Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = magnetorheological (MR) damper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1153 KiB  
Article
Avoiding Lyapunov-Krasovskii Functionals: Simple Nonlinear Sampled–Data Control of a Semi-Active Suspension with Magnetorheological Dampers
by Fernando Viadero-Monasterio, Miguel Meléndez-Useros, Manuel Jiménez-Salas and María Jesús López Boada
Machines 2025, 13(6), 512; https://doi.org/10.3390/machines13060512 - 12 Jun 2025
Viewed by 588
Abstract
This paper presents a novel control design methodology for a magnetorheological (MR) damper-based semi-active suspension system operating under communication-induced time delays, which introduce nonlinear sampled-data dynamics. To address these challenges, a linear matrix inequality (LMI) framework is developed for synthesizing the current controller, [...] Read more.
This paper presents a novel control design methodology for a magnetorheological (MR) damper-based semi-active suspension system operating under communication-induced time delays, which introduce nonlinear sampled-data dynamics. To address these challenges, a linear matrix inequality (LMI) framework is developed for synthesizing the current controller, with the dual goals of enhancing ride comfort and safety while ensuring system stability and robustness against road disturbances. The proposed approach deliberately avoids the use of Lyapunov-Krasovskii functionals, offering a more practical and computationally efficient alternative. Experimental results confirm that the proposed MR damper model outperforms traditional Lyapunov-Krasovskii-based methods. Additionally, two simulated road profiles are used to evaluate the suspension system’s behavior, further demonstrating the effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue Adaptive Control Using Magnetorheological Technology)
Show Figures

Figure 1

17 pages, 3610 KiB  
Article
Semi-Active Vibration Control for High-Speed Elevator Using Magnetorheological Damper
by Marcos Gonçalves, Maria E. K. Fuziki, Jose M. Balthazar, Giane G. Lenzi and Angelo M. Tusset
Magnetism 2025, 5(2), 13; https://doi.org/10.3390/magnetism5020013 - 8 Jun 2025
Viewed by 1046
Abstract
This paper presents the results of investigating the application of magnetorheological fluids in controlling the lateral and angular vibrations of a high-speed elevator. Numerical simulations are performed for a mathematical model with two degrees of freedom. The lateral and rotational accelerations are analyzed [...] Read more.
This paper presents the results of investigating the application of magnetorheological fluids in controlling the lateral and angular vibrations of a high-speed elevator. Numerical simulations are performed for a mathematical model with two degrees of freedom. The lateral and rotational accelerations are analyzed for different travel speeds to determine passenger comfort levels. To attenuate the elevator vibrations, the introduction of a magnetorheological damper in parallel with the passive damper of the elevator rollers is considered. To semi-actively control the dissipative forces of the magnetorheological fluids, a State-Dependent Riccati Equation (SDRE control) is proposed. The numerical results demonstrate that using an MR damper makes it possible to reduce the acceleration levels of the elevator cabin, thus improving passenger comfort and reducing the elevator’s vibration levels and wear on the mechanical and electronic components of the elevator. In addition to the results, a detailed sensitivity analysis is presented. Full article
Show Figures

Figure 1

19 pages, 2113 KiB  
Article
Vibration Attenuation in Particle Mixer Using Magnetorheological Damping Technology to Mitigate the Brazil Nut Effect
by Kwon Joong Son
Machines 2025, 13(6), 487; https://doi.org/10.3390/machines13060487 - 4 Jun 2025
Viewed by 365
Abstract
In industrial particle mixing processes, vibrations can intensify the Brazil nut effect (BNE), resulting in larger particles ascending, which contributes to vertical segregation based on particle size differences. These vibrations arise due to mass imbalance, motor functioning, and external disturbances, which negatively influence [...] Read more.
In industrial particle mixing processes, vibrations can intensify the Brazil nut effect (BNE), resulting in larger particles ascending, which contributes to vertical segregation based on particle size differences. These vibrations arise due to mass imbalance, motor functioning, and external disturbances, which negatively influence the efficiency of mixing. This research employs magnetorheological (MR) damping technology to reduce vibration-induced particle separation and consequently diminish the BNE. A drum mixer with an integrated MR damper was designed and constructed for experimental purposes, and its effectiveness in reducing vibrations was evaluated. Furthermore, simulations using the discrete element method (DEM) were performed to study the decrease in the BNE in different vibration settings. The results demonstrated that MR damping effectively decreased vibration levels, which significantly diminished the BNE and maintained the consistency of particle mixing. This study demonstrates the potential of MR damping as a practical solution to enhance mixing performance in industrial applications. Full article
(This article belongs to the Special Issue Adaptive Control Using Magnetorheological Technology)
Show Figures

Figure 1

12 pages, 3776 KiB  
Article
Design and Test of a Magnetorheological Damper of a Multi-Layered Permanent Magnet
by Fang Chen, Qinkui Guo, Yuchen Liu, Yuan Dong, Yangjie Xiao, Ningqiang Zhang and Wangxu Li
Actuators 2025, 14(6), 271; https://doi.org/10.3390/act14060271 - 29 May 2025
Viewed by 901
Abstract
To effectively suppress spindle vibrations in rotating machinery, magnetorheological (MR) dampers, as an ideal vibration control device, have attracted attention. To enhance the vibration damping effect, in the paper, a MR damper vibration with a multi-layered permanent magnet as the magnetic source is [...] Read more.
To effectively suppress spindle vibrations in rotating machinery, magnetorheological (MR) dampers, as an ideal vibration control device, have attracted attention. To enhance the vibration damping effect, in the paper, a MR damper vibration with a multi-layered permanent magnet as the magnetic source is designed, and the self-made magnetorheological fluid is used as the damping medium. The mechanical properties of the MR damper were obtained through testing and calculation. On this base, both simulation and experimental methods are used to demonstrate the effectiveness of the multi-layered permanent-magnet MR damper. The simulation results show that the critical speed increases greatly for the first four modes. The experimental results show that the Y-direction displacement decreases greatly, especially at 1800 rpm and at 3400 rpm, after applying the MR damper. The vibration displacement at 1× frequency shows a 69.74% reduction at 2600 rpm and a 65.69% reduction at 3200 rpm in the Y-direction after applying the MR damper. The effectiveness of the multi-layered permanent magnet MR damper in rotor vibration suppression was confirmed. Full article
Show Figures

Figure 1

26 pages, 5325 KiB  
Article
Hybrid Damping Mode MR Damper: Development and Experimental Validation with Semi-Active Control
by Jeongwoo Lee and Kwangseok Oh
Machines 2025, 13(5), 435; https://doi.org/10.3390/machines13050435 - 20 May 2025
Viewed by 795
Abstract
This study introduces a novel magnetorheological (MR) damper for semi-active vehicle suspension systems that enhance ride comfort and handling stability. The proposed damper integrates reverse and normal damping modes, enabling independent control of rebound and compression strokes through an external MR valve. This [...] Read more.
This study introduces a novel magnetorheological (MR) damper for semi-active vehicle suspension systems that enhance ride comfort and handling stability. The proposed damper integrates reverse and normal damping modes, enabling independent control of rebound and compression strokes through an external MR valve. This configuration supports four damping modes—Soft/Soft, Hard/Soft, Soft/Hard, and Hard/Hard—allowing adaptability to varying driving conditions. Magnetic circuit optimization ensures rapid damping force adjustments (≈10 ms), while a semi-active control algorithm incorporating skyhook logic, roll, dive, and squat control strategies was implemented. Experimental validation on a mid-sized sedan demonstrated significant improvements, including a 30–40% reduction in vertical acceleration and pitch/roll rates. These enhancements improve vehicle safety by reducing body motion during critical maneuvers, potentially lowering accident risk and driver fatigue. In addition to performance gains, the simplified MR damper architecture and modular control facilitate easier integration into diverse vehicle platforms, potentially streamlining vehicle design and manufacturing processes and enabling cost-effective adoption in mass-market applications. These findings highlight the potential of MR dampers to support next-generation vehicle architectures with enhanced adaptability and manufacturability. Full article
(This article belongs to the Special Issue Adaptive Control Using Magnetorheological Technology)
Show Figures

Figure 1

32 pages, 16560 KiB  
Article
TLP-Supported NREL 5MW Floating Offshore Wind Turbine Tower Vibration Reduction Under Aligned and Misaligned Wind-Wave Excitations
by Paweł Martynowicz, Piotr Ślimak and Georgios M. Katsaounis
Energies 2025, 18(8), 2092; https://doi.org/10.3390/en18082092 - 18 Apr 2025
Cited by 1 | Viewed by 802
Abstract
This paper presents a numerical study on the structural vibrations of a TLP-supported NREL 5MW wind turbine equipped with a tuned vibration absorber (TVA) in the nacelle. The analysis was focused on tower bending deflections and was conducted using a reference OpenFAST V3.5.3 [...] Read more.
This paper presents a numerical study on the structural vibrations of a TLP-supported NREL 5MW wind turbine equipped with a tuned vibration absorber (TVA) in the nacelle. The analysis was focused on tower bending deflections and was conducted using a reference OpenFAST V3.5.3 dedicated wind turbine modelling software and a finite element simulation framework based on Comsol Multiphysics V6.3 which was newly developed for this study. The obtained four-degree-of-freedom (4-DOF) tower bending model was transferred using modal decomposition to the MATLAB/Simulink R2020b environment, where a 2-DOF TLP surge/sway model and a bidirectional (2-DOF) TVA model were embedded. The wind field was approximated by a Weibull distribution of velocities (8.86 m/s mean, 4.63 m/s standard deviation). It was combined with the wave actions simulated using a Bretschneider spectrum with a significant height of 2.5 m and a peak period of 8.1 s. The TVA model used was either the standard NREL reference 20-ton passive TVA, a 10-ton passive, or a 10-ton controlled TVA (the latter two tuned to the tower’s first bending mode). The controlled TVA utilised a magnetorheological (MR) damper, either operating independently (forming a semi-active MR-TVA) or simultaneously with a force actuator, forming, in this case, a hybrid H-MR-TVA. Both aligned and 45°/90° misaligned wind–wave excitations were examined to investigate the performance of a 10-ton real-time controlled (H-)MR-TVA operating with less working space. In aligned conditions, the semi-active and hybrid MR-TVA solutions demonstrated superior tower vibration mitigation, reducing maximum tower deflections by 11.2% compared to the reference TVA and by 14.9% with regard to the structure without TVA. The reduction in root-mean-square deflection reached up to 4.2%/2.9%, respectively, for the critical along-the-waves direction, while the TVA stroke reduction reached 18.6%. For misaligned excitations, the tower deflection was reduced by 4.3%/4.8% concerning the reference 20-ton TVA, while the stroke was reduced by 22.2%/34.4% (for 45°/90° misalignment, respectively). It is concluded that the implementation of the 10-ton real-time controlled (H-)MR-TVA is a promising alternative to the reference 20-ton passive TVA regarding tower deflection minimisation and TVA stroke reduction for the critical along-the-waves direction. The current research results may be used to design a full-scale semi-active or hybrid TVA system serving a TLP-supported floating offshore wind turbine structure. Full article
Show Figures

Figure 1

27 pages, 11144 KiB  
Article
Adaptive Backstepping Control with Time-Delay Compensation for MR-Damper-Based Vehicle Seat Suspension
by Heting Feng, Yunhu Zhou, Shaoqi Li, Gongxun Cheng, Shang Ma and Yancheng Li
Actuators 2025, 14(4), 178; https://doi.org/10.3390/act14040178 - 6 Apr 2025
Cited by 1 | Viewed by 634
Abstract
Long-term vibrations endanger driver health and affect ride performance. Semi-active seat suspension systems equipped with magnetorheological (MR) dampers can effectively reduce vibrations transmitted to drivers, exhibiting excellent potential for widespread applications owing to their outstanding performance characteristics. In this paper, we propose an [...] Read more.
Long-term vibrations endanger driver health and affect ride performance. Semi-active seat suspension systems equipped with magnetorheological (MR) dampers can effectively reduce vibrations transmitted to drivers, exhibiting excellent potential for widespread applications owing to their outstanding performance characteristics. In this paper, we propose an adaptive backstepping control system with time-delay compensation (ABC-C) for an MR-damper-based semi-active seat suspension system to enhance ride comfort and stability in commercial vehicles. The control framework integrates a reference model, an adaptive backstepping controller, a time-delay compensator, and an MR damper inverse model. The reference model balances ride comfort and stability using high-pass and low-pass filters, while the adaptive controller ensures robustness against parameter uncertainties and disturbances. A time-delay compensator mitigates delays in the control loop, improving system stability and performance. Numerical simulations under harmonic, bump, and random excitations demonstrated the superior performance of the ABC-C controller. The experimental results show that under random road excitation conditions, the frequency-weighted root mean square (FW-RMS) of acceleration was reduced by 26.9%, the vibration dose value (VDV) decreased by 29.3%, and the root mean square of relative displacement (RMS_rd) was reduced by 58.46%. The results highlight the practical effectiveness of the ABC-C controller in improving ride comfort and safety for drivers of commercial vehicles, offering significant potential for real-world applications. Full article
Show Figures

Figure 1

21 pages, 10563 KiB  
Article
6DOF Aircraft Landing Gear System with Magnetorheological Damper in Various Taxing and Touchdown Scenarios
by Quoc-Viet Luong, Quang-Ngoc Le, Jai-Hyuk Hwang and Thi-My-Nu Ho
Micromachines 2025, 16(3), 355; https://doi.org/10.3390/mi16030355 - 20 Mar 2025
Viewed by 953
Abstract
This manuscript presents a new approach to describe aircraft landing gear systems equipped with magnetorheological (MR) dampers, integrating a reinforcement learning-based neural network control strategy. The main target of the proposed system is to improve the shock absorber efficiency in the touchdown phase, [...] Read more.
This manuscript presents a new approach to describe aircraft landing gear systems equipped with magnetorheological (MR) dampers, integrating a reinforcement learning-based neural network control strategy. The main target of the proposed system is to improve the shock absorber efficiency in the touchdown phase, in addition to reducing the vibration due to rough ground in the taxing phase. The dynamic models of the aircraft landing system in the taxing phase with standard landing ground roughness, one-point touchdown, two-point touchdown, and third-point touchdown are built as the first step. After that, Q-learning-based reinforcement learning is developed. In order to verify the effectiveness of the controller, the co-simulations based on RECURDYN V8R4-MATLAB R2019b of the proposed system and the classical skyhook controller are executed. Based on the simulation results, the proposed controller provides better performance compared to the skyhook controller. The proposed controller provided a maximum improvement of 16% in the touchdown phase and 10% in the taxing phase compared to the skyhook controller. Full article
(This article belongs to the Special Issue Magnetorheological Materials and Application Systems)
Show Figures

Figure 1

20 pages, 5841 KiB  
Article
Semi-Active Vibration Control of Water-Conveying Pipeline Based on Magnetorheological Damper
by Sen Pang, Xuesong Zhang, Zihang Jiang, Haixu Yang, Shengming Zhou and Qiang Zhao
Processes 2025, 13(2), 571; https://doi.org/10.3390/pr13020571 - 18 Feb 2025
Cited by 1 | Viewed by 624
Abstract
In order to mitigate the vibration caused by fluid–structure interaction in water-conveying pipelines, a semi-active control method based on a magnetorheological (MR) damper is proposed. First, the partial differential equation governing the pipeline micro-element, which is simply supported at both ends, is formulated. [...] Read more.
In order to mitigate the vibration caused by fluid–structure interaction in water-conveying pipelines, a semi-active control method based on a magnetorheological (MR) damper is proposed. First, the partial differential equation governing the pipeline micro-element, which is simply supported at both ends, is formulated. This equation is then transformed into state-space expressions through non-dimensionalization and the Galerkin method. Based on passive dissipative control theory, a semi-active control law ensuring Lyapunov global asymptotic stability is derived based on the relative motion between the dynamic vibration-absorbing mass and the pipeline. Next, an on–off control algorithm is designed for the MR damper. The results of simulation and hardware-in-loop experiments demonstrate that the semi-active control law can significantly reduce the vibration of the pipeline system. The contribution of this research is to propose a new MR tuned mass damper (MR-TMD) to suppress vibration in water-conveying pipelines. The proposed MR-TMD scheme and its control method provide a theoretical basis and practical reference for the engineering application of semi-active vibration control in water-conveying pipelines. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

16 pages, 9340 KiB  
Article
Non-Linear Control and Numerical Analysis Applied in a Non-Linear Model of Cutting Process Subject to Non-Ideal Excitations
by Angelo M. Tusset, Jonierson A. Cruz, Jose M. Balthazar, Maria E. K. Fuziki and Giane G. Lenzi
Modelling 2024, 5(4), 1889-1904; https://doi.org/10.3390/modelling5040098 - 5 Dec 2024
Cited by 1 | Viewed by 4090
Abstract
This work presents a non-linear mathematical model of a machining system subjected to a non-ideal vibration source. Computer simulations have shown chaotic behavior for specific parameters of the proposed mathematical model. The chaotic behavior is proven using time histories, phase diagrams, bifurcation diagrams, [...] Read more.
This work presents a non-linear mathematical model of a machining system subjected to a non-ideal vibration source. Computer simulations have shown chaotic behavior for specific parameters of the proposed mathematical model. The chaotic behavior is proven using time histories, phase diagrams, bifurcation diagrams, and the Lyapunov exponent. Considering that cutting tool vibration in the machining process is one of the main problems of productivity and machining accuracy, the introduction of a magnetorheological damper was considered in the proposed model to reduce the vibration amplitudes of the cutting tool and suppress the chaotic behavior. Hysteresis was considered in the magnetorheological damper model and its application in the system as both a passive and active absorber. The active control strategy considered the application of two non-linear control signals: feedforward to maintain the vibration with a desired behavior and state feedback to drive the system to the desired behavior. The numerical results demonstrated that the proposed controls efficiently reduced the vibration amplitude by introducing the MR damper. Active control has proven effective in controlling the force of the MR damper by varying the electrical voltage applied to the damper coil. Full article
Show Figures

Figure 1

17 pages, 18738 KiB  
Article
Three-Axis Vibration Isolation of a Full-Scale Magnetorheological Seat Suspension
by Young T. Choi, Norman M. Wereley and Gregory J. Hiemenz
Micromachines 2024, 15(12), 1417; https://doi.org/10.3390/mi15121417 - 26 Nov 2024
Cited by 3 | Viewed by 1203
Abstract
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to [...] Read more.
This study examines the three-axis vibration isolation capabilities of a full-scale magnetorheological (MR) seat suspension system utilizing experimental methods to assess performance under both single-axis and simultaneous three-axis input conditions. To achieve this, a semi-active MR seat damper was designed and manufactured to address excitations in all three axes. The damper effectiveness was tested experimentally for axial and lateral motions, focusing on dynamic stiffness and loss factor using an MTS machine. Prior to creating the full-scale MR seat suspension, a scaled-down version at one-third size was developed to verify the damper’s ability to effectively reduce vibrations in response to practical excitation levels. Additionally, a narrow-band frequency-shaped semi-active control (NFSSC) algorithm was developed to optimize vibration suppression. Ultimately, a full-scale MR seat suspension was assembled and tested with a 50th percentile male dummy, and comprehensive three-axis vibration isolation tests were conducted on a hydraulic multi-axis simulation table (MAST) for both individual inputs over a frequency range up to 200 Hz and for simultaneous multi-directional inputs. The experimental results demonstrated the effectiveness of the full-scale MR seat suspension in reducing seat vibrations. Full article
Show Figures

Figure 1

28 pages, 30126 KiB  
Article
Numerical Analysis of the Vehicle Damping Performance of a Magnetorheological Damper with an Additional Flow Energy Path
by Minje Kim, Seungin Yoo, Dongjin Yoon, Chanyoung Jin, Seongjae Won and Jinwook Lee
Appl. Sci. 2024, 14(22), 10575; https://doi.org/10.3390/app142210575 - 16 Nov 2024
Cited by 4 | Viewed by 1523
Abstract
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR [...] Read more.
Vehicles experience various frequency excitations from road surfaces. Recent research has focused on active dampers that adapt their damping forces according to these conditions. However, traditional magnetorheological (MR) dampers face a “block-up phenomenon” that limits their effectiveness. To address this, additional flow-type MR dampers have been proposed, although revised designs are required to accommodate changes in damping force characteristics. This study investigates the damping performance of MR dampers with an additional flow path to enhance the vehicle ride quality. An optimization model was developed based on fluid dynamics equations and analyzed using electromagnetic simulations in ANSYS Maxwell software. Vibration analysis was conducted using AMESim by applying a sinusoidal road surface model with various frequencies. Results show that the optimized diameter of the additional flow path obtained from the analysis was 1.1 mm, and it was shown that the total damping force variation at low piston velocities decreased by approximately 56% compared to conventional MR dampers. Additionally, vibration analysis of the MR damper with the optimized additional flow path diameter revealed that at 30 km/h, 37.9% acceleration control was achievable, at 60 km/h, 18.7%, and at 90 km/h, 7.73%. This demonstrated the resolution of the block-up phenomenon through the additional flow path and confirmed that the vehicle with the applied damper could control a wider range of vehicle upper displacement, velocity, and acceleration compared to conventional vehicles. Full article
Show Figures

Figure 1

17 pages, 5064 KiB  
Article
Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers
by Fernando Viadero-Monasterio, Miguel Meléndez-Useros, Manuel Jiménez-Salas and Beatriz López Boada
Appl. Sci. 2024, 14(22), 10336; https://doi.org/10.3390/app142210336 - 10 Nov 2024
Cited by 13 | Viewed by 1622
Abstract
This paper proposes a novel design method for a magnetorheological (MR) damper-based semi-active suspension system. An improved MR damper model that accurately describes the hysteretic nature and effect of the applied current is presented. Given the unfeasibility of installing sensors for all vehicle [...] Read more.
This paper proposes a novel design method for a magnetorheological (MR) damper-based semi-active suspension system. An improved MR damper model that accurately describes the hysteretic nature and effect of the applied current is presented. Given the unfeasibility of installing sensors for all vehicle states, an MR damper current controller that only considers the suspension deflection and deflection rate is proposed. A linear matrix inequality problem is formulated to design the current controller, with the objective of enhancing ride safety and comfort while guaranteeing vehicle stability and robustness against any road disturbance. A series of experiments demonstrates the enhanced performance of the proposed MR damper model, which exhibits greater accuracy than other state-of-the-art damper models, such as Bingham or bi-viscous. An evaluation of the vehicle behavior under two simulated road scenarios has been conducted to demonstrate the performance of the proposed output feedback MR damper-based semi-active suspension system. Full article
(This article belongs to the Special Issue Advances in Vehicle System Dynamics and Control)
Show Figures

Figure 1

14 pages, 33689 KiB  
Article
Optimisation of Active Magnetic Elements in Beam-like Structures—Numerical Modelling Studies
by Katarzyna Majewska
Materials 2024, 17(19), 4929; https://doi.org/10.3390/ma17194929 - 9 Oct 2024
Viewed by 1175
Abstract
This paper explores integrating advanced materials, including magnetic shape memory alloys, magnetorheological fluids, and classical shape memory alloys, within structural elements to achieve exceptional physical properties. When these materials are integrated within structures—whether as wires, actuators, or dampers—they provide the structures with unique [...] Read more.
This paper explores integrating advanced materials, including magnetic shape memory alloys, magnetorheological fluids, and classical shape memory alloys, within structural elements to achieve exceptional physical properties. When these materials are integrated within structures—whether as wires, actuators, or dampers—they provide the structures with unique static, dynamic, and damping characteristics not commonly found in nature. This study aimed to evaluate the efficacy of these active materials in enhancing the performance of beam-like structures. This investigation was conducted through a comprehensive numerical analysis, focusing on a composite beam. The study examined the impact of different active elements, their position within the structure, and their influence on key dynamic properties. Additionally, a simplified damage scenario was considered, wherein the adverse effects of structural damage were mitigated through the strategic application of these materials. Numerical simulations were carried out using the finite element method, with custom computational codes developed in MATLAB. The findings of these simulations are presented and discussed in this paper. Full article
Show Figures

Figure 1

23 pages, 7874 KiB  
Review
Advancements in Semi-Active Automotive Suspension Systems with Magnetorheological Dampers: A Review
by Zunming Wang, Chi Liu, Xu Zheng, Liang Zhao and Yi Qiu
Appl. Sci. 2024, 14(17), 7866; https://doi.org/10.3390/app14177866 - 4 Sep 2024
Cited by 17 | Viewed by 6658
Abstract
Magnetorheological (MR) dampers have significantly advanced automotive suspension systems by providing adaptable damping characteristics in response to varying road conditions and driving dynamics. This review offers a comprehensive analysis of the evolution and integration of MR dampers in semi-active suspension systems. Semi-active systems [...] Read more.
Magnetorheological (MR) dampers have significantly advanced automotive suspension systems by providing adaptable damping characteristics in response to varying road conditions and driving dynamics. This review offers a comprehensive analysis of the evolution and integration of MR dampers in semi-active suspension systems. Semi-active systems present an optimal balance by integrating the simplicity inherent in passive systems with the adaptability characteristic of active systems, while mitigating the substantial energy consumption. The fundamental principles of MR technology, the design of MR dampers, and the diverse control strategies employed to optimize suspension performance were examined. The classical, modern, and intelligent control methods, along with the related research, were emphasized. Based on the above-mentioned methods, the benefits of MR semi-active control were highlighted, while the challenges and future research directions in MR damper technology were also addressed. Through a synthesis of recent research findings and practical applications, this paper underscores the advancements in MR-based semi-active suspension systems and their promising prospects in the automotive industry. Full article
Show Figures

Figure 1

Back to TopTop