Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = magnetic concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2261 KiB  
Communication
Technological Challenges for a 60 m Long Prototype of Switched Reluctance Linear Electromagnetic Actuator
by Jakub Rygał, Roman Rygał and Stan Zurek
Actuators 2025, 14(8), 380; https://doi.org/10.3390/act14080380 - 1 Aug 2025
Viewed by 434
Abstract
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on [...] Read more.
In this research project a large linear electromagnetic actuator (LLEA) was designed and manufactured. The electromagnetic performance was published in previous works, but in this paper we focus on the technological challenges related to the manufacturing in particular. This LLEA was based on the magnet-free switched-reluctance principle, having six effective energised stator “teeth” and four passive mover parts (4:6 ratio). Various aspects and challenges encountered during the manufacturing, transport, and assembly are discussed. Thermal expansion of steel contributed to the decision of the modular design, with each module having 1.3 m in length, with a 2 mm longitudinal dilatation gap. The initial prototype was tested with a 10.6 m length, with plans to extend the test track to 60 m, which was fully achievable due to the modular design and required 29 tons of electrical steel to be built. The stator laminations were cut by a bespoke progressive tool with stamping, and other parts by a CO2 laser. Mounting was based on welding (back of the stator) and clamping plates (through insulated bolts). The linear longitudinal force was on the order of 8 kN, with the main air gap of 7.5–10 mm on either side of the mover. The lateral forces could exceed 40 kN and were supported by appropriate construction steel members bolted to the concrete floor. The overall mechanical tolerances after installation remained below 0.5 mm. The technology used for constructing this prototype demonstrated the cost-effective way for a semi-industrial manufacturing scale. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

1 pages, 127 KiB  
Correction
Correction: Frankowski et al. Non-Destructive Evaluation of Reinforced Concrete Structures with Magnetic Flux Leakage and Eddy Current Methods—Comparative Analysis. Appl. Sci. 2024, 14, 11965
by Paweł Karol Frankowski, Piotr Majzner, Marcin Mąka and Tomasz Stawicki
Appl. Sci. 2025, 15(15), 8546; https://doi.org/10.3390/app15158546 (registering DOI) - 31 Jul 2025
Viewed by 87
Abstract
In the published publication [...] Full article
32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Viewed by 353
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

19 pages, 3587 KiB  
Article
Relations Between the Printability Descriptors of Mortar and NMR Relaxometry Data
by Mihai M. Rusu and Ioan Ardelean
Materials 2025, 18(13), 3070; https://doi.org/10.3390/ma18133070 - 27 Jun 2025
Viewed by 303
Abstract
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some [...] Read more.
Concrete printing technologies play a key role in the modernization of construction practices. One factor that mitigates their progress is the development of standards and characterization tools for concrete during printing. The aim of this work is to point out correlations between some printability descriptors of mortars and the data obtained from low-field nuclear magnetic resonance (NMR) relaxometry techniques. In this context, the superposed effects of an acrylic-based superplasticizer and calcium nitrate accelerator were investigated. The mortars under study are based on white Portland cement, fine aggregates, and silica fume at fixed ratios. Extrusion tests and visual inspection of the filaments evaluate the extrudability and the printing window. The selected compositions were also investigated via transverse T2 and longitudinal T1 NMR relaxation times. The results indicate that both additives increase the printing window of the mortar, while the accelerator induces a faster increase in specific surface area of capillary pores S/V only after 30–60 min of hydration. Some correlations were found between the printing window and the range where the transverse relaxation rates 1/T2 and the pore surface-to-volume ratios S/V increase linearly. This suggests some promising connections between NMR techniques and the study of structural buildup of cementitious materials. Full article
Show Figures

Figure 1

19 pages, 3711 KiB  
Article
Sustainable Strategy to Reduce Winter Energy Consumption: Incorporating PCM Aggregates and Rice Husk Ash–Fly Ash Matrix into Concrete
by Mingming Zhang, Shan Gao, Jin Xu, Lidong Wang, Mengyan Xu and Honghao Ying
Buildings 2025, 15(12), 2086; https://doi.org/10.3390/buildings15122086 - 17 Jun 2025
Viewed by 284
Abstract
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when [...] Read more.
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when used as building envelope structures. Firstly, the strength of concrete was studied. Secondly, the dynamic and transient thermal response of concrete was evaluated through thermal conductivity and thermal diffusivity. Based on nuclear magnetic resonance experiments, the changes in the pore volume and fractal dimension of RHA–FA matrix and PCM aggregate added to concrete were studied. Through correlation analysis, a macroscopic performance prediction model based on pore characteristics was obtained. The results indicated that the incorporation of PCM aggregate reduced concrete strength, while an appropriate RHA–FA matrix contributed to enhancing concrete strength. Both the PCM aggregate and RHA–FA matrix were beneficial for improving the thermal damping properties of concrete. For 15% RHA–30% FA 100% PCM concrete, the thermal conductivity can be reduced by 53%, the thermal diffusivity can be reduced by 64%, the limiting temperature decreased by 5.5 °C, and the thermal damping coefficient increased by 48%. The nuclear magnetic resonance test results showed that PCM aggregate increased the pore volume and decreased the fractal dimension, while an appropriate RHA–FA matrix helped to reduce the pore volume. The macroscopic properties of RHA–FA–PCM aggregate concrete were highly correlated with the capillary pore volume and fractal dimension. A two-parameter prediction model based on pore characteristics can effectively predict the macroscopic properties of concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 2150 KiB  
Article
Microwire vs. Micro-Ribbon Magnetoelastic Sensors for Vibration-Based Structural Health Monitoring of Rectangular Concrete Beams
by Christos I. Tapeinos, Dimitris Kouzoudis, Kostantis Varvatsoulis, Manuel Vázquez and Georgios Samourgkanidis
Sensors 2025, 25(12), 3590; https://doi.org/10.3390/s25123590 - 7 Jun 2025
Viewed by 2924
Abstract
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and [...] Read more.
Two different magnetoelastic Metglas materials with distinct shapes were compared as sensing elements for the structural health monitoring of concrete beams. One had a ribbon shape, while the other had a microwire shape. The sensing elements were attached to different concrete beams, and a crack was introduced into each beam. The beams were subjected to flexural vibrations, and their deformations were recorded wirelessly by coils, detecting the magnetic signals emitted due to the magnetoelastic nature of the sensors. Fast Fourier Analysis of the received signal revealed the bending mode frequencies of the beams, which serve as a “signature” of their structural health. In these spectra, the ribbon-shaped sensor exhibited a 1.4-times stronger signal than the microwire sensor. However, the extracted mode frequencies were nearly identical, with differences of less than 1% both before and after damage. This indicates that both sensors can be used equivalently to monitor structural damage in concrete beams. The damage-related relative frequency shifts ranged from −0.01 to −0.03, with similar results for both sensors. Thermal annealing was also studied and appeared to significantly enhance the signal by 10–30%, likely due to the relaxation of internal stresses induced during the rapid solidification synthesis of these materials. This enhancement was more pronounced in the ribbon-shaped sensor. This study is the first to utilize a magnetoelastic microwire sensor for damage detection in concrete beams. Full article
Show Figures

Graphical abstract

16 pages, 1085 KiB  
Systematic Review
Explainable Artificial Intelligence in Radiological Cardiovascular Imaging—A Systematic Review
by Matteo Haupt, Martin H. Maurer and Rohit Philip Thomas
Diagnostics 2025, 15(11), 1399; https://doi.org/10.3390/diagnostics15111399 - 31 May 2025
Cited by 1 | Viewed by 1091
Abstract
Background: Artificial intelligence (AI) and deep learning are increasingly applied in cardiovascular imaging. However, the “black box” nature of these models raises challenges for clinical trust and integration. Explainable Artificial Intelligence (XAI) seeks to address these concerns by providing insights into model decision-making. [...] Read more.
Background: Artificial intelligence (AI) and deep learning are increasingly applied in cardiovascular imaging. However, the “black box” nature of these models raises challenges for clinical trust and integration. Explainable Artificial Intelligence (XAI) seeks to address these concerns by providing insights into model decision-making. This systematic review synthesizes current research on the use of XAI methods in radiological cardiovascular imaging. Methods: A systematic literature search was conducted in PubMed, Scopus, and Web of Science to identify peer-reviewed original research articles published between January 2015 and March 2025. Studies were included if they applied XAI techniques—such as Gradient-Weighted Class Activation Mapping (Grad-CAM), Shapley Additive Explanations (SHAPs), Local Interpretable Model-Agnostic Explanations (LIMEs), or saliency maps—to cardiovascular imaging modalities, including cardiac computed tomography (CT), magnetic resonance imaging (MRI), echocardiography and other ultrasound examinations, and chest X-ray (CXR). Studies focusing on nuclear medicine, structured/tabular data without imaging, or lacking concrete explainability features were excluded. Screening and data extraction followed PRISMA guidelines. Results: A total of 28 studies met the inclusion criteria. Ultrasound examinations (n = 9) and CT (n = 9) were the most common imaging modalities, followed by MRI (n = 6) and chest X-rays (n = 4). Clinical applications included disease classification (e.g., coronary artery disease and valvular heart disease) and the detection of myocardial or congenital abnormalities. Grad-CAM was the most frequently employed XAI method, followed by SHAP. Most studies used saliency-based techniques to generate visual explanations of model predictions. Conclusions: XAI holds considerable promise for improving the transparency and clinical acceptance of deep learning models in cardiovascular imaging. However, the evaluation of XAI methods remains largely qualitative, and standardization is lacking. Future research should focus on the robust, quantitative assessment of explainability, prospective clinical validation, and the development of more advanced XAI techniques beyond saliency-based methods. Strengthening the interpretability of AI models will be crucial to ensuring their safe, ethical, and effective integration into cardiovascular care. Full article
(This article belongs to the Special Issue Latest Advances and Prospects in Cardiovascular Imaging)
Show Figures

Figure 1

16 pages, 6566 KiB  
Article
Study on the Properties of Alkali-Excited Concrete Modified by Nano-SiO2 Based on Response Surface Methodology
by Qiao Sun, Xin Wei, Renjie Cai and Dongwei Li
Materials 2025, 18(10), 2292; https://doi.org/10.3390/ma18102292 - 15 May 2025
Cited by 1 | Viewed by 436
Abstract
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and [...] Read more.
To enhance the mechanical properties and low-carbon characteristics of industrial solid waste concrete, this paper proposes a synergistic modification strategy using nano-SiO2 and sodium silicate. The nano-SiO2 sol and sodium silicate activator were prepared using magnetic heating and stirring technology, and a quadratic regression model (R2 = 0.9575, p < 0.0001) for compressive strength with three factors and three levels was established using the response surface method (RSM-CCD). The modification mechanism was verified through optimization of the mix ratio using a desirability function, along with microscopic characterization via SEM and XRD. The results indicate the following: (1) the content of nano-SiO2 (2.4%) contributed the most to the compressive strength of the concrete, and its interaction with sodium silicate (2.1%) significantly promoted the formation of C-S-H gel; (2) the optimized fly ash substitution rate (21.7%) can achieve a 28-day compressive strength of 34.8 MPa, with the model prediction error controlled within 5%; (3) microscopic analysis showed that the synergistic effect of multiple components lowered the volume porosity of the cementitious phase, forming a densified network structure. The multi-factor synergistic optimization approach for nano-SiO2-modified alkali-activated concrete (NS-AAC) proposed in this study offers a reference for multi-objective mix design optimization of industrial waste-based concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 16180 KiB  
Article
Capillary Water Absorption Characteristics of Steel Fiber-Reinforced Concrete
by Fang Nan, Qing Shen, Shuang Zou, Haijing Yang, Zhenping Sun and Jingbin Yang
Buildings 2025, 15(9), 1542; https://doi.org/10.3390/buildings15091542 - 2 May 2025
Cited by 1 | Viewed by 639
Abstract
The water absorption behavior of concrete is a critical indicator of its durability, and a comprehensive understanding of water transport characteristics can significantly enhance concrete performance. This study investigates the capillary water absorption properties of steel fiber-reinforced concrete across various strength grades by [...] Read more.
The water absorption behavior of concrete is a critical indicator of its durability, and a comprehensive understanding of water transport characteristics can significantly enhance concrete performance. This study investigates the capillary water absorption properties of steel fiber-reinforced concrete across various strength grades by combining mercury intrusion porosimetry (MIP) and 1H low-field nuclear magnetic resonance (1H low-field NMR) techniques. Key findings reveal that the capillary water absorption of steel fiber-reinforced concretes occurs in the following two distinct stages: an initial rapid absorption phase (0 min to 6 h) and a subsequent slow absorption phase (1 day to 12 days). Modifications to the concrete matrix composition substantially reduce capillary water absorption rates, with ultra-high-performance concrete (UHPC) exhibiting exceptionally low absorption levels (the cumulative capillary water absorption of UHPC accounts for only 4.5–5.7% of that of C30 concrete). Additionally, for higher-strength concrete and extended absorption durations, the capillary water absorption rate deviates from the linear relationship with the square root of time. This deviation is attributed to the interaction of gel pore water with unhydrated cement particles, generating more hydration products, which refine the pore structure, reduce capillary pore connectivity, and increase pore tortuosity. Furthermore, steel fibers influence water transport through the following two primary mechanisms: interfacial interactions between the fibers and the matrix and a physical blocking effect that impedes water movement. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

27 pages, 8263 KiB  
Article
Intelligent Design of Pavement Concrete Based on RSM-NSGA-III-CRITIC-VIKOR
by Yuren Huo, Zhaoguang Li and Yan Wang
Appl. Sci. 2025, 15(9), 5030; https://doi.org/10.3390/app15095030 - 30 Apr 2025
Viewed by 397
Abstract
Climate-change-induced extreme environments exacerbate pavement degradation in arid regions, where traditional concrete incurs 23~40% higher life-cycle costs due to premature cracking. Particularly in the Gobi Desert, concrete pavements suffer from conflicting performance requirements—high flexural-to-compressive strength ratio (Rf/Rc), low shrinkage, [...] Read more.
Climate-change-induced extreme environments exacerbate pavement degradation in arid regions, where traditional concrete incurs 23~40% higher life-cycle costs due to premature cracking. Particularly in the Gobi Desert, concrete pavements suffer from conflicting performance requirements—high flexural-to-compressive strength ratio (Rf/Rc), low shrinkage, and controlled porosity—with traditional design methods failing to address multi-objective trade-offs. Existing optimization methods have proven insufficient for such complex environments, with conventional approaches addressing only individual parameters or employing subjective weighting techniques that fail to capture the interrelated nature of critical performance indicators. This study develops an integrated optimization framework combining Response Surface Methodology (RSM), Non-dominated Sorting Genetic Algorithm III (NSGA-III), Criteria Importance Through Intercriteria Correlation (CRITIC) weighting, and VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) decision-making to optimize the mix proportions water–cement ratio (W/C), sand ratio, and an air-entraining agent (AEA) for sustainable pavement concrete. Response Surface Methodology (RSM) analysis via Box–Behnken design revealed distinct parameter dominance: AEA exhibited the strongest non-linear effects on Rf/Rc and porosity, while W/C primarily governed shrinkage. NSGA-III generated 73 Pareto-optimal solutions, with CRITIC selecting an optimal mix (W/C = 0.35), sand ratio = 36%, AEA = 0.200%) validated experimentally (Rf/Rc = 0.141), shrinkage = 0.0446%, porosity = 2.82%. Microstructural characterization using scanning electron microscopy and low-field nuclear magnetic resonance (SEM/LF-NMR) demonstrated refined pore distribution and enhanced compactness. This framework effectively resolves trade-offs between performance indicators, providing a scientifically robust method for designing durable pavement concrete that reduces shrinkage by 13.0% and porosity by 13.5% compared to conventional mixes, lowering maintenance costs in arid regions. Full article
(This article belongs to the Special Issue Structural Mechanics in Materials and Construction)
Show Figures

Figure 1

20 pages, 16930 KiB  
Article
Design of Magnetic Concrete for Inductive Power Transfer System in Rail Applications
by Karl Lin, Shen-En Chen, Tiefu Zhao, Nicole L. Braxtan, Xiuhu Sun and Lynn Harris
Appl. Sci. 2025, 15(9), 4987; https://doi.org/10.3390/app15094987 - 30 Apr 2025
Viewed by 609
Abstract
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion [...] Read more.
Inductive power transfer (IPT) systems are transforming railway infrastructure by enabling efficient, wireless energy transmission for electric locomotives equipped with Li-ion batteries. This technology eliminates the need for overhead power lines and third rails, offering financial and operational advantages over conventional electric propulsion systems. Despite its potential, IPT deployment in rail applications faces significant challenges, including the fragility of materials (i.e., ferrite and Litz wires), thermal management during high-power transfers, and electromagnetic interference (EMI) on the transmitter side. This study discusses several factors affecting IPT efficiency and introduces magnetic concrete as a durable and cost-effective material solution for IPT systems. Magnetic concrete combines soft ferrite powder with water and coarse aggregates to enhance magnetic functionality while maintaining structural strength comparable to conventional concrete. Its durability and optimized magnetic properties promote consistent power transfer efficiency, making it a viable alternative to traditional ferrite cores. A comparative study has been performed on non-magnetic and magnetic concrete (with 33% ferrite powder) using both permeability tests and finite element analysis (FEA). The FEA includes both thermal and electromagnetic simulations using Ansys Maxwell (v.16), revealing that magnetic concrete can improve temperature management and EMI mitigation, and the findings underscore its potential to revolutionize IPT technology by overcoming the limitations of traditional materials and enhancing durability, cost-efficiency, and power transfer efficiency. By addressing the challenges of fragility, thermal management, and shielding of the unique coil topology design presented, this study lays the groundwork for improving IPT infrastructure in sustainable and efficient rail transport systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 14931 KiB  
Article
Inspection of PC Pre-Tensioned Girders Deteriorated by Actual Salt Damage via the Triaxial Magnetic Method
by Hisashi Kakinohana, Yuko Tanabe, Yoshiaki Tamaki and Tetsuhiro Shimozato
CivilEng 2025, 6(2), 18; https://doi.org/10.3390/civileng6020018 - 1 Apr 2025
Viewed by 983
Abstract
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC [...] Read more.
PC steel material inside pre-stressed concrete bridges is prone to corrosion due to the effect of salt, which leads to cross-sectional losses and fractures if proper maintenance is not carried out, affecting the girders’ structural performance. In Japan, pre-tensioned girders incorporating small-diameter PC steel material with a span length of 13 m or less were used until the early 1980s. Thus, it is essential to understand the fracture conditions of PC steel material and the factors affecting section loss due to corrosion, in order to properly assess the residual strength of salt-affected pre-tensioned girders. Hence, the current research clarifies the accuracy of techniques used for detecting deterioration in a pre-tensioned PC girder that had been out of service for about 40 years, caused by exposure to the severely saline environment of the Okinawa coast. Visual and hammer-tapping investigation of the actual bridge in addition to fracture investigation of the PC steel material using the triaxial magnetic method and destructive investigation of the concrete cover on the bottom of the girder were carried out and correlated. The final results confirmed that the triaxial magnetic method could detect PC steel material fractures accurately, and valuable information was obtained regarding fracture-detection technology for application in PC girders via non-destructive testing. Full article
Show Figures

Figure 1

15 pages, 4599 KiB  
Article
The Effect of Chloride Ions Morphology on the Properties of Concrete Under Dry and Wet Conditions
by Minhang Zhang, Zhanquan Yao, Meng Gao and Hailong Wang
Sustainability 2025, 17(7), 2884; https://doi.org/10.3390/su17072884 - 24 Mar 2025
Viewed by 678
Abstract
In order to explore a model for the deterioration rate law and mechanism of concrete performance in salt lake water or sea water, the mixed sand concrete test of different forms of chloride ion erosion under a dry–wet cycle was simulated in the [...] Read more.
In order to explore a model for the deterioration rate law and mechanism of concrete performance in salt lake water or sea water, the mixed sand concrete test of different forms of chloride ion erosion under a dry–wet cycle was simulated in the laboratory. The compressive strength and penetration depth were used to characterize the structural degradation degree of mixed sand concrete. The performance degradation of mixed sand concrete was analyzed through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), thermogravimetry (TG), and nuclear magnetic resonance (NMR) testing. Experimental investigations have revealed that, at an age of 140 days and under alternating wet–dry conditions, liquid chloride ion erosion results in a 17.47% reduction in the compressive strength of blended sand concrete, accompanied by an erosion depth of 28.077 mm. This erosion progresses from the exterior towards the interior of the material. Conversely, gaseous chloride ion erosion exhibits a bidirectional penetration pattern. When subjected to gaseous chloride ion erosion, the compressive strength of blended sand concrete decreases by 31.36%, with an associated erosion depth of 38.008 mm. This exposure subjects the structure to heightened crystalline pressures, leading to severe deterioration of both the micro-porous structure within the concrete and the dense structure of hydration products. Consequently, the overall extent of structural damage is more pronounced, and the rate of degradation progression is accelerated. Under the action of liquid chloride ion erosion, the degradation of mixed sand concrete structure is caused by dry–wet fatigue, crystallization pressure, chloride salt erosion and calcium ion dissolution. Under the action of spray-born chloride erosion, the degradation of the mixed sand concrete structure is caused by dry–wet fatigue, crystallization pressure, chloride salt erosion, and calcium ion dissolution, among which crystallization degradation plays a major role. In line with the engineering standards for the utilization of vast desert resources in Inner Mongolia and the long-term service of concrete in the Hetao Irrigation District, our approach contributes to the achievement of sustainable development. Full article
Show Figures

Figure 1

15 pages, 4312 KiB  
Article
Insights into Hydration Kinetics of Cement Pastes Evaluated by Low-Field Nuclear Magnetic Resonance: Effects of Super-Absorbent Polymer as Internal Curing Agent and Calcium Oxide as Expansive Agent
by Meixin Liu, Yuan Hu, Jing Li, Xiaolin Liu, Huiwen Sun, Yunfei Di, Xia Wu and Junyi Zhang
Materials 2025, 18(4), 836; https://doi.org/10.3390/ma18040836 - 14 Feb 2025
Cited by 1 | Viewed by 714
Abstract
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2 [...] Read more.
Understanding the hydration kinetics of cement paste is essential for adjusting the early-age performance of concrete. Low-field nuclear magnetic resonance (LF-NMR) has emerged as an innovative technique to evaluate cement hydration progress by analyzing the evolution of transverse relaxation time (T2) signals. This study provides insights into the influence of a super-absorbent polymer (SAP) as an internal curing agent and calcium oxide (CaO) as an expansive agent (EA) on LF-NMR spectroscopy of cement paste for the first time. The chemical compositions of the cement and CaO-based EA were determined by X-ray fluorescence, while the morphological characterizations of the cement, SAP and CaO-based EA materials were characterized by scanning electron microscopy. Based on the extreme points in the first-order derivatives of the T2 signal maximum amplitude curve, the hydration progress was analyzed and identified with four stages in detail. The results showed that the use of the SAP with a higher content retarded the hydration kinetics more evidently at a very early age, thus prolonging the duration of the induction and acceleration stages. The use of the CaO-based EA shortened the induction, acceleration and deceleration stages, which verified its promotion of hydration kinetics in the presence of the SAP. The combination of 3 wt% SAP and 2 wt% CaO consumed more water content synergistically in the first 100 h by hydration reactions. These findings revealed the roles of SAP and CaO-based EA (commonly adopted for low-shrinkage concrete) in adjusting hydration parameters and the microstructure evolution of cement-based materials, which would further offer fundamental knowledge for the early-age cracking control of concrete structures. Full article
Show Figures

Figure 1

19 pages, 9170 KiB  
Article
Experiment and Analytical Model for Pore Structure of Early-Age Composite Cement Pastes by LF-NMR
by Jincheng Wu, Guo Yang, Bin Hong and Xiaolin Liu
Appl. Sci. 2025, 15(3), 1650; https://doi.org/10.3390/app15031650 - 6 Feb 2025
Viewed by 919
Abstract
This study investigated mineral admixtures that are often utilized as replacements for cement in high-performance concrete with a view to enhancing their durability and workability. The properties of concrete are closely related to the structure of its pores. This research employed low-field nuclear [...] Read more.
This study investigated mineral admixtures that are often utilized as replacements for cement in high-performance concrete with a view to enhancing their durability and workability. The properties of concrete are closely related to the structure of its pores. This research employed low-field nuclear magnetic resonance technology to explore the influence of water-to-cement ratio, curing time, and mineral admixture content on the pore structure of early-age cement pastes. The findings indicated that the pore size distribution curves of all composite cement pastes display a distinct bimodal nature. The size of gel pores increases with a higher water-to-cement ratio, but decreases as the curing period extends. Fly ash, slag, and silica fume improve the pore structure at 14 days, 7 days, and 3 days, respectively. The addition of admixtures has little effect on the most probable pore diameter, but raises the proportion of gel pores with increasing content. In order to better fit the experimental data, a bimodal model integrating Shimomura and Maekawa’s model with the Weibull distribution function was introduced to describe the pore structure of cement pastes with or without fly ash, slag, and silica fume. Full article
(This article belongs to the Special Issue Sustainable Asphalt Pavement Technologies)
Show Figures

Figure 1

Back to TopTop