A Review of Tsunami Hazards in the Makran Subduction Zone
Abstract
:1. Introduction
2. Tsunami Sources in the Makran Subduction Zone
2.1. Near-Field Tsunami Sources in the Makran Subduction Zone
2.1.1. Earthquakes
2.1.2. Landslides
2.1.3. Volcanic Activities
2.1.4. Meteorological Tsunamis
2.2. Far-Field Tsunami Sources
3. Tsunami Hazard Assessment in the Makran Subduction Zone
- The western Makran has not experienced any major earthquake at least in the last six centuries.
- The recurrence interval of earthquakes in this region might be more than 1000 years.
- The western Makran has the same tectonic potential as the eastern Makran.
- The western Makran is currently locked and perhaps accumulated enough energy to produce a tsunamigenic earthquake.
3.1. Deterministic Studies
3.1.1. Modeling of Real Tsunamis in the Makran Subduction Zone
3.1.2. Modeling of Hypothetical Tsunami Scenarios in the Makran Subduction Zone
3.2. Probabilistic Studies
4. Discussion
4.1. Hazardous Areas
4.2. Uncertainties and Limitations
4.2.1. Tsunami Generation
4.2.2. Fault Segmentation
4.2.3. Magnitude-Frequency Relation
4.2.4. Numerical Modeling
5. Conclusions
- The near-field tsunami hazard in the northwest Indian Ocean area is mainly controlled by the MSZ; however, the contribution of other near-field sources needs more investigation as they can pose significant future tsunami hazards.
- Far-field tectonic sources may not pose a significant tsunami risk to the Makran coastlines.
- The levels of uncertainties for performing tsunami hazard studies in the MSZ are high due to the lack of detailed data and knowledge especially on the geometry of the plate interface.
- Paleotsunami research, coastal geology and analysis of extreme-wave deposits have also very important implications for tsunami hazard assessment. They can reduce or remove uncertainties about age, location, mechanism and potential of the source of deposits.
- Although significant progress for understanding the tsunami hazard of the MSZ was achieved recently, more scenario-based studies are required to lower the uncertainties and anticipate possible impacts of future events.
- Most tsunami hazard studies in the MSZ are deterministic and thus, more detailed probabilistic risk-based assessments are required to achieve better perspectives of future events.
- To implement the results of deterministic and probabilistic tsunami hazard assessments in the Makran region, more and better data are required. Numerous numerical studies for this region suffer from the lack of high-resolution site-specific topo-bathymetric data.
Perspectives
- Characteristics of thick sediments of the MSZ as they can have undeniable implications on the future tsunami hazard in the MSZ.
- Achieving a better image of the subduction geometry.
- Conducting more studies on extreme-wave deposits and paleotsunami research along the coastlines of Makran.
- Detailed vulnerability assessments for all coastlines of Makran taking into account different human and economic factors.
- Hazard potential of other tsunamigenic sources such as splay faults, submarine landslides and meteotsunamis in this region. Meteotsunamis can be a subject of future research as they are an underrated hazard that may pose hazard to the coastlines of the Persian Gulf and the Gulf of Oman.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MSZ | Makran Subduction Zone |
GPS | Global Positioning System |
ISC | International Seismological Centre |
CMT | Centroid-Moment-Tensor |
THA | Tsunami Hazard Assessment |
DTHA | Deterministic Tsunami Hazard Assessment |
PTHA | Probabilistic Tsunami Hazard Assessment |
GIS | Geographic Information System |
RVI | Relative Vulnerability Index |
M | Magnitude |
POE | Probability Of Exceedance |
IR | Iran |
PA | Pakistan |
OM | Oman |
PG | Persian Gulf |
MZF | Minab-Zendan Fault |
ONF | Ornach-Nal Fault |
MR | Murray Ridge |
OFZ | Owen Fracture Zone |
SR | Sheba Ridge |
SASZ | Sumatra-Andaman Subduction Zone |
JSZ | Java Subduction Zone |
ANR | Agence Nationale de la Recherche |
GMT | Generic Mapping Tools |
GPWv4 | Gridded Population of the World, Version 4 |
CIESIN | Center for International Earth Science Information Network |
SEDAC | Socioeconomic Data and Applications Center |
References
- Penney, C.; Tavakoli, F.; Saadat, A.; Nankali, H.R.; Sedighi, M.; Khorrami, F.; Sobouti, F.; Rafi, Z.; Copley, A.; Jackson, J.; et al. Megathrust and accretionary wedge properties and behaviour in the Makran subduction zone. Geophys. J. Int. 2017, 209, 1800–1830. [Google Scholar] [CrossRef]
- Mokhtari, M.; Abdollahie Fard, I.; Hessami, K. Structural elements of the Makran region, Oman sea and their potential relevance to tsunamigenisis. Nat. Hazards 2008, 47, 185–199. [Google Scholar] [CrossRef]
- Byrne, D.E.; Sykes, L.R.; Davis, D.M. Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone. J. Geophys. Res. 1992, 97, 449–478. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Satake, K. Possible sources of the tsunami observed in the northwestern Indian Ocean following the 2013 September 24 Mw 7.7 Pakistan inland earthquake. Geophys. J. Int. 2014, 199, 752–766. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, C.P.; Rajendran, K.; Shah-hosseini, M.; Beni, A.N.; Nautiyal, C.M.; Andrews, R. The hazard potential of the western segment of the Makran subduction zone, northern Arabian Sea. Nat. Hazards 2013, 65, 219–239. [Google Scholar] [CrossRef]
- Mirzaei, N.; Gao, M.T.; Chen, Y.T.; Wang, J. A uniform catalog of earthquakes for seismic hazard assessment in Iran. Acta Seismol. Sin. 1997, 10, 713–726. [Google Scholar] [CrossRef]
- Masson, F.; Anvari, M.; Djamour, Y.; Walpersdorf, A.; Tavakoli, F.; Daignières, M.; Nankali, H.; Van Gorp, S. Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: New insight for the present-day deformation pattern within NE Iran. Geophys. J. Int. 2007, 170, 436–440. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Yalciner, A.C.; Mokhtari, M.; Esmaeily, A. Historical tsunami in the Makran Subduction Zone off the southern coasts of Iran and Pakistan and results of numerical modeling. Ocean Eng. 2008, 35, 774–786. [Google Scholar] [CrossRef]
- Vernant, P.; Nilforoushan, F.; Hatzfeld, D.; Abbassi, M.R.; Vigny, C.; Masson, F.; Nankali, H.; Martinod, J.; Ashtiani, A.; Bayer, R.; et al. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int. 2004, 157, 381–398. [Google Scholar] [CrossRef] [Green Version]
- Dominey-Howes, D.; Cummins, P.; Burbidge, D. Historic records of teletsunami in the Indian Ocean and insights from numerical modelling. Nat. Hazards 2007, 42, 1–17. [Google Scholar] [CrossRef]
- Smith, G.L.; McNeill, L.C.; Wang, K.; He, J.; Henstock, T.J. Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophys. Res. Lett. 2013, 40, 1528–1533. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, R.K.; Singh, A.P.; Rastogi, B.K. Simulation of the Arabian Sea Tsunami propagation generated due to 1945 Makran Earthquake and its effect on western parts of Gujarat (India). Nat. Hazards 2009, 48, 245–258. [Google Scholar] [CrossRef]
- Neetu, S.; Suresh, I.; Shankar, R.; Nagarajan, B.; Sharma, R.; Shenoi, S.S.; Unnikrishnan, A.S.; Sundar, D. Trapped waves of the 27 November 1945 Makran tsunami: Observations and numerical modeling. Nat. Hazards 2011, 59, 1609–1618. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Satake, K. New Insights into the Source of the Makran Tsunami of 27 November 1945 from Tsunami Waveforms and Coastal Deformation Data. Pure Appl. Geophys. 2015, 172, 621–640. [Google Scholar] [CrossRef]
- Frohling, E.; Szeliga, W. GPS constraints on interplate locking within the Makran subduction zone. Geophys. J. Int. 2016, 205, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Nemati, M. Seismotectonic and seismicity of Makran, a bimodal subduction zone, SE Iran. J. Asian Earth Sci. 2019, 169, 139–161. [Google Scholar] [CrossRef]
- Rashidi, A.; Shomali, Z.H.; Keshavarz Farajkhah, N. Tsunami Simulations in the Western Makran Using Hypothetical Heterogeneous Source Models from World’s Great Earthquakes. Pure Appl. Geophys. 2018, 175, 1325–1340. [Google Scholar] [CrossRef]
- Ruff, L.; Kanamori, H. Seismic coupling and uncoupling at subduction zones. Tectonophysics 1983, 99, 99–117. [Google Scholar] [CrossRef]
- Garrett, E.; Fujiwara, O.; Garrett, P.; Heyvaert, V.M.; Shishikura, M.; Yokoyama, Y.; Hubert-Ferrari, A.; Brückner, H.; Nakamura, A.; De Batist, M. A systematic review of geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan. Earth-Sci. Rev. 2016, 159, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Kato, N. A possible explanation for difference in stress drop between intraplate and interplate earthquakes. Geophys. Res. Lett. 2009, 36, L23311. [Google Scholar] [CrossRef]
- Bilek, S.L.; Lay, T. Subduction zone megathrust earthquakes. Geosphere 2018, 14, 1468–1500. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A. Numerical Simulation and Hazard Assessment of the Effect of Tsunamigenic Scenarios on the Western Makran Region Using Structural Detection and Restoration. Ph.D. Thesis, University of Tehran, Tehran, Iran, 2018. [Google Scholar]
- Li, S.; Moreno, M.; Rosenau, M.; Melnick, D.; Oncken, O. Splay fault triggering by great subduction earthquakes inferred from finite element models. Geophys. Res. Lett. 2014, 41, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Plafker, G. Tectonics of the March 27, 1964, Alaska Earthquake: Chapter I in the Alaska Earthquake, March 27, 1964: Regional Effects; US Government Printing Office: Washington, DC, USA, 1969. [CrossRef] [Green Version]
- Witter, R.C.; Zhang, Y.J.; Wang, K.; Priest, G.R.; Goldfinger, C.; Stimely, L.; English, J.T.; Ferro, P.A. Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere 2013, 9, 1783–1803. [Google Scholar] [CrossRef] [Green Version]
- Grando, G.; McClay, K. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sediment. Geol. 2007, 196, 157–179. [Google Scholar] [CrossRef]
- Smith, G.; McNeill, L.; Henstock, I.J.; Bull, J. The structure and fault activity of the Makran accretionary prism. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Mokhtari, M. The role of splay faulting in increasing the devastation effect of tsunami hazard in Makran, Oman Sea. Arab. J. Geosci. 2015, 8, 4291–4298. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H. Modeling the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng. 2009, 36, 368–376. [Google Scholar] [CrossRef]
- Rashidi, A.; Shomali, Z.H.; Dutykh, D.; Keshavarz Faraj Khah, N. Evaluation of tsunami wave energy generated by earthquakes in the Makran subduction zone. Ocean Eng. 2018, 165, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Dutykh, D.; Dias, F. Influence of sedimentary layering on tsunami generation. Comput. Methods Appl. Mech. Eng. 2010, 199, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Kukowski, N.; Schillhorn, T.; Huhn, K.; von Rad, U.; Husen, S.; Flueh, E.R. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Mar. Geol. 2001, 173, 1–19. [Google Scholar] [CrossRef]
- Bourget, J.; Zaragosi, S.; Ellouz-Zimmermann, S.; Ducassou, E.; Prins, M.; Garlan, T.; Lanfumey, V.; Schneider, J.L.; Rouillard, P.; Giraudeau, J. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Mar. Geol. 2010, 274, 187–208. [Google Scholar] [CrossRef]
- Skempton, A.W. Soil Mechanics relation to geology. Proc. Yorks. Geol. Soc. 1953, 29, 33–62. [Google Scholar] [CrossRef]
- Salaree, A.; Okal, E.A. Field survey and modelling of the Caspian Sea tsunami of 1990 June 20. Geophys. J. Int. 2015, 201, 621–639. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, C.P.; Ramanamurthy, M.V.; Reddy, N.T.; Rajendran, K. Hazard implications of the late arrival of the 1945 Makran tsunami. Curr. Sci. 2008, 95, 1739–1743. [Google Scholar]
- Okal, E.A.; Fritz, H.M.; Hamzeh, M.A.; Ghasemzadeh, J. Field Survey of the 1945 Makran and 2004 Indian Ocean Tsunamis in Baluchistan, Iran. Pure Appl. Geophys. 2015, 172, 3343–3356. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Satake, K. A Combined Earthquake–Landslide Source Model for the Tsunami from the 27 November 1945 Mw 8.1 Makran Earthquake. Bull. Seismol. Soc. Am. 2017, 107, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Fournier, M.; Chamot-Rooke, N.; Rodriguez, M.; Huchon, P.; Petit, C.; Beslier, M.; Zaragosi, S. Owen Fracture Zone: The Arabia–India plate boundary unveiled. Earth Planet. Sci. Lett. 2011, 302, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Chamot-Rooke, N.; Hébert, H.; Fournier, M.; Huchon, P. Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Nat. Hazards Earth Syst. Sci. 2013, 13, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Swapna, M.; Srivastava, K. Effect of Murray ridge on the tsunami propagation from Makran subduction zone. Geophys. J. Int. 2014, 199, 1430–1441. [Google Scholar] [CrossRef] [Green Version]
- Lander, J.; Lowells, W.; Lockridge, P. A brief history of tsunami in the Caribbean Sea. Sci. Tsunami Hazards 2002, 20, 57–94. [Google Scholar]
- Snead, R.E. Recent morphological changes along the coast of West Pakistan. Ann. Assoc. Am. Geogr. 1967, 57, 550–565. [Google Scholar] [CrossRef]
- Wiedicke, M.; Neben, S.; Spiess, V. Mud volcanoes at the front of the Makran accretionary complex, Pakistan. Mar. Geol. 2001, 172, 57–73. [Google Scholar] [CrossRef]
- Page, W.D.; Alt, J.N.; Cluff, L.S.; Plafker, G. Evidence for the recurrence of large-magnitude earthquakes along the Makran coast of Iran and Pakistan. Tectonophysics 1979, 52, 533–547. [Google Scholar] [CrossRef]
- Monserrat, S.; Vilibić, I.; Rabinovich, A.B. Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band. Nat. Hazards Earth Syst. Sci. 2006, 6, 1035–1051. [Google Scholar] [CrossRef]
- Rabinovich, A.B. Twenty-Seven Years of Progress in the Science of Meteorological Tsunamis Following the 1992 Daytona Beach Event. Pure Appl. Geophys. 2020, 177, 1193–1230. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Sepic, J.; Rabinovich, A.; Allahyar, M.; Soltanpour, A.; Tavakoli, F. Meteorological Tsunami of 19 March 2017 in the Persian Gulf: Observations and Analyses. Pure Appl. Geophys. 2020, 177, 1231–1259. [Google Scholar] [CrossRef] [Green Version]
- Ambraseys, N.N.; Melville, C.P. A History of Persian Earthquakes; Cambridge Earth Science Series; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Kumar, A. Natural hazards of the Arabian Peninsula: Their causes and possible remediation. In Earth System Processes and Disaster Management; Sinha, R., Ravindra, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 155–180. [Google Scholar] [CrossRef]
- Fritz, H.M.; Blount, C.D.; Albusaidi, F.B.; Al-Harthy, A.H.M. Cyclone Gonu storm surge in Oman. Estuarine Coast. Shelf Sci. 2010, 86, 102–106. [Google Scholar] [CrossRef]
- Shi, L.; Olabarrieta, M.; Nolan, D.S.; Warner, J.C. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 2020, 11, 678. [Google Scholar] [CrossRef]
- Okal, E.; Fritz, H.; Raad, P.; Synolakis, C.; Alshijbi, Y.; Al-Saifi, M. Oman Field Survey after the December 2004 Indian Ocean Tsunami. Earthq. Spectra 2006, 22, 203–218. [Google Scholar] [CrossRef]
- Aguirre-Ayerbe, I.; Martínez Sánchez, J.; Aniel-Quiroga, I.; González-Riancho, P.; Merino, M.; Al-Yahyai, S.; González, M.; Medina, R. From tsunami risk assessment to disaster risk reduction–the case of Oman. Nat. Hazards Earth Syst. Sci. 2018, 18, 2241–2260. [Google Scholar] [CrossRef] [Green Version]
- Aniel-Quiroga, I.; Álvarez-Gómez, J.A.; González, M.; Martínez Sánchez, J.; Parro, L.M.; Aguirre-Ayerbe, I.; Fernández, F.; Medina, R.; Al-Yahyai, S. Tsunami Hazard assessment and Scenarios Database for the Tsunami Warning System for the coast of Oman. Nat. Hazards Earth Syst. Sci. Discuss. 2018, 2018, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A.; Shomali, Z.H.; Dutykh, D.; Keshavarz Farajkhah, N. Tsunami hazard assessment in the Makran subduction zone. Nat. Hazards 2020, 100, 861–875. [Google Scholar] [CrossRef] [Green Version]
- Barkan, R.; ten Brink, U.S.; Lin, J. Far field tsunami simulations of the 1755 Lisbon earthquake: Implications for tsunami hazard to the U.S. East Coast and the Caribbean. Mar. Geol. 2009, 264, 109–122. [Google Scholar] [CrossRef]
- Barkan, R.; ten Brink, U. Tsunami simulations of the 1867 Virgin Island earthquake: Constraints on epicenter location and fault parameters. Bull. Seismol. Soc. Am. 2010, 100, 995–1009. [Google Scholar] [CrossRef]
- Wen, R.; Ren, Y.; Li, X.; Pan, R. Comparison of two great Chile tsunamis in 1960 and 2010 using numerical simulation. Earthq. Sci. 2011, 24, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Tappin, D.R.; Watts, P.; Grilli, S.T. The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event. Nat. Hazards Earth Syst. Sci. 2008, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Geist, E.L.; Titov, V.V.; Arcas, D.; Pollitz, F.F.; Bilek, S.L. Implications of the 26 December 2004 Sumatra–Andaman Earthquake on Tsunami Forecast and Assessment Models for Great Subduction-Zone Earthquakes. Bull. Seismol. Soc. Am. 2007, 97, S249–S270. [Google Scholar] [CrossRef] [Green Version]
- Poisson, B.; Garcin, M.; Pedreros, R. The 2004 December 26 Indian Ocean tsunami impact on Sri Lanka: Cascade modelling from ocean to city scales. Geophys. J. Int. 2009, 177, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, D.; Goto, K. Numerical modeling of the 2011 Tohoku-oki tsunami in the offshore and onshore of Sendai Plain, Japan. Sediment. Geol. 2012, 282, 110–123. [Google Scholar] [CrossRef]
- Wei, S.; Graves, R.; Helmberger, D.; Avouac, J.P.; Jiang, J. Sources of shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth Planet. Sci. Lett. 2012, 333–334, 91–100. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Murotani, S.; Satake, K.; Ishibe, T.; Gusman, A.R. Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data. Geophys. Res. Lett. 2016, 43, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Heidarzadeh, M.; Ishibe, T.; Harada, T. Constraining the Source of the Mw 8.1 Chiapas, Mexico Earthquake of 8 September 2017 Using Teleseismic and Tsunami Observations. Pure Appl. Geophys. 2018, 175, 1925–1938. [Google Scholar] [CrossRef] [Green Version]
- De Risi, R.; Goda, K. Simulation-Based Probabilistic Tsunami Hazard Analysis: Empirical and Robust Hazard Predictions. Pure Appl. Geophys. 2017, 174, 3083–3106. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.A.; Fuentes, M.; Riquelme, S.; Campos, J.; Cisternas, A. Numerical simulation of tsunami runup in northern Chile based on non-uniform k−2 slip distributions. Nat. Hazards 2015, 79, 1177–1198. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, F.I.; Geist, E.L.; Jaffe, B.; Kânoğlu, U.; Mofjeld, H.; Synolakis, C.E.; Titov, V.V.; Arcas, D.; Bellomo, D.; Carlton, D.; et al. Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, M.B.; Spada, M.; Babeyko, A.; Wiemer, S.; Grünthal, G. Probabilistic tsunami hazard in the Mediterranean Sea. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Pararas-Carayannis, G. The potential for tsunami generation along the Makran Subduction Zone in the Northern Arabian Sea. Case study: The earthquake and tsunami of November 28, 1945. Sci. Tsunami Hazards 2006, 24, 358–384. [Google Scholar]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Yalciner, A.C. Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean. Nat. Hazards 2009, 48, 229–243. [Google Scholar] [CrossRef]
- Jankaew, K.; Atwater, B.F.; Sawai, Y.; Choowong, M.; Charoentitirat, T.; Martin, M.E.; Prendergast, A. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 2008, 455, 1228–1231. [Google Scholar] [CrossRef]
- Fujino, S.; Naruse, H.; Matsumoto, D.; Jarupongsakul, T.; Sphawajruksakul, A.; Sakakura, N. Stratigraphic evidence for pre-2004 tsunamis in southwestern Thailand. Mar. Geol. 2009, 262, 25–28. [Google Scholar] [CrossRef]
- Atwater, B.F. Evidence for Great Holocene Earthquakes Along the Outer Coast of Washington State. Science 1987, 236, 942–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, C.; Beck, C.; Crouzet, C.; Demory, F.; Van Welden, A.; Eris, K. Deciphering hemipelagites from homogenites through anisotropy of magnetic susceptibility. Paleoseismic implications (Sea of Marmara and Gulf of Corinth). Sediment. Geol. 2013, 292, 1–14. [Google Scholar] [CrossRef]
- Aguilar, I.; Beck, C.; Audemard, F.; Develle, A.L.; Boussafir, M.; Campos, C.; Crouzet, C. Last millennium sedimentation in the Gulf of Cariaco (NE Venezuela): Evidence for morphological changes of gulf entrance and possible relations with large earthquakes. C. R. Geosci. 2016, 348, 70–79. [Google Scholar] [CrossRef]
- Donato, S.; Reinhardt, E.; Boyce, J.; Pilarczyk, J.; Jupp, B. Particle-size distribution of inferred tsunami deposits in Sur Lagoon, Sultanate of Oman. Mar. Geol. 2009, 257, 54–64. [Google Scholar] [CrossRef]
- Shah-hosseini, M.; Morhange, C.; Beni, A.N.; Marriner, N.; Lahijani, H.; Hamzeh, M.; Sabatier, F. Coastal boulders as evidence for high-energy waves on the Iranian coast of Makran. Mar. Geol. 2011, 290, 17–28. [Google Scholar] [CrossRef]
- Hoffmann, G.; Reicherter, K.; Wiatr, T.; Grützner, C.; Rausch, T. Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): Tsunamigenic remains? Nat. Hazards 2013, 65, 851–873. [Google Scholar] [CrossRef]
- Paris, R.; Naylor, L.A.; Stephenson, W.J. Boulders as a signature of storms on rock coasts. Mar. Geol. 2011, 283, 1–11. [Google Scholar] [CrossRef]
- Roeber, V.; Bricker, J.D. Destructive tsunami-like wave generated by surf beat over a coral reef during Typhoon Haiyan. Nat. Commun. 2015, 6, 7854. [Google Scholar] [CrossRef] [Green Version]
- May, S.M.; Engel, M.; Brill, D.; Cuadra, C.; Lagmay, A.M.F.; Santiago, J.; Suarez, J.K.; Reyes, M.; Brückner, H. Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan. Earth Surf. Dyn. 2015, 3, 543–558. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.B.; Mori, N.; Yasuda, T.; Shimozono, T.; Tomiczek, T.; Donahue, A.; Shimura, T.; Imai, Y. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan. Mar. Geol. 2017, 383, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Soria, J.L.A.; Switzer, A.D.; Pilarczyk, J.E.; Tang, H.; Weiss, R.; Siringan, F.; Manglicmot, M.; Gallentes, A.; Lau, A.A.; Cheong, A.Y.L.; et al. Surf beat-induced overwash during Typhoon Haiyan deposited two distinct sediment assemblages on the carbonate coast of Hernani, Samar, central Philippines. Mar. Geol. 2018, 396, 215–230. [Google Scholar] [CrossRef]
- Cox, R.; Jahn, K.L.; Watkins, O.G.; Cox, P. Extraordinary boulder transport by storm waves (west of Ireland, winter 2013–2014), and criteria for analysing coastal boulder deposits. Earth-Sci. Rev. 2018, 177, 623–636. [Google Scholar] [CrossRef]
- Atwater, B.F.; ten Brink, U.S.; Cescon, A.L.; Feuillet, N.; Fuentes, Z.; Halley, R.B.; Nuñez, C.; Reinhardt, E.G.; Roger, J.H.; Sawai, Y.; et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 2017, 13, 301–368. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.; Grützner, C.; Schneider, B.; Preusser, F.; Reicherter, K. Large Holocene tsunamis in the northern Arabian Sea. Mar. Geol. 2020, 419, 106068. [Google Scholar] [CrossRef]
- Hoffmann, G.; Rupprechter, M.; Balushi, N.A.; Grützner, C.; Reicherter, K. The impact of the 1945 Makran tsunami along the coastlines of the Arabian Sea (Northern Indian Ocean)—A review. Z. Geomorphol. Suppl. Issues 2013, 57, 257–277. [Google Scholar] [CrossRef]
- Heck, N.H. List of seismic sea waves. Bull. Seismol. Soc. Am. 1947, 37, 269–286. [Google Scholar]
- Kakar, D.; Naeem, G.; Usman, A.; Mengal, A.; Naderi Beni, A.; Afarin, M.; Ghaffari, H.; Fritz, H.; Pahlevan, F.; Okal, E.; et al. Remembering the 1945 Makran Tsunami; Interviews with Survivors Beside the Arabian Sea; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2015; p. 79. [Google Scholar]
- Adams, L.M.; Atwater, B.F.; Hasan, H. Karachi tides during the 1945 Makran tsunami. Geosci. Lett. 2018, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Hasan, H.; Atwater, B.F.; Ahmed, S. A digital elevation model for simulating the 1945 Makran tsunami in Karachi Harbour. Geosci. Lett. 2018, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Arjun, S.; Kalarani, D.P.; Praveen, S.S.; Reshmi, A.K.; Kurian, N.P.; Murthy, M.R.; Hameed, T.S.; Prakash, T.N. Numerical Simulation of the 1945 Makran Tsunami on the Southwest Coast and Lakshadweep Islands of India. Mar. Geod. 2011, 34, 68–76. [Google Scholar] [CrossRef]
- Pendse, C.G. The Makran earthquake of the 28th November 1945. India Meteorol. Dep. Sci. Notes 1946, 10, 141–145. [Google Scholar]
- Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk 2016, 7, 826–842. [Google Scholar] [CrossRef] [Green Version]
- Rastgoftar, E.; Soltanpour, M. Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide. Nat. Hazards 2016, 83, 929–945. [Google Scholar] [CrossRef]
- Sarker, M.A. Numerical modelling of tsunami in the Makran Subduction Zone—A case study on the 1945 event. J. Oper. Oceanogr. 2019, 12, S212–S229. [Google Scholar] [CrossRef]
- Okal, E.A.; Synolakis, C.E. Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys. J. Int. 2008, 172, 995–1015. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Pirooz, M.D.; Zaker, N.H.; Synolakis, C.E. Evaluating tsunami hazard in the Northwestern Indian Ocean. Pure Appl. Geophys. 2008, 165, 2045–2058. [Google Scholar] [CrossRef]
- Payande, A.R.; Niksokhan, M.H.; Naserian, H. Tsunami hazard assessment of Chabahar bay related to megathrust seismogenic potential of the Makran subduction zone. Nat. Hazards 2015, 76, 161–176. [Google Scholar] [CrossRef]
- Browning, J.; Thomas, N. An assessment of the tsunami risk in Muscat and Salalah, Oman, based on estimations of probable maximum loss. Int. J. Disaster Risk Reduct. 2016, 16, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.; Hoffmann, G.; Reicherter, K. Scenario-based tsunami risk assessment using a static flooding approach and high-resolution digital elevation data: An example from Muscat in Oman. Glob. Planet. Chang. 2016, 139, 183–194. [Google Scholar] [CrossRef]
- Suppasri, A.; Latcharote, P.; Al-Salem, K.; Pokavanich, T.; Jayaramu, Y.; Al-Enezi, A.; Toda, S.; Imamura, F. Tsunami Hazard Assessment for the Arabian Gulf from Earthquakes and Surface Landslides. J. Jpn. Soc. Civ. Eng. Ser. B2 Coast. Eng. 2016, 72, 1675–1680. [Google Scholar] [CrossRef]
- El-Hussain, I.; Omira, R.; Al-Habsi, Z.; Baptista, M.A.; Deif, A.; Mohamed, A.M.E. Probabilistic and deterministic estimates of near-field tsunami hazards in northeast Oman. Geosci. Lett. 2018, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Latcharote, P.; Al-Salem, K.; Suppasri, A.; Pokavanich, T.; Toda, S.; Jayaramu, Y.; Al-Enezi, A.; Al-Ragum, A.; Imamura, F. Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides. Nat. Hazards 2018, 93, 127–152. [Google Scholar] [CrossRef]
- Dutykh, D.; Mitsotakis, D.; Chubarov, L.B.; Shokin, Y.I. On the contribution of the horizontal sea-bed displacements into the tsunami generation process. Ocean Model. 2012, 56, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A.; Shomali, Z.H.; Keshavarz Farajkhah, N. Simulation of tsunami generation, propagation and run-up in the western Makran, Part 2: Simulation of the propagation and run-up. J. Earth Space Phys. 2018, 44, 509–521. [Google Scholar] [CrossRef]
- Cisternas, M.; Atwater, B.F.; Torrejón, F.; Sawai, Y.; Machuca, G.; Lagos, M.; Eipert, A.; Youlton, C.; Salgado, I.; Kamataki, T.; et al. Predecessors of the giant 1960 Chile earthquake. Nature 2005, 437, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Carver, G.; Plafker, G. Paleoseismicity and Neotectonics of the Aleutian Subduction Zone—An Overview. In Active Tectonics and Seismic Potential of Alaska; American Geophysical Union (AGU): Washington, DC, USA, 2013; pp. 43–63. [Google Scholar] [CrossRef]
- Kemp, A.C.; Cahill, N.; Engelhart, S.E.; Hawkes, A.D.; Wang, K. Revising Estimates of Spatially Variable Subsidence during the A.D. 1700 Cascadia Earthquake Using a Bayesian Foraminiferal Transfer Function. Bull. Seismol. Soc. Am. 2018, 108, 654–673. [Google Scholar] [CrossRef]
- Burbidge, D.R.; Cummins, P.R.; Latief, H.; Mleczko, R.; Mokhtari, M.; Natawidjaja, D.; Rajendran, C.P.; Thomas, C. A Probabilistic Tsunami Hazard Assessment of the Indian Ocean Nations. Geosci. Aust. Prof. Opin. 2009. Available online: http://pid.geoscience.gov.au/dataset/ga/68717 (accessed on 14 April 2020).
- Heidarzadeh, M.; Kijko, A. A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Nat. Hazards 2011, 56, 577–593. [Google Scholar] [CrossRef] [Green Version]
- Kijko, A.; Sellevoll, M.A. Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull. Seismol. Soc. Am. 1992, 82, 120–134. [Google Scholar]
- El-Hussain, I.; Omira, R.; Deif, A.; Al-Habsi, Z.; Al-Rawas, G.; Mohamad, A.; Al-Jabri, K.; Baptista, M.A. Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone. Arab. J. Geosci. 2016, 9, 668. [Google Scholar] [CrossRef]
- Hoechner, A.; Babeyko, A.Y.; Zamora, N. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption. Nat. Hazards Earth Syst. Sci. 2016, 16, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, A.; Keshavarz Farajkhah, N. Probabilistic tsunami hazard assessment along the southeastern Iran coast. Iran. J. Geophys. 2019, 13, 1–13. [Google Scholar]
- Gutscher, M.A.; Westbrook, G.K. Great earthquakes in slow-subduction, low-taper margins. In Subduction Zone Geodynamics; Lallemand, S., Funiciello, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 119–133. [Google Scholar] [CrossRef]
- Stein, S.; Okal, E.A. Ultralong Period Seismic Study of the December 2004 Indian Ocean Earthquake and Implications for Regional Tectonics and the Subduction Process. Bull. Seismol. Soc. Am. 2007, 97, S279–S295. [Google Scholar] [CrossRef]
- McCaffrey, R. Global frequency of magnitude 9 earthquakes. Geology 2008, 36, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Cloos, M.; Shreve, R.L. Shear-zone thickness and the seismicity of Chilean- and Marianas-type subduction zones. Geology 1996, 24, 107–110. [Google Scholar] [CrossRef]
- Ide, S. The proportionality between relative plate velocity and seismicity in subduction zones. Nat. Geosci. 2013, 6, 780–784. [Google Scholar] [CrossRef]
- Zarifi, Z. Unusual Subduction Zones: Case Studies in Colombia and Iran. Ph.D. Thesis, University of Bergen, Bergen, Norway, 2006. [Google Scholar]
- Løvholt, F.; Setiadi, N.J.; Birkmann, J.; Harbitz, C.B.; Bach, C.; Fernando, N.; Kaiser, G.; Nadim, F. Tsunami risk reduction—Are we better prepared today than in 2004? Int. J. Disaster Risk Reduct. 2014, 10, 127–142. [Google Scholar] [CrossRef]
- Sawai, Y.; Namegaya, Y.; Okamura, Y.; Satake, K.; Shishikura, M. Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Sugawara, D.; Goto, K.; Imamura, F.; Matsumoto, H.; Minoura, K. Assessing the magnitude of the 869 Jogan tsunami using sedimentary deposits: Prediction and consequence of the 2011 Tohoku-oki tsunami. Sediment. Geol. 2012, 282, 14–26. [Google Scholar] [CrossRef]
- Prendergast, A.L.; Cupper, M.; Jankaew, K.; Sawai, Y. Indian Ocean tsunami recurrence from optical dating of tsunami sand sheets in Thailand. Mar. Geol. 2012, 295–298, 20–27. [Google Scholar] [CrossRef]
- Rajendran, C.P.; Rajendran, K.; Andrade, V.; Srinivasalu, S. Ages and relative sizes of pre-2004 tsunamis in the Bay of Bengal inferred from geologic evidence in the Andaman and Nicobar Islands. J. Geophys. Res. Solid Earth 2013, 118, 1345–1362. [Google Scholar] [CrossRef]
- Malik, J.N.; Banerjee, C.; Khan, A.; Johnson, F.C.; Shishikura, M.; Satake, K.; Singhvi, A.K. Stratigraphic evidence for earthquakes and tsunamis on the west coast of South Andaman Island, India during the past 1000 years. Tectonophysics 2015, 661, 49–65. [Google Scholar] [CrossRef]
- Maselli, V.; Oppo, D.; Moore, A.L.; Gusman, A.R.; Mtelela, C.; Iacopini, D.; Taviani, M.; Mjema, E.; Mulaya, E.; Che, M.; et al. A 1000-yr-old tsunami in the Indian Ocean points to greater risk for East Africa. Geology 2020, 48, 808–813. [Google Scholar] [CrossRef]
- Schneider, B.; Hoffmann, G.; Falkenroth, M.; Grade, J. Tsunami and storm sediments in Oman: Characterizing extreme wave deposits using terrestrial laser scanning. J. Coast. Conserv. 2019, 23, 801–815. [Google Scholar] [CrossRef]
- Nanayama, F.; Satake, K.; Furukawa, R.; Shimokawa, K.; Atwater, B.F.; Shigeno, K.; Yamaki, S. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 2003, 424, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Sawai, Y.; Satake, K.; Kamataki, T.; Nasu, H.; Shishikura, M.; Atwater, B.F.; Horton, B.P.; Kelsey, H.M.; Nagumo, T.; Yamaguchi, M. Transient Uplift After a 17th-Century Earthquake Along the Kuril Subduction Zone. Science 2004, 306, 1918–1920. [Google Scholar] [CrossRef] [PubMed]
- Sawai, Y.; Kamataki, T.; Shishikura, M.; Nasu, H.; Okamura, Y.; Satake, K.; Thomson, K.H.; Matsumoto, D.; Fujii, Y.; Komatsubara, J.; et al. Aperiodic recurrence of geologically recorded tsunamis during the past 5500 years in eastern Hokkaido, Japan. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Carvajal, M.; Cisternas, M.; Catalán, P.A. Source of the 1730 Chilean earthquake from historical records: Implications for the future tsunami hazard on the coast of Metropolitan Chile. J. Geophys. Res. Solid Earth 2017, 122, 3648–3660. [Google Scholar] [CrossRef]
- Zamora, N.; Gubler, A.; Orellana, V.; León, J.; Urrutia, A.; Carvajal, M.; Cisternas, M.; Catalán, P.; Winckler, P.; Cienfuegos, R.; et al. The 1730 Great Metropolitan Chile Earthquake and Tsunami Commemoration: Joint Efforts to Increase the Country’s Awareness. Geosciences 2020, 10, 246. [Google Scholar] [CrossRef]
- Doxsey-Whitfield, E.; MacManus, K.; Adamo, S.B.; Pistolesi, L.; Squires, J.; Borkovska, O.; Baptista, S.R. Taking Advantage of the Improved Availability of Census Data: A First Look at the Gridded Population of the World, Version 4. Pap. Appl. Geogr. 2015, 1, 226–234. [Google Scholar] [CrossRef]
- CIESIN. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11; CIESIN: Palisades, NY, USA, 2018. [Google Scholar] [CrossRef]
- Grezio, A.; Babeyko, A.; Baptista, M.A.; Behrens, J.; Costa, A.; Davies, G.; Geist, E.L.; Glimsdal, S.; González, F.I.; Griffin, J.; et al. Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Rev. Geophys. 2017, 55, 1158–1198. [Google Scholar] [CrossRef]
- Gomberg, J.S.; Ludwig, K.A.; Bekins, B.; Brocher, T.M.; Brock, J.C.; Brothers, D.; Chaytor, J.D.; Frankel, A.; Geist, E.L.; Haney, M.M.; et al. Reducing Risk Where Tectonic Plates Collide—U.S. Geological Survey Subduction Zone Science Plan; US Geological Survey: Reston, VA, USA, 2017. [CrossRef] [Green Version]
- Schluter, H.; Prexl, A.; Gaedicke, C.; Roeser, H.; Reichert, C.; Meyer, H.; von Daniels, C. The Makran accretionary wedge: Sediment thicknesses and ages and the origin of mud volcanoes. Mar. Geol. 2002, 185, 219–232. [Google Scholar] [CrossRef]
- Burg, J.P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci. Rev. 2018, 185, 1210–1231. [Google Scholar] [CrossRef]
- Hayes, G.P.; Moore, G.L.; Portner, D.E.; Hearne, M.; Flamme, H.; Furtney, M.; Smoczyk, G.M. Slab2, a comprehensive subduction zone geometry model. Science 2018, 362, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Wessel, P.; Smith, W.H.F. Free software helps map and display data. Eos Trans. Am. Geophys. Union 1991, 72, 441–446. [Google Scholar] [CrossRef]
No. | Study | Source Zone | Magnitude (M) | Max Amp for IR (m) | Max Amp for PA (m) | Max Amp for OM (m) |
---|---|---|---|---|---|---|
1 | Heidarzadeh et al. [100] | Makran | 10 | ∼8 | 7 | |
2 | Heidarzadeh et al. [29] | Eastern Makran | 3 | 10 | 3 | |
Makran | ∼24 | ∼20 | ∼17 | |||
3 | Heidarzadeh et al. [72] | Makran | ∼7 | ∼6 | ∼5 | |
4 | El-Hussain et al. [105] | Eastern Makran | — | 8 | 2 | |
5 | Rashidi et al. [108] | Western Makran | 11 | — | — | |
6 | Rashidi et al. [17] | Western Makran | 4 | 2 | 4 | |
41 | 5 | 23 | ||||
52 | 9 | 38 | ||||
5 | 2 | 5 | ||||
7 | Rashidi et al. [56] | Makran | 15 | 16 | 12 |
No. | Study | Source Zone | Magnitude (M) Range | POE (1 m/50 yr) for IR-PA | POE (1 m/50 yr) for OM | POE (1 m/250 yr) for IR-PA | POE (1 m/250 yr) for OM | POE (1 m/500 yr) for IR-PA | POE (1 m/500 yr) for OM | POE (1 m/1000 yr) for IR-PA | POE (1 m/1000 yr) for OM |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Heidarzadeh and Kijko [113] | Makran | ∼ | ∼ | — | — | — | — | — | — | |
2 | El-Hussain et al. [115] | Makran | 7.5–9.1 | — | — | — | — | ∼1 | — | 1 | |
Western Makran | 7.5–8.7 | ||||||||||
Eastern Makran | 7.5–8.8 | ||||||||||
3 | Hoechner et al. [116] | Makran | up to | ∼ | ∼ | — | — | 1 | ∼ | — | — |
4 | Rashidi and Keshavarz Farajkhah [117] | Makran | 7.5–9.1 | — | — | — | — | ∼1 | — | ∼1 | — |
Western Makran | 7.5–8.9 | ||||||||||
Eastern Makran | 7.5–8.9 | ||||||||||
5 | Rashidi et al. [56] | Makran | 9.06–9.12 | 1 | 1 | — | — | 1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, A.; Dutykh, D.; Shomali, Z.H.; Keshavarz Farajkhah, N.; Nouri, M. A Review of Tsunami Hazards in the Makran Subduction Zone. Geosciences 2020, 10, 372. https://doi.org/10.3390/geosciences10090372
Rashidi A, Dutykh D, Shomali ZH, Keshavarz Farajkhah N, Nouri M. A Review of Tsunami Hazards in the Makran Subduction Zone. Geosciences. 2020; 10(9):372. https://doi.org/10.3390/geosciences10090372
Chicago/Turabian StyleRashidi, Amin, Denys Dutykh, Zaher Hossein Shomali, Nasser Keshavarz Farajkhah, and Mohammadsadegh Nouri. 2020. "A Review of Tsunami Hazards in the Makran Subduction Zone" Geosciences 10, no. 9: 372. https://doi.org/10.3390/geosciences10090372
APA StyleRashidi, A., Dutykh, D., Shomali, Z. H., Keshavarz Farajkhah, N., & Nouri, M. (2020). A Review of Tsunami Hazards in the Makran Subduction Zone. Geosciences, 10(9), 372. https://doi.org/10.3390/geosciences10090372