinhui Qin
Geosciences 2020, 10(11), 452; https://doi.org/10.3390/geosciences10110452 - 11 Nov 2020
Cited by 12 | Viewed by 3722
Abstract
Historical records of major earthquakes in the northwestern Indian Ocean along the Makran Subduction Zone (MSZ) indicate high potential tsunami hazards for coastal regions of Pakistan, Iran, Oman, and western India. There are fast-growing and populous cities and ports that are economically important, [...] Read more.
Historical records of major earthquakes in the northwestern Indian Ocean along the Makran Subduction Zone (MSZ) indicate high potential tsunami hazards for coastal regions of Pakistan, Iran, Oman, and western India. There are fast-growing and populous cities and ports that are economically important, such as Chabahar (Iran), Gwadar (Pakistan), Muscat (Oman), and Mumbai (India). In this study, we assess the tsunami hazard of the 1945 MSZ event (fatalities ≈300 people) using stochastic earthquake rupture models of Mw 8.1–8.3 by considering uncertainties related to rupture geometry and slip heterogeneity. To quantify the uncertainty of earthquake source characteristics in tsunami hazard analysis, 1000 stochastic tsunami scenarios are generated via a stochastic source modeling approach. There are main objectives of this study: (1) developing stochastic earthquake slip models for the MSZ, (2) comparing results of the simulation with the existing observations of the 1945 event, and (3) evaluating the effect of uncertain fault geometry and earthquake slip based on simulated near-shore wave profiles. The 1945 Makran earthquake is focused upon by comparing model predictions with existing observations, consisting of far-field tsunami waveforms recorded on tide gauges in Karachi and Mumbai and coseismic deformation along the Pakistani coast. The results identify the source model that matches the existing observations of the 1945 Makran event best among the stochastic sources. The length, width, mean slip, and maximum slip of the identified source model are 270 km, 130 km, 2.9 m, and 19.3 m, respectively. Moreover, the sensitivity of the maximum tsunami heights along the coastline to the location of a large-slip area is highlighted. The maximum heights of the tsunami and coseismic deformation results at Ormara are in the range of 0.3–7.0 m and −2.7 to 1.1 m, respectively, for the 1000 stochastic source models. Full article
(This article belongs to the Special Issue Interdisciplinary Geosciences Perspectives of Tsunami Volume 3)
Show Figures

Graphical abstract

29 pages, 9315 KiB  
Article
Probabilistic Seismic Hazard Assessment for United Arab Emirates, Qatar and Bahrain
by Rashad Sawires, José A. Peláez and Mohamed Hamdache
Appl. Sci. 2020, 10(21), 7901; https://doi.org/10.3390/app10217901 - 7 Nov 2020
Cited by 16 | Viewed by 10600
Abstract
A probabilistic seismic hazard assessment in terms of peak ground acceleration (PGA) and spectral acceleration (SA) values, for both 10% and 5% probability of exceedance in 50 years, has been performed for the United Arab Emirates, Qatar, and Bahrain. To do that, an [...] Read more.
A probabilistic seismic hazard assessment in terms of peak ground acceleration (PGA) and spectral acceleration (SA) values, for both 10% and 5% probability of exceedance in 50 years, has been performed for the United Arab Emirates, Qatar, and Bahrain. To do that, an updated, unified, and Poissonian earthquake catalog (since 685 to 2019) was prepared for this work. Three alternative seismic source models were considered in a designed logic-tree framework. The discrimination between the shallow and intermediate depth seismicity along the Zagros and the Makran regions was also considered in this assessment. Three alternative ground-motion attenuation models for crustal earthquakes and one additional for intermediate-depth ones have been selected and applied in this study, considering the predominant stress regime computed previously for each defined source. This assessment highlights that the maximum obtained hazard values are observed in the northeastern part of the studied region, specifically at Ras Al-Khaimah, Umm Al-Quwain, and Fujaira, being characterized by mean PGA and SA (0.2 s) pair values equal to (0.13 g, 0.30 g), (0.12 g, 0.29 g), and (0.13 g, 0.28 g), respectively, for a 475-year return period and for B/C National Earthquake Hazards Reduction Program (NEHRP) boundary site conditions. Seismic hazard deaggregation in terms of magnitude and distance was also computed for a return period of 475 years, for ten emirates and cities, and for four different spectral periods. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

31 pages, 47684 KiB  
Review
A Review of Tsunami Hazards in the Makran Subduction Zone
by Amin Rashidi, Denys Dutykh, Zaher Hossein Shomali, Nasser Keshavarz Farajkhah and Mohammadsadegh Nouri
Geosciences 2020, 10(9), 372; https://doi.org/10.3390/geosciences10090372 - 18 Sep 2020
Cited by 22 | Viewed by 13083
Abstract
The uncertain tsunamigenic potential of the Makran Subduction Zone (MSZ) has made it an interesting natural laboratory for tsunami-related studies. This study aims to review the recent activities on tsunami hazard in the Makran subduction zone with a focus on deterministic and probabilistic [...] Read more.
The uncertain tsunamigenic potential of the Makran Subduction Zone (MSZ) has made it an interesting natural laboratory for tsunami-related studies. This study aims to review the recent activities on tsunami hazard in the Makran subduction zone with a focus on deterministic and probabilistic tsunami hazard assessments. While almost all studies focused on tsunami hazard from the Makran subduction thrust, other local sources such as splay faults and landslides can be also real threats in the future. Far-field tsunami sources such as Sumatra-Andaman and Java subduction zones, commonly lumped as the Sunda subduction zone, do not seem to pose a serious risk to the Makran coastlines. The tsunamigenic potential of the western segment of the MSZ should not be underestimated considering the new evidence from geological studies and lessons from past tsunamis in the world. An overview of the results of tsunami hazard studies shows that the coastal area between Kereti to Ormara along the shoreline of Iran-Pakistan and the coastal segment between Muscat and Sur along Oman’s shoreline are the most hazardous areas. Uncertainties in studying tsunami hazard for the Makran region are large. We recommend that future studies mainly focus on the role of thick sediments, a better understanding of the plates interface geometry, the source mechanism and history of extreme-wave deposits, the contribution of other local tsunamigenic sources and vulnerability assessment for all coastlines of the whole Makran region. Full article
Show Figures

Graphical abstract

14 pages, 4362 KiB  
Article
Quaternary Thrusting in the Central Oman Mountains—Novel Observations and Causes: Insights from Optical Stimulate Luminescence Dating and Kinematic Fault Analyses
by Daniel Moraetis, Andreas Scharf, Frank Mattern, Kosmas Pavlopoulos and Steven Forman
Geosciences 2020, 10(5), 166; https://doi.org/10.3390/geosciences10050166 - 5 May 2020
Cited by 10 | Viewed by 5158
Abstract
For the first time, Quaternary thrusts are documented within the Central Oman Mountains to the northwest of the Jabal Akhdar Dome. Thrusts with a throw of up to 1.1 m displace Quaternary alluvial fan conglomerates. These conglomerates have an Optical Stimulate Luminescence (OSL) [...] Read more.
For the first time, Quaternary thrusts are documented within the Central Oman Mountains to the northwest of the Jabal Akhdar Dome. Thrusts with a throw of up to 1.1 m displace Quaternary alluvial fan conglomerates. These conglomerates have an Optical Stimulate Luminescence (OSL) age of 159 ± 7.9 ka BP and were deposited during MIS 6 (Marine Isotope Stage). The thrusts occur in two sets. Sets 1 and 2 formed during NE/SW and NW/SE shortening, respectively. Set-1-thusts correlate with the present-day stress field of NE/SW shortening which is related to subduction in the Makran Subduction Zone, and they strike parallel to the main continuous fold axis of the Jabal Akhdar and Hawasina windows. Set-2-thrusts correspond to NW/SE shortening and Plio-Pleistocene contractional structures in the southwestern Jabal Akhdar Dome. Set-2-thrusts are probably related to local variations of the present-day stress field originating from the Musandam area which is a part of the Zagros Collision Zone. Both thrust sets mimic the main thrust directions (NW/SE and NE/SW) within the Permo-Mesozoic allochthonous units (Semail Ophiolite, Hawasina napps) of the larger study area. The investigated thrusts imply some reactivation of the Hawasina and Semail thrusts due to far-field stress either from the Makran Subduction Zone and/or the Zagros Collision Zone. The ongoing tectonic activity of this part of the Oman Mountains, which has been considered of moderate activity, is for first time identified by structural data as contractional. Full article
(This article belongs to the Special Issue Tectonics of Oman—from the Precambrian to the Present)
Show Figures

Figure 1

20 pages, 33218 KiB  
Article
Holocene Sedimentary Record and Coastal Evolution in the Makran Subduction Zone (Iran)
by Raphaël Normand, Guy Simpson, Frédéric Herman, Rabiul Haque Biswas and Abbas Bahroudi
Quaternary 2019, 2(2), 21; https://doi.org/10.3390/quat2020021 - 12 Jun 2019
Cited by 11 | Viewed by 5609
Abstract
The western Makran coast displays evidence of surface uplift since at least the Late Pleistocene, but it remains uncertain whether this displacement is accommodated by creep on the subduction interface, or in a series of large earthquakes. Here, we address this problem by [...] Read more.
The western Makran coast displays evidence of surface uplift since at least the Late Pleistocene, but it remains uncertain whether this displacement is accommodated by creep on the subduction interface, or in a series of large earthquakes. Here, we address this problem by looking at the short-term (Holocene) history of continental vertical displacements recorded in the geomorphology and sedimentary succession of the Makran beaches. In the region of Chabahar (Southern Iran), we study two bay-beaches through the description, measurement and dating of 13 sedimentary sections with a combination of radiocarbon and Optically Stimulated Luminescence (OSL) dating. Our results show that lagoonal settings dominate the early Holocene of both studied beach sections. A flooding surface associated with the Holocene maximum transgression is followed by a prograding sequence of tidal and beach deposits. Coastal progradation is evidenced in Pozm Bay, where we observe a rapid buildup of the beach ridge succession (3.5 m/years lateral propagation over the last 1950 years). Dating of Beris Beach revealed high rates of uplift, comparable to the rates obtained from the nearby Late Pleistocene marine terraces. A 3150-year-old flooding surface within the sedimentary succession of Chabahar Bay was possibly caused by rapid subsidence during an earthquake. If true, this might indicate that the Western Makran does produce large earthquakes, similar to those that have occurred further east in the Pakistani Makran. Full article
Show Figures

Figure 1

Back to TopTop