The Electric Properties of the Magnetopause Boundary Layer
Abstract
:1. Introduction
- Verifying the existence of charge separation and a polarized electric field in the magnetopause current;
- Determining the association between the electric field and charge;
- Verifying the thickness of the charge layer.
2. Database
- Refer to the quick-look burst data of MMS1 to determine the approximate time of the magnetopause crossing (https://lasp.colorado.edu/mms/sdc/public/, accessed on 3 April 2024). The website allows users to plot key parameters such as plasma moment, electromagnetic field, and spacecraft position with high temporal resolution. Since the near-rigid magnetic field and low-dense plasma inside the magnetosphere can be distinguished from the turbulent magnetic field and dense plasma in the magnetosheath [5], magnetopause crossings can be visually identified by abrupt changes in the magnetic field or plasma parameters.
- The average radial distance between the MMS and Earth should be less than 15 Earth radii (RE).
- We use the parameter , which is defined as the ratio of the integrated differential electron flux in the low energy range (30–800 eV) and high energy range (1–25 keV), because of the different plasma temperatures in the magnetosphere and magnetosheath [22]. When , the satellite is in the magnetosphere, and when , the satellite is in the magnetosheath; thus, when , the satellite is crossing the magnetopause [23].
- The electric field should be significantly enhanced within .
3. Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pitout, F.; Bogdanova, Y.V. The polar cusp seen by Cluster. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029582. [Google Scholar] [CrossRef]
- Haaland, S.; Hasegawa, H.; Paschmann, G.; Sonnerup, B.; Dunlop, M. 20 years of Cluster observations: The magnetopause. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029362. [Google Scholar] [CrossRef]
- Shen, C.; Dunlop, M.; Ma, Y.H.; Chen, Z.Q.; Yan, G.Q.; Liu, Z.X.; Lucek, E. The magnetic configuration of the high-latitude cusp and dayside magnetopause under strong magnetic shears. J. Geophys. Res. 2011, 116, A09228. [Google Scholar] [CrossRef]
- Dunlop, M.W.; Balogh, A. Magnetopause current as seen by Cluster. Ann. Geophys. 2005, 23, 901–907. [Google Scholar] [CrossRef]
- Haaland, S.; Reistad, J.; Tenfjord, P.; Gjerloev, J.; Maes, L.; DeKeyser, J.; Maggiolo, R.; Anekallu, C.; Dorville, N. Characteristics of the flank magnetopause: Cluster observations. J. Geophys. Res. Space Phys. 2014, 119, 9019–9037. [Google Scholar] [CrossRef]
- Haaland, S.; Sonnerup BU, Ö.; Dunlop, M.W.; Georgescu, E.; Paschmann, G.; Klecker, B.; Vaivads, A. Orientation and motion of a discontinuity from Cluster curlometer capability: Minimum variance of current density. Geophys. Res. Lett. 2004, 31, L10804. [Google Scholar] [CrossRef]
- Panov, E.V.; Artemyev, A.V.; Nakamura, R.; Baumjohann, W. Two types of tangential magnetopause current sheets: Cluster observations and theory. J. Geophys. Res. 2011, 116, A12204. [Google Scholar] [CrossRef]
- Chapman, S.; Ferraro VC, A. A new theory of magnetic storms. Terr. Magn. Atmos. Electr. 1931, 36, 77–97. [Google Scholar] [CrossRef]
- Berchem, J.; Russell, C.T. The thickness of the magnetopause current layer: ISEE 1 and 2 observations. J. Geophys. Res. 1982, 87, 2108–2114. [Google Scholar] [CrossRef]
- Le, G.; Russell, C.T. The thickness and structure of high beta magnetopause current layer. Geophys. Res. Lett. 1994, 21, 2451–2454. [Google Scholar] [CrossRef]
- Willis, D.M. Structure of the magnetopause. Rev. Geophys. 1971, 9, 953–985. [Google Scholar] [CrossRef]
- Willis, D.M. The Boundary of the Magnetospheres: The Magnetopause. In Proceedings of the Critical Problems of Magnetospheric Physics, Madrid, Spain, 11–13 May 1972. [Google Scholar]
- André, M.; Vaivads, A.; Buchert, S.C.; Fazakerley, A.N.; Lahiff, A. Thin electron-scale layers at the magnetopause. Geophys. Res. Lett. 2004, 31, L03803. [Google Scholar] [CrossRef]
- Andre, M.; Behlke, R.; Wahlund, J.E.; Vaivads, A.; Eriksson, A.I.; Tjulin, A.; Fazakerley, A. Multi-spacecraft observations of broadband waves near the lower hybrid frequency at the Earthward edge of the magnetopause. Ann. Geophys. 2001, 19, 1471–1481. [Google Scholar] [CrossRef]
- Paschmann, G.; Daly, P.W. Analysis Methods for Multi-Spacecraft Data; ISSI Scientific Reports Series SR-001, ESA/ISSI; The International Space Science Institute: Bern, Switzerland, 1998; Volume 1, ISBN 1608-280X. [Google Scholar]
- Argall, M.R.; Shuster, J.; Dors, I.; Genestreti, K.J.; Nakamura, T.K.M.; Torbert, R.B.; Webster, J.; Ahmadi, N.; Ergun, R.; Strangeway, R.; et al. How Neutral Is Quasi-Neutral: Charge Density in the Reconnection Diffusion Region Observed by MMS. 2019. Available online: https://d197for5662m48.cloudfront.net/documents/publicationstatus/102689/preprint_pdf/5db3dbdfd818e19dfbd04f8606b30761.pdf (accessed on 3 April 2024).
- Gao, L.; Shen, C.; Zhou, Y.; Ji, Y.; Pu, Z.; Parks, G.; Burch, J.L. Observational features of charge distribution in Earth’s inner magnetosphere. Commun. Phys. 2024, 7, 63. [Google Scholar] [CrossRef]
- Shen, C.; Zhou, Y.; Gao, L.; Wang, X.; Pu, Z.; Escoubet, C.P.; Burch, J.L. Measurements of the Net Charge Density of Space Plasmas. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029511. [Google Scholar] [CrossRef]
- Tong, Y.; Vasko, I.; Mozer, F.S.; Bale, S.D.; Roth, I.; Artemyev, A.V.; Torbert, R.B. Simultaneous Multispacecraft Probing of Electron Phase Space Holes. Geophys. Res. Lett. 2018, 45, 11513–11519. [Google Scholar] [CrossRef]
- Burch, J.L.; Moore, T.E.; Torbert, R.B.; Giles, B.L. Magnetospheric Multiscale Overview and Science Objectives. Space Sci. Rev. 2016, 199, 5–21. [Google Scholar] [CrossRef]
- Lindqvist, P.A.; Olsson, G.; Torbert, R.B.; King, B.; Granoff, M.; Rau, D.; Tucker, S. The Spin-Plane Double Probe Electric Field Instrument for MMS. Space Sci. Rev. 2016, 199, 137–165. [Google Scholar] [CrossRef]
- Pu, Z.Y.; Raeder, J.; Zhong, J.; Bogdanova, Y.V.; Dunlop, M.; Xiao, C.J.; Fazakerley, A. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth’s magnetopause. Geophys. Res. Lett. 2013, 40, 3502–3506. [Google Scholar] [CrossRef]
- Man, H.; Zhou, M.; Zhong, Z.; Deng, X.; Li, H. Statistics of the Intense Current Structure in the Dayside Magnetopause Boundary Layer. JGR Space Phys. 2021, 126, e2021JA029890. [Google Scholar] [CrossRef]
- Paschmann, G.; Daly, P.W. Shock and Discontinuity Normals, Mach Numbers, and Related Parameters. In Analysis Methods for Multi-Spacecraft Data; The International Space Science Institute: Bern, Switzerland, 1998. [Google Scholar]
- Amatucci, W.E.; Ganguli, G.; Walker, D.N.; Gatling, G.; Balkey, M.; McCulloch, T. Laboratory investigation of boundary layer processes due to strong spatial inhomogeneity. Phys. Plasmas 2003, 10, 1963–1970. [Google Scholar] [CrossRef]
- Ganguli, G.; Romero, H.; Dusenbery, P. The Dynamical Plasma Sheet Boundary Layer: A New Perspective. In Space Plasmas: Coupling Between Small and Medium Scale Processes; American Geophysical Union: Washington, DC, USA, 1995; pp. 371–384. [Google Scholar]
- Drake, J.F.; Biskamp, D.; Zeiler, A. Breakup of the electron current layer during 3-D collisionless magnetic reconnection. Geophys. Res. Lett. 1997, 24, 2921–2924. [Google Scholar] [CrossRef]
- Peyser, T.A.; Manka, C.K.; Ripin, B.H.; Ganguli, G. Electronion hybrid instability in laser-produced plasma expansions across magnetic fields. Phys. Fluids B Plasma Phys. 1992, 4, 2448–2458. [Google Scholar]
- Yamada, M.; Owens, D.K. Cross-Field-Current Driven Lower-Hybrid Instability and Stochastic Ion Heating. Phys. Rev. Lett. 1977, 38, 1529–1532. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Shen, C.; Ji, Y.; Zhou, Y.; Bogdanova, Y.V. The Electric Properties of the Magnetopause Boundary Layer. Magnetochemistry 2024, 10, 37. https://doi.org/10.3390/magnetochemistry10060037
Gao L, Shen C, Ji Y, Zhou Y, Bogdanova YV. The Electric Properties of the Magnetopause Boundary Layer. Magnetochemistry. 2024; 10(6):37. https://doi.org/10.3390/magnetochemistry10060037
Chicago/Turabian StyleGao, Lai, Chao Shen, Yong Ji, Yufei Zhou, and Yulia V. Bogdanova. 2024. "The Electric Properties of the Magnetopause Boundary Layer" Magnetochemistry 10, no. 6: 37. https://doi.org/10.3390/magnetochemistry10060037
APA StyleGao, L., Shen, C., Ji, Y., Zhou, Y., & Bogdanova, Y. V. (2024). The Electric Properties of the Magnetopause Boundary Layer. Magnetochemistry, 10(6), 37. https://doi.org/10.3390/magnetochemistry10060037