Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = magnetopause

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9229 KiB  
Article
Magnetopause Boundary Detection Based on a Deep Image Prior Model Using Simulated Lobster-Eye Soft X-Ray Images
by Fei Wei, Zhihui Lyu, Songwu Peng, Rongcong Wang and Tianran Sun
Remote Sens. 2025, 17(14), 2348; https://doi.org/10.3390/rs17142348 - 9 Jul 2025
Viewed by 255
Abstract
This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of [...] Read more.
This study focuses on the problem of identifying and extracting the magnetopause boundary of the Earth’s magnetosphere using the Soft X-ray Imager (SXI) onboard the Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission. The SXI employs lobster-eye optics to perform panoramic imaging of the magnetosphere based on the Solar Wind Charge Exchange (SWCX) mechanism. However, several factors are expected to hinder future in-orbit observations, including the intrinsically low signal-to-noise ratio (SNR) of soft-X-ray emission, pronounced vignetting, and the non-uniform effective-area distribution of lobster-eye optics. These limitations could severely constrain the accurate interpretation of magnetospheric structures—especially the magnetopause boundary. To address these challenges, a boundary detection approach is developed that combines image calibration with denoising based on deep image prior (DIP). The method begins with calibration procedures to correct for vignetting and effective area variations in the SXI images, thereby restoring the accurate brightness distribution and improving spatial uniformity. Subsequently, a DIP-based denoising technique is introduced, which leverages the structural prior inherent in convolutional neural networks to suppress high-frequency noise without pretraining. This enhances the continuity and recognizability of boundary structures within the image. Experiments use ideal magnetospheric images generated from magnetohydrodynamic (MHD) simulations as reference data. The results demonstrate that the proposed method significantly improves the accuracy of magnetopause boundary identification under medium and high solar wind number density conditions (N = 10–20 cm−3). The extracted boundary curves consistently achieve a normalized mean squared error (NMSE) below 0.05 compared to the reference models. Additionally, the DIP-processed images show notable improvements in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), indicating enhanced image quality and structural fidelity. This method provides adequate technical support for the precise extraction of magnetopause boundary structures in soft X-ray observations and holds substantial scientific and practical value. Full article
Show Figures

Graphical abstract

23 pages, 4070 KiB  
Article
Automated Plasma Region Classification and Boundary Layer Identification Using Machine Learning
by Jiye Wang, Xuan Liu, Fanzhuo Dai, Rui Zheng, Yuanlin Han, Yang Wang, Andi Liu, Xinhua Wei, Lingqian Zhang, Hui Li, Chi Wang, Tieyan Wang, James L. Burch and Wolfgang Baumjohann
Remote Sens. 2025, 17(9), 1565; https://doi.org/10.3390/rs17091565 - 28 Apr 2025
Viewed by 449
Abstract
The accurate classification of plasma regions is a critical challenge in space science, with identifying dynamic boundary layers (BLs) being particularly complex. This study introduces a novel wavelet-decision tree classifier (WDTC) designed to automate BL detection. Unlike conventional machine learning methods that rely [...] Read more.
The accurate classification of plasma regions is a critical challenge in space science, with identifying dynamic boundary layers (BLs) being particularly complex. This study introduces a novel wavelet-decision tree classifier (WDTC) designed to automate BL detection. Unlike conventional machine learning methods that rely on raw satellite measurements, the WDTC utilizes processed parameters derived from wavelet analysis as inputs to the decision tree algorithm. For each in situ measurement, including magnetic field strength (B), plasma density (n), velocity (V), and temperature (T), the wavelet analysis generates two features: wavelet energy and wavelet entropy. This results in a total of eight input parameters (two for each of the four in situ measurements) for the decision tree. By incorporating these distinctive wavelet-derived features, the WDTC enhances its ability to accurately and efficiently identify BLs within complex plasma environments. The model was applied to data from the Magnetospheric Multiscale (MMS) mission, focusing on the dayside region, and successfully differentiated between the solar wind, bow shock, magnetosheath, magnetopause, and magnetosphere. From September 15 to December 31, 2015, the WDTC identified 711 BL crossings, including 295 bow shock events and 416 magnetopause crossings. Beyond its scientific applications, the WDTC provides high-quality training datasets and a reliable data labeling tool, contributing to neural network training efforts. Full article
Show Figures

Figure 1

16 pages, 5570 KiB  
Article
Determining the Axial Orientations of a Large Number of Flux Transfer Events Sequentially Observed by Cluster during a High-Latitude Magnetopause Crossing
by Zhaoyu Li, Tao Chen and Lei Li
Atmosphere 2024, 15(10), 1215; https://doi.org/10.3390/atmos15101215 - 11 Oct 2024
Viewed by 784
Abstract
Flux transfer events (FTEs) are magnetic structures generally believed to originate from time-varying magnetic reconnection at the Earth’s magnetopause. Despite years of research, the mechanism of how FTEs are formed through reconnection remains controversial. In various models, FTEs exhibit different global configurations. Studying [...] Read more.
Flux transfer events (FTEs) are magnetic structures generally believed to originate from time-varying magnetic reconnection at the Earth’s magnetopause. Despite years of research, the mechanism of how FTEs are formed through reconnection remains controversial. In various models, FTEs exhibit different global configurations. Studying the FTE axial orientation can provide insights into their global shape, thereby helping to distinguish the generation mechanisms. In this paper, taking advantage of the orbital characteristics of the four Cluster spacecraft, we devised a multi-spacecraft timing method to determine the axes of a total of 57 FTEs observed sequentially by Cluster during a high-latitude duskside magnetopause crossing. During the nearly five-hour observation, the interplanetary magnetic field (IMF) experienced a large rotation, leading to a substantial rotation of the magnetosheath magnetic field. The analysis results show two new features of the FTE axis that have not been reported before: (1) the axes of the FTEs gradually rotate in response to the turning of the IMF and the magnetosheath magnetic field; (2) the axes of the FTEs vary between the direction of the magnetosheath magnetic field and the direction of the reconnection X-line. These features indicate that FTEs may have a more complex global configuration than depicted by traditional FTE models. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

11 pages, 8448 KiB  
Article
Design of Three-Dimensional Magnetic Probe System for Space Plasma Environment Research Facility (SPERF)
by Jihua Yang, Jiayin Xie, Wenbin Ling, Jian Guan, Kai Huang, Fupeng Chen, Gaoyuan Peng, Huibo Tang, Hua Zhou and Peng E
Sensors 2024, 24(16), 5302; https://doi.org/10.3390/s24165302 - 16 Aug 2024
Cited by 2 | Viewed by 4361
Abstract
A three-dimensional magnetic probe system has been designed and implemented at the Space Plasma Environment Research Facility (SPERF). This system has been developed to measure the magnetic field with high spatial and temporal resolution, enabling studies of fundamental processes in space physics, such [...] Read more.
A three-dimensional magnetic probe system has been designed and implemented at the Space Plasma Environment Research Facility (SPERF). This system has been developed to measure the magnetic field with high spatial and temporal resolution, enabling studies of fundamental processes in space physics, such as magnetic reconnection at the Earth’s magnetopause, on the basis of SPERF. The system utilizes inductive components as sensors, arranged in an array and soldered onto a printed circuit board (PCB), achieving a spatial resolution of 2.5 mm. The system’s electrical parameters have been measured, and its amplitude–frequency response characteristics have been simulated. The system has demonstrated good performance with response capabilities below 50 kHz. The experimental setup and results are discussed, highlighting the system’s effectiveness in accurately measuring weak magnetic signals and its suitability for magnetic reconnection experiments. Full article
(This article belongs to the Special Issue Plasma Sensors and Their Applications)
Show Figures

Figure 1

9 pages, 3012 KiB  
Article
The Electric Properties of the Magnetopause Boundary Layer
by Lai Gao, Chao Shen, Yong Ji, Yufei Zhou and Yulia V. Bogdanova
Magnetochemistry 2024, 10(6), 37; https://doi.org/10.3390/magnetochemistry10060037 - 21 May 2024
Viewed by 1366
Abstract
The magnetopause plays a pivotal role in the coupling among solar wind, the magnetosheath, and the magnetosphere. By analyzing magnetopause crossing events using MMS, we reveal a local non-neutrality of electric charges in the magnetopause boundary layer and the associated electric field. There [...] Read more.
The magnetopause plays a pivotal role in the coupling among solar wind, the magnetosheath, and the magnetosphere. By analyzing magnetopause crossing events using MMS, we reveal a local non-neutrality of electric charges in the magnetopause boundary layer and the associated electric field. There are two types of electric structures. In one group, which typically occurs on the dusk side, the electric field directs towards the Earth. In the other, which generally occurs on the day side, the field directs away from the Earth. The spatial extent of this electric non-neutrality spans approximately 600 km, which is at the scale of ion gyrational motion. These findings provide valuable insights into the fine structures of the magnetopause and the coupling between the magnetosheath and the magnetosphere. Full article
(This article belongs to the Special Issue New Insight into the Magnetosheath)
Show Figures

Figure 1

16 pages, 10343 KiB  
Article
Solar Wind Charge-Exchange X-ray Emissions from the O5+ Ions in the Earth’s Magnetosheath
by Zhicheng Zhang, Fei He, Xiao-Xin Zhang, Guiyun Liang, Xueyi Wang and Yong Wei
Remote Sens. 2024, 16(9), 1480; https://doi.org/10.3390/rs16091480 - 23 Apr 2024
Cited by 2 | Viewed by 1383
Abstract
The spectra and global distributions of the X-ray emissions generated by the solar wind charge-exchange (SWCX) process in the terrestrial magnetosheath are investigated based on a global hybrid model and a global geocoronal hydrogen model. Solar wind O6+ ions, which are the [...] Read more.
The spectra and global distributions of the X-ray emissions generated by the solar wind charge-exchange (SWCX) process in the terrestrial magnetosheath are investigated based on a global hybrid model and a global geocoronal hydrogen model. Solar wind O6+ ions, which are the primary charge state for oxygen ions in solar wind, are considered. The line emissivity of the charge-exchange-borne O5+ ions is calculated by the Spectral Analysis System for Astrophysical and Laboratory (SASAL). It is found that the emission lines from O5+ range from 105.607 to 118.291 eV with a strong line at 107.047 eV. We then simulate the magnetosheath X-ray emission intensity distributions with a virtual camera at two positions of the north pole and dusk at six stages during the passing of a perpendicular interplanetary shock combined with a tangential discontinuity structure through the Earth’s magnetosphere. During this process, the X-ray emission intensity increases with time, and the maximum value is 27.11 keV cm−2 s−1 sr−1 on the dayside, which is 4.5 times that before the solar wind structure reached the Earth. A clear shock structure can be seen in the magnetosheath and moves earthward. The maximum emission intensity seen at dusk is always higher than that seen at the north pole. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Graphical abstract

17 pages, 5865 KiB  
Article
OESA-UNet: An Adaptive and Attentional Network for Detecting Diverse Magnetopause under the Limited Field of View
by Jiaqi Wang, Rongcong Wang, Dalin Li, Tianran Sun and Xiaodong Peng
Remote Sens. 2024, 16(6), 994; https://doi.org/10.3390/rs16060994 - 12 Mar 2024
Cited by 2 | Viewed by 1228
Abstract
Imaging has been an important strategy for exploring space weather. The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a joint Chinese Academy of Sciences (CAS) and European Space Agency (ESA) mission, aiming at studying the interaction between Earth’s magnetosphere and solar wind [...] Read more.
Imaging has been an important strategy for exploring space weather. The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a joint Chinese Academy of Sciences (CAS) and European Space Agency (ESA) mission, aiming at studying the interaction between Earth’s magnetosphere and solar wind near the subsolar point via soft X-ray imaging. As the boundary of Earth’s magnetosphere, magnetopause is a significant detection target to mirror solar wind’s change for the SMILE mission. In preparation for inverting three-dimensional magnetopause, we proposed an OESA-UNet model to detect the magnetopause position. The model obtains magnetopause with a U-shaped structure, in an end-to-end manner. Inspired by attention mechanisms, these blocks are integrated into ours. OESA-UNet captures low and high-level feature maps by adjusting the receptive field for precise localization. Adaptively pre-processing the image provides a prior for the network. Availability metrics are designed to determine whether it can serve three-dimensional inversion. Lastly, we provided ablation and comparison experiments by qualitative and quantitative analysis. Our recall, precision, and f1 score are 93.8%, 92.1%, and 92.9%, respectively, with an average angle deviation of 0.005 under the availability metrics. Results indicate that OESA-UNet outperforms other methods. It can better serve the purpose of magnetopause tracing from an X-ray image. Full article
Show Figures

Figure 1

12 pages, 975 KiB  
Article
Mercury’s Bow Shock and Magnetopause Variations According to MESSENGER Data
by Dmitry Nevsky, Alexander Lavrukhin and Igor Alexeev
Universe 2024, 10(1), 40; https://doi.org/10.3390/universe10010040 - 16 Jan 2024
Viewed by 1953
Abstract
Using data from the MESSENGER spacecraft magnetometer that describes the magnetopause and the bow shock crossing points of the Mercury’s magnetosphere, we have calculated the parameters of the paraboloids of revolution approximating the obtained points. For each spacecraft orbit, the subsolar magnetopause and [...] Read more.
Using data from the MESSENGER spacecraft magnetometer that describes the magnetopause and the bow shock crossing points of the Mercury’s magnetosphere, we have calculated the parameters of the paraboloids of revolution approximating the obtained points. For each spacecraft orbit, the subsolar magnetopause and bow shock standoff distances were obtained, based on the paraboloid parameters for each crossing point. The dependences of the magnetopause and bow shock subsolar standoff distances on the Mercury’s position relative to the Sun have been obtained. These profiles agree with decreases of the solar wind plasma dynamic pressure and the interplanetary magnetic field strength with heliocentric distance. The variations of the interplanetary and magnetosheath magnetic field were investigated. The average subsolar magnetosheath thickness and the value of the magnetic field jump at the bow shock during the transition from the upstream interplanetary magnetic field region to the magnetosheath were obtained. Full article
Show Figures

Figure 1

32 pages, 5546 KiB  
Article
Detection of Solar Neutrons and Solar Neutron Decay Protons
by Yasushi Muraki, Tatsumi Koi, Satoshi Masuda, Yutaka Matsubara, Pedro Miranda, Shoko Miyake, Tsuguya Naito, Ernesto Ortiz, Akitoshi Oshima, Takashi Sako, Shoichi Shibata, Hisanori Takamaru, Munetoshi Tokumaru, Jóse F. Valdés-Galicia and Kyoko Watanabe
Universe 2024, 10(1), 16; https://doi.org/10.3390/universe10010016 - 28 Dec 2023
Viewed by 1850
Abstract
Solar flares are broadly classified as impulsive or gradual. Ions accelerated in a gradual flare are thought to be accelerated through a shock acceleration mechanism, but the particle acceleration process in an impulsive flare is still largely unexplored. To understand the acceleration process, [...] Read more.
Solar flares are broadly classified as impulsive or gradual. Ions accelerated in a gradual flare are thought to be accelerated through a shock acceleration mechanism, but the particle acceleration process in an impulsive flare is still largely unexplored. To understand the acceleration process, it is necessary to measure the high-energy gamma rays and neutrons produced by the impulsive flare. Under such circumstances, on 7 November 2004, a huge X2.0 flare occurred on the solar surface, where ions were accelerated to energies greater than 10 GeV. The accelerated primary protons collided with the solar atmosphere and produced line gamma rays and neutrons. These particles were received as neutrons and line gamma rays, respectively. Neutrons of a few GeV, on the other hand, decay to produce secondary protons while traveling 0.06 au in the solar–terrestrial space. These secondary protons arrive at the magnetopause. Although the flux of secondary protons is very low, the effect of collecting secondary protons arriving in a wide region of the magnetosphere (the Funnel or Horn effect) has resulted in significant signals being received by the solar neutron telescope at Mt. Sierra Negra (4600 m). This information suggests that ions on the solar surface are accelerated to over 10 GeV with an impulsive flare. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Figure 1

17 pages, 1824 KiB  
Article
A Mechanism for Large-Amplitude Parallel Electrostatic Waves Observed at the Magnetopause
by Gurbax Singh Lakhina, Satyavir Singh, Thekkeyil Sreeraj, Selvaraj Devanandhan and Rajith Rubia
Plasma 2023, 6(2), 345-361; https://doi.org/10.3390/plasma6020024 - 1 Jun 2023
Cited by 2 | Viewed by 2378
Abstract
Large-amplitude electrostatic waves propagating parallel to the background magnetic field have been observed at the Earth’s magnetopause by the Magnetospheric Multiscale (MMS) spacecraft. These waves are observed in the region where there is an intermixing of magnetosheath and magnetospheric plasmas. The plasma in [...] Read more.
Large-amplitude electrostatic waves propagating parallel to the background magnetic field have been observed at the Earth’s magnetopause by the Magnetospheric Multiscale (MMS) spacecraft. These waves are observed in the region where there is an intermixing of magnetosheath and magnetospheric plasmas. The plasma in the intermixing region is modeled as a five-component plasma consisting of three types of electrons, namely, two counterstreaming hot electron beams and cold electrons, and two types of ions, namely, cold background protons and a hot proton beam. Sagdeev pseudo-potential technique is used to study the parallel propagating nonlinear electrostatic solitary structures. The model predicts four types of modes, namely, slow ion-acoustic mode, fast ion-acoustic mode, slow electron-acoustic mode and fast electron-acoustic modes. Except the fast ion-acoustic mode, all other modes support solitons. Whereas slow ion-acoustic solitons have positive potentials, both slow and fast electron-acoustic solitons have negative potentials. For the case of 4% cold electron density, the slow ion-acoustic solitons have electric field ∼(40–120) mV m1. The fast Fourier transforms (FFT) of slow ion-acoustic solitons produce broadband frequency spectra having peaks between ∼100 Hz to 1000 Hz. These theoretical predictions are in good agreement with the observations. The slow and fast electron-acoustic solitons could be relevant in explaining the low-intensity high (>1 kHz) frequency waves which are also observed at the same time. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2023)
Show Figures

Figure 1

23 pages, 22116 KiB  
Article
Magnetopause Detection under Low Solar Wind Density Based on Deep Learning
by Yujie Zhang, Tianran Sun, Wenlong Niu, Yihong Guo, Song Yang, Xiaodong Peng and Zhen Yang
Remote Sens. 2023, 15(11), 2771; https://doi.org/10.3390/rs15112771 - 26 May 2023
Cited by 2 | Viewed by 1796
Abstract
Extracting the peak value of the X-ray signal in the original magnetopause detection method of soft X-ray imaging (SXI) for the SMILE satellite is problematic because of the unclear interface of the magnetosphere system under low solar wind density and the short integration [...] Read more.
Extracting the peak value of the X-ray signal in the original magnetopause detection method of soft X-ray imaging (SXI) for the SMILE satellite is problematic because of the unclear interface of the magnetosphere system under low solar wind density and the short integration time. Herein, we propose a segmentation algorithm for soft X-ray images based on depth learning, we construct an SXI simulation dataset, and we segment the magnetospheric system by learning the spatial structure characteristics of the magnetospheric system image. Then, we extract the maximum position of the X-ray signal and calculate the spatial configuration of the magnetopause using the tangent fitting approach. Under a uniform universe condition, we achieved a pixel accuracy of the maximum position of the photon number detected by the network as high as 90.94% and contained the position error of the sunset point of the 3D magnetopause below 0.2 RE. This result demonstrates that the proposed method can detect the peak photon number of magnetospheric soft X-ray images with low solar wind density. As such, its use improves the segmentation accuracy of magnetospheric soft X-ray images and reduces the imaging time requirements of the input image. Full article
Show Figures

Figure 1

11 pages, 2218 KiB  
Article
The Relationship between Solar Wind Charge Exchange Soft X-ray Emission and the Tangent Direction of Magnetopause in an XMM–Newton Event
by Yingjie Zhang, Tianran Sun, Jennifer A. Carter, Wenhao Liu, Steve Sembay, Li Ji and Chi Wang
Magnetochemistry 2023, 9(4), 88; https://doi.org/10.3390/magnetochemistry9040088 - 24 Mar 2023
Cited by 4 | Viewed by 1934
Abstract
With the advent of soft X-ray imaging enabling global magnetopause detection, it is critical to use reconstruction techniques to derive the 3-dimensional magnetopause location from 2-dimensional X-ray images. One of the important assumptions adopted by most techniques is that the direction with maximum [...] Read more.
With the advent of soft X-ray imaging enabling global magnetopause detection, it is critical to use reconstruction techniques to derive the 3-dimensional magnetopause location from 2-dimensional X-ray images. One of the important assumptions adopted by most techniques is that the direction with maximum soft X-ray emission is the tangent direction of the magnetopause, which has not been validated in observation so far. This paper analyzes a magnetospheric solar wind charge exchange (SWCX) soft X-ray event detected by XMM–Newton during relatively stable solar wind and geomagnetic conditions. The tangent direction of the magnetopause is determined by an empirical magnetopause model. Observation results show that the maximum SWCX soft X-ray intensity gradient tends to be the tangent of the magnetopause’s inner boundary, while the maximum SWCX soft X-ray intensity tends to be the tangent of the magnetopause’s outer boundary. Therefore, it is credible to use the assumption that the tangent direction of the magnetopause is the maximum SWCX soft X-ray intensity or its gradient when reconstructing the 3-dimensional magnetopause location. In addition, since these two maxima tend to be the inner and outer boundaries of the magnetopause, the thickness of magnetopause can also be revealed by soft X-ray imaging. Full article
(This article belongs to the Special Issue Magnetodynamics of Space Plasmas)
Show Figures

Figure 1

14 pages, 3043 KiB  
Article
The Phase Space Density Evolution of Radiation Belt Electrons under the Action of Solar Wind Dynamic Pressure
by Peng Hu, Haimeng Li, Zhihai Ouyang, Rongxin Tang, Liangjin Song, An Yuan, Bopu Feng, Yangyang Wang and Wenqian Zou
Magnetochemistry 2023, 9(2), 52; https://doi.org/10.3390/magnetochemistry9020052 - 9 Feb 2023
Viewed by 1873
Abstract
Earth’s radiation belt and ring current are donut-shaped regions of energetic and relativistic particles, trapped by the geomagnetic field. The strengthened solar wind dynamic pressure (Pdyn) can alter the structure of the geomagnetic field, which can bring about the dynamic variation [...] Read more.
Earth’s radiation belt and ring current are donut-shaped regions of energetic and relativistic particles, trapped by the geomagnetic field. The strengthened solar wind dynamic pressure (Pdyn) can alter the structure of the geomagnetic field, which can bring about the dynamic variation of radiation belt and ring current. In the study, we firstly utilize group test particle simulations to investigate the phase space density (PSD) under the varying geomagnetic field modeled by the International Geomagnetic Reference Field (IGRF) and T96 magnetic field models from 19 December 2015 to 20 December 2015. Combining the observation of the Van Allen Probe, we find that the PSD of outer radiation belt electrons evolves towards different states under different levels of Pdyn. In the first stage, the Pdyn (~7.94 nPa) results in the obvious rise of electron anisotropy. In the second stage, there is a significant reduction in PSD for energetic electrons at all energy levels and pitch angles under the action of intense Pdyn (~22 nPa), which suggests that the magnetopause shadowing and outward radial diffusion play important roles in the second process. The result of the study can help us further understand the dynamic evolution of the radiation belt and ring current during a period of geomagnetic disturbance. Full article
(This article belongs to the Special Issue Magnetodynamics of Space Plasmas)
Show Figures

Figure 1

15 pages, 4475 KiB  
Article
Atmospheric Effects of Magnetosheath Jets
by Alexei V. Dmitriev and Alla V. Suvorova
Atmosphere 2023, 14(1), 45; https://doi.org/10.3390/atmos14010045 - 26 Dec 2022
Cited by 12 | Viewed by 2126
Abstract
We report effects in the upper high-latitude atmosphere related to the interaction of fast magnetosheath plasma streams, so-called jets, with the dayside magnetopause. The jets were observed by THEMIS mission in the dayside magnetosphere during a quiet day on 12 July 2009. It [...] Read more.
We report effects in the upper high-latitude atmosphere related to the interaction of fast magnetosheath plasma streams, so-called jets, with the dayside magnetopause. The jets were observed by THEMIS mission in the dayside magnetosphere during a quiet day on 12 July 2009. It was found that the jet interaction was accompanied by strong localized compression and penetration of suprathermal magnetosheath plasma inside the dayside magnetosphere. The compression caused prominent magnetic variations with amplitudes up to 100 nT observed by ground-based magnetic networks SuperMAG and CARISMA. The magnetic variations were also visible in the geomagnetic Dst and AE indices. The jets also resulted in intense precipitation of the suprathermal ions with energies < 10 keV and energetic electrons with energies > 30 keV observed by low-altitude NOAA/POES satellites in a wide longitudinal range. The precipitations produced enhancements of ionization with an amplitude of ~1 TECU (~30% in relative units) and intensification of the ionospheric E and F1 layers as observed in the FORMOSAT-3/COSMIC misson. The enhanced ionization in the upper atmosphere might affect radio communication and navigation in the high-latitude regions. These results also provide new insight into the contribution of magnetospheric forcing to day-to-day ionospheric variability. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere)
Show Figures

Figure 1

9 pages, 2205 KiB  
Essay
Jets, Disks and Winds from Spinning Black Holes: Nature or Nurture?
by Roger Blandford and Noémie Globus
Galaxies 2022, 10(4), 89; https://doi.org/10.3390/galaxies10040089 - 11 Aug 2022
Cited by 3 | Viewed by 3139
Abstract
A brief summary is given of an alternative interpretation of the Event Horizon Telescope observations of the massive black hole in the nucleus of the nearby galaxy M87. It is proposed that the flow is primarily powered by the black hole rotation, not [...] Read more.
A brief summary is given of an alternative interpretation of the Event Horizon Telescope observations of the massive black hole in the nucleus of the nearby galaxy M87. It is proposed that the flow is primarily powered by the black hole rotation, not the release of gravitational energy by the infalling gas. Consequently, the observed millimetre emission is produced by an “ergomagnetosphere” that connects the black hole horizon to an “ejection disk” from which most of the gas supplied at a remote “magnetopause” is lost through a magnetocentrifugal wind. It is argued that the boundary conditions at high latitude on the magnetopause play a crucial role in the collimation of the relativistic jets. The application of these ideas to other types of source is briefly discussed. Full article
Show Figures

Figure 1

Back to TopTop