Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = magnesium ferrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2059 KiB  
Article
An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment
by Tímea Fóris, Péter Koska, Ágnes Maria Ilosvai, Ferenc Kristály, Lajos Daróczi, László Vanyorek and Béla Viskolcz
Int. J. Mol. Sci. 2025, 26(12), 5467; https://doi.org/10.3390/ijms26125467 - 7 Jun 2025
Viewed by 828
Abstract
The removal of heavy metals from industrial wastewater remains a major environmental challenge, demanding efficient, sustainable solutions. This study explores the combined use of Chlorella vulgaris and amine-functionalized magnesium ferrite (MgFe2O4-NH2) nanoparticles to remove cobalt ions from [...] Read more.
The removal of heavy metals from industrial wastewater remains a major environmental challenge, demanding efficient, sustainable solutions. This study explores the combined use of Chlorella vulgaris and amine-functionalized magnesium ferrite (MgFe2O4-NH2) nanoparticles to remove cobalt ions from battery effluents. The research aims to explore the capacity of C. vulgaris to adsorb heavy metals, followed by their separation using magnetic nanoparticles. Cobalt adsorption by C. vulgaris was facilitated through the interaction of metal ions on the cell wall, achieving a removal efficiency of 96.44% within 30 min, which increased to 98.78% over 10 h. Amine-functionalized MgFe2O4 nanoparticles, synthesized and characterized using HRTEM, FTIR, and VSM, displayed high surface reactivity due to the presence of -NH2 and -OH groups. At neutral pH, zeta potential measurements revealed a slightly negative charge (−5.6 ± 4.3 mV), while protonation at lower pH levels enhanced electrostatic interactions with the negatively charged algal biomass. Magnetic separation of the cobalt-adsorbed biomass achieved efficiencies ranging from 94.9% to 99.2% within 60 s, significantly outperforming conventional sedimentation methods. SEM and FTIR analyses confirmed the binding of nanoparticles to algal cell walls. The even distribution of MgFe2O4 nanoparticles on algal surfaces was further validated by TEM imaging, and the strong magnetic properties of the nanoparticles enabled rapid and efficient separation under an external magnetic field. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

20 pages, 3281 KiB  
Article
Effective and High-Performance MgFe2O4/Mg-MOF Composite for Direct Methanol Fuel Cells
by M. R. Hussein, Amna A. Kotp, E. M. Elsayed, A. M. Elseman and Mohamed Sh. Abdel-wahab
Catalysts 2025, 15(4), 394; https://doi.org/10.3390/catal15040394 - 18 Apr 2025
Cited by 1 | Viewed by 748
Abstract
The development of efficient and sustainable electrocatalysts for optimizing methanol oxidation reactions (MORs) in direct methanol fuel cells (DMFCs) is crucial for the innovation of clean electrode energy technologies. This study highlights the synthesis and characterization of magnesium ferrite (MgFe2O4 [...] Read more.
The development of efficient and sustainable electrocatalysts for optimizing methanol oxidation reactions (MORs) in direct methanol fuel cells (DMFCs) is crucial for the innovation of clean electrode energy technologies. This study highlights the synthesis and characterization of magnesium ferrite (MgFe2O4) and magnesium-based metal–organic framework (Mg-MOF) composites, utilizing cost-effective and scalable methods such as co-precipitation and ultrasound-assisted synthesis. The composite material, prepared in a 1:1 ratio, demonstrated enhanced catalytic performance due to the synergistic integration of MgFe2O4 and Mg-MOF. Comprehensive structural and morphological analyses, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) technique, and X-ray photoelectron spectroscopy (XPS), confirmed the successful formation of the composite. Also, the modification of magnetic properties, particularly the values of coercive force (Hc), led to a significant enhancement in electrical and catalytic performance. The material exhibited mesoporous characteristics and an improved surface area. Electrochemical evaluations revealed superior MOR activity for the composite electrode, achieving a current density of 31.5 mA∙cm−2 at 1 M methanol with an onset potential of 0.34 V versus Ag/AgCl, measured at a scan rate of 100 mV/s. Remarkably, the composite electrode showed a 75% improvement in current density compared to its components. Additionally, the composite exhibited a low overpotential of 350 mV and favorable Tafel slopes of 22.54 and 4.27 mV∙dec−1 at high and low potentials, respectively, confirming rapid methanol oxidation kinetics on this electrode. It also demonstrated excellent stability, retaining 97.4% of its current density after 1 h. Electrochemical impedance spectroscopy (EIS) further revealed a reduced charge transfer resistance of 9.26 Ω, indicating enhanced conductivity and catalytic efficiency. These findings underscore the potential of MgFe2O4/Mg-MOF composites as cost-effective and high-performance anode materials for DMFCs, paving the way for sustainable energy solutions. Full article
Show Figures

Graphical abstract

22 pages, 5883 KiB  
Article
Innovative Antibacterial Air Filters Impregnated with Photocatalytic MgFe2O4 Nanoparticles for Improved Microbiological Air Quality
by Abdelwahab Rai, Sara Oumenoune Tebbi, Chaima Ben Mahfoud, Maroua Bourbala, Reguia Boudraa, Abdelatif Amrane, Najeh Maaloul, Manuel Rendueles, Paula Oulego, Maymounah N. Alharthi and Lotfi Mouni
Catalysts 2025, 15(4), 365; https://doi.org/10.3390/catal15040365 - 8 Apr 2025
Viewed by 1252
Abstract
Over time, nanoparticles’ chemistry has shown exceptional ability to solve a wide range of problems in various fields, including the control of microbiological air quality in buildings. Herein, magnesium ferrite (MgFe2O4) was synthesized using coprecipitation, then characterized using X-ray [...] Read more.
Over time, nanoparticles’ chemistry has shown exceptional ability to solve a wide range of problems in various fields, including the control of microbiological air quality in buildings. Herein, magnesium ferrite (MgFe2O4) was synthesized using coprecipitation, then characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and photoelectron spectroscopy (XPS). MgFe2O4 nanoparticles were then assessed for their ability to inhibit Escherichia coli ATCC 8739 growth and airborne bacterial viability in a laboratory atmosphere through a direct air filtration system. The material showed strong inhibitory activity against E. coli by eliminating practically all viable cells in the tested suspensions after 1 h contact time in the presence of light. Finally, the prepared air filtration setup revealed that passing air bacteria through non-woven fabric filters impregnated with MgFe2O4 effectively eliminates them. Thus, only 1 colony-forming unit (CFU) was obtained from 36 L of filtered air, while a control filter (without MgFe2O4) allowed the passage of 2.6 × 105 CFU to the liquid medium. The obtained results initiate potential applications of MgFe2O4 nanoparticles in controlling microbiological indoor air quality (IAQ), especially in healthcare facilities where microbial resistance to antibiotics is the most notable, individuals are the most exposed, and contamination risks are the highest. Full article
Show Figures

Figure 1

20 pages, 5376 KiB  
Review
Micro-Alloying Effects on Microstructure and Weldability of High-Strength Low-Alloy Steel: A Review
by Jian Chen, Zhongran Shi, Xiaobing Luo, Feng Chai, Tao Pan, Guanghong Feng and Caifu Yang
Materials 2025, 18(5), 1036; https://doi.org/10.3390/ma18051036 - 26 Feb 2025
Cited by 1 | Viewed by 995
Abstract
High-strength low-alloy (HSLA) steels have garnered significant attention owing to their widespread applications across various industries, with weldability being a particularly critical aspect. However, the impact toughness of the coarse-grained heat-affected zone (CGHAZ) remains a notable challenge under high-heat-input welding conditions. Despite existing [...] Read more.
High-strength low-alloy (HSLA) steels have garnered significant attention owing to their widespread applications across various industries, with weldability being a particularly critical aspect. However, the impact toughness of the coarse-grained heat-affected zone (CGHAZ) remains a notable challenge under high-heat-input welding conditions. Despite existing research acknowledging the beneficial effects of micro-alloying elements on steel properties, there are still numerous uncertainties and controversies regarding the specific influence of these elements on the microstructure and impact toughness of the CGHAZ under specific welding conditions. To address this issue, this study presents a comprehensive review of the impact of common micro-alloying elements on the microstructure and toughness of the CGHAZ during high-heat-input welding. The results indicate that elements such as cerium, magnesium, titanium, vanadium, nitrogen, and boron significantly improve the toughness of the CGHAZ by promoting intragranular nucleation of acicular ferrite and inhibiting the coarsening of austenite grains. In contrast, the addition of elements such as aluminum and niobium adversely affect the toughness of the CGHAZ. These findings offer crucial theoretical guidance and experimental evidence for further optimizing the welding performance of HSLA steels and enhancing the impact toughness of the CGHAZ. Full article
Show Figures

Figure 1

20 pages, 5338 KiB  
Article
Zinc/Magnesium Ferrite Nanoparticles Functionalized with Silver for Optimized Photocatalytic Removal of Malachite Green
by Ricardo J. C. Fernandes, Beatriz D. Cardoso, Ana Rita O. Rodrigues, Ana Pires, André M. Pereira, João P. Araújo, Luciana Pereira and Paulo J. G. Coutinho
Materials 2024, 17(13), 3158; https://doi.org/10.3390/ma17133158 - 27 Jun 2024
Cited by 6 | Viewed by 1887
Abstract
Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor [...] Read more.
Water pollution is a major environmental challenge. Due to the inefficiency of conventional wastewater treatment plants in degrading many organic complex compounds, these recalcitrant pollutants end up in rivers, lakes, oceans and other bodies of water, affecting the environment and human health. Semiconductor photocatalysis is considered an efficient complement to conventional methods, and the use of various nanomaterials for this purpose has been widely explored, with a particular focus on improving their activity under visible light. This work focuses on developing magnetic and photoactive zinc/magnesium mixed ferrites (Zn0.5Mg0.5Fe2O4) by sol-gel and solvothermal synthesis methods, which are two of the most important and efficient methods used for the synthesis of ferrite nanoparticles. The nanoparticles (NPs) synthesized by the sol-gel method exhibited an average size of 14.7 nm, while those synthesized by the solvothermal method had an average size of 17.4 nm. Both types possessed a predominantly cubic structure and demonstrated superparamagnetic behavior, reaching a magnetization saturation value of 60.2 emu g−1. Due to the high recombination rate of electrons/holes, which is an intrinsic feature of ferrites, surface functionalization with silver was carried out to enhance charge separation. The results demonstrated a strong influence of adsorption and of the deposition of silver. Several optimization steps were performed during synthesis, allowing us to create efficient catalysts, as proved by the almost full removal of the dye malachite green attaining 95.0% (at a rate constant of 0.091 min−1) and 87.6% (at a rate constant of 0.017 min−1) using NPs obtained by the sol-gel and solvothermal methods, respectively. Adsorption in the dark accounted for 89.2% of the dye removal for nanoparticles prepared by sol-gel and 82.8% for the ones obtained by the solvothermal method. These results make mixed zinc/magnesium ferrites highly promising for potential industrial application in effluent photoremediation using visible light. Full article
(This article belongs to the Special Issue Study on Advanced Nanomaterials Applied in Green Technologies)
Show Figures

Figure 1

19 pages, 10539 KiB  
Article
Elastic Liposomes Containing Calcium/Magnesium Ferrite Nanoparticles Coupled with Gold Nanorods for Application in Photothermal Therapy
by Ana Rita F. Pacheco, Ana Margarida Barros, Carlos O. Amorim, Vítor S. Amaral, Paulo J. G. Coutinho, Ana Rita O. Rodrigues and Elisabete M. S. Castanheira
Nanomaterials 2024, 14(8), 679; https://doi.org/10.3390/nano14080679 - 15 Apr 2024
Cited by 2 | Viewed by 1882
Abstract
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic [...] Read more.
This work reports on the design, development, and characterization of novel magneto-plasmonic elastic liposomes (MPELs) of DPPC:SP80 (85:15) containing Mg0.75Ca0.25Fe2O4 nanoparticles coupled with gold nanorods, for topical application of photothermal therapy (PTT). Both magnetic and plasmonic components were characterized regarding their structural, morphological, magnetic and photothermal properties. The magnetic nanoparticles display a cubic shape and a size (major axis) of 37 ± 3 nm, while the longitudinal and transverse sizes of the nanorods are 46 ± 7 nm and 12 ± 1.6 nm, respectively. A new methodology was employed to couple the magnetic and plasmonic nanostructures, using cysteine as bridge. The potential for photothermia was evaluated for the magnetic nanoparticles, gold nanorods and the coupled magnetic/plasmonic nanoparticles, which demonstrated a maximum temperature variation of 28.9 °C, 33.6 °C and 37.2 °C, respectively, during a 30 min NIR-laser irradiation of 1 mg/mL dispersions. Using fluorescence anisotropy studies, a phase transition temperature (Tm) of 35 °C was estimated for MPELs, which ensures an enhanced fluidity crucial for effective crossing of the skin layers. The photothermal potential of this novel nanostructure corresponds to a specific absorption rate (SAR) of 616.9 W/g and a maximum temperature increase of 33.5 °C. These findings point to the development of thermoelastic nanocarriers with suitable features to act as photothermal hyperthermia agents. Full article
Show Figures

Figure 1

21 pages, 3169 KiB  
Article
Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release
by Beatriz D. Cardoso, Diana E. M. Fernandes, Carlos O. Amorim, Vítor S. Amaral, Paulo J. G. Coutinho, Ana Rita O. Rodrigues and Elisabete M. S. Castanheira
Nanomaterials 2023, 13(18), 2597; https://doi.org/10.3390/nano13182597 - 20 Sep 2023
Cited by 7 | Viewed by 2004
Abstract
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, [...] Read more.
Nanotechnology has provided a new insight into cancer treatment by enabling the development of nanocarriers for the encapsulation, transport, and controlled release of antitumor drugs at the target site. Among these nanocarriers, magnetic nanosystems have gained prominence. This work presents the design, development, and characterization of magnetoliposomes (MLs), wherein superparamagnetic nanoparticles are coupled to the lipid surface. For this purpose, dimercaptosuccinic acid (DMSA)-functionalized Ca0.25Mg0.75Fe2O4 superparamagnetic nanoparticles were prepared for the first time. The magnetic nanoparticles demonstrated a cubic shape with an average size of 13.36 nm. Furthermore, their potential for photothermal hyperthermia was evaluated using 4 mg/mL, 2 mg/mL, and 1 mg/mL concentrations of NPs@DMSA, which demonstrated a maximum temperature variation of 20.4 °C, 11.4 °C, and 7.3 °C, respectively, during a 30 min NIR-laser irradiation. Subsequently, these nanoparticles were coupled to the lipid surface of DPPC/DSPC/CHEMS and DPPC/DSPC/CHEMS/DSPE-PEG-based MLs using a new synthesis methodology, exhibiting average sizes of 153 ± 8 nm and 136 ± 2 nm, respectively. Doxorubicin (DOX) was encapsulated with high efficiency, achieving 96% ± 2% encapsulation in non-PEGylated MLs and 98.0% ± 0.6% in stealth MLs. Finally, drug release assays of the DOX-loaded DPPC/DSPC/CHEMS MLs were performed under different conditions of temperature (37 °C and 42 °C) and pH (5.5 and 7.4), simulating physiological and therapeutic conditions. The results revealed a higher release rate at 42 °C and acidic pH. Release rates significantly increased when introducing the stimulus of laser-induced photothermal hyperthermia at 808 nm (1 W/cm2) for 5 min. After 48 h of testing, at pH 5.5, 67.5% ± 0.5% of DOX was released, while at pH 7.4, only a modest release of 27.0% ± 0.1% was achieved. The results demonstrate the potential of the MLs developed in this work to the controlled release of DOX under NIR-laser stimulation and acidic environments and to maintain a sustained and reduced release profile in physiological environments with pH 7.4. Full article
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Simplified Synthesis of the Amine-Functionalized Magnesium Ferrite Magnetic Nanoparticles and Their Application in DNA Purification Method
by Ágnes M. Ilosvai, Tímea B. Gerzsenyi, Emőke Sikora, Lajos Harasztosi, Ferenc Kristály, Béla Viskolcz, Csaba Váradi, Emma Szőri-Dorogházi and László Vanyorek
Int. J. Mol. Sci. 2023, 24(18), 14190; https://doi.org/10.3390/ijms241814190 - 16 Sep 2023
Cited by 3 | Viewed by 2209
Abstract
For pathogens identification, the PCR test is a widely used method, which requires the isolation of nucleic acids from different samples. This extraction can be based on the principle of magnetic separation. In our work, amine-functionalized magnesium ferrite nanoparticles were synthesized for this [...] Read more.
For pathogens identification, the PCR test is a widely used method, which requires the isolation of nucleic acids from different samples. This extraction can be based on the principle of magnetic separation. In our work, amine-functionalized magnesium ferrite nanoparticles were synthesized for this application by the coprecipitation of ethanolamine in ethylene glycol from Mg(II) and Fe(II) precursors. The conventional synthesis method involves a reaction time of 12 h (MgFe2O4-H&R MNP); however, in our modified method, the reaction time could be significantly reduced to only 4 min by microwave-assisted synthesis (MgFe2O4-MW MNP). A comparison was made between the amine-functionalized MgFe2O4 samples prepared by two methods in terms of the DNA-binding capacity. The experimental results showed that the two types of amine-functionalized magnesium ferrite magnetic nanoparticles (MNPs) were equally effective in terms of their DNA extraction yield. Moreover, by using a few minutes-long microwave synthesis, we obtained the same quality magnesium ferrite particles as those made through the long and energy-intensive 12-h production method. This advancement has the potential to improve and expedite pathogen identification processes, helping to better prevent the spread of epidemics. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles for Biomedical and Imaging Applications 2.0)
Show Figures

Graphical abstract

13 pages, 6097 KiB  
Article
Investigation of Structural, Dielectric and Optical Properties of Polyaniline—Magnesium Ferrite Composites
by Priyanka Kolhar, Basavaraja Sannakki, Meenakshi Verma, Siddaramappa Suresha, Mansoor Alshehri and Nehad Ali Shah
Nanomaterials 2023, 13(15), 2234; https://doi.org/10.3390/nano13152234 - 2 Aug 2023
Cited by 9 | Viewed by 1999
Abstract
A study on the influence of magnesium ferrite nanoparticles on the optical and dielectric attributes of Polyaniline has been conducted. Magnesium nano Ferrite powder is synthesized by the self-propagating solution combustion method. Polyaniline–Magnesium nano ferrite composites are synthesized by chemical oxidative polymerization of [...] Read more.
A study on the influence of magnesium ferrite nanoparticles on the optical and dielectric attributes of Polyaniline has been conducted. Magnesium nano Ferrite powder is synthesized by the self-propagating solution combustion method. Polyaniline–Magnesium nano ferrite composites are synthesized by chemical oxidative polymerization of aniline with the addition of Magnesium nanoparticles. The samples are characterized with XRD and UV-Vis spectrometer, in the wavelength range of 200–800 nm and studied for optical properties. Dielectric properties are studied in the frequency range of 50 Hz to 5 MHz. X-ray diffraction reveals single phase formation of Magnesium ferrite, whereas Polyaniline shows an amorphous nature. In the XRD of the composites, we see the crystalline peaks of ferrite becoming more intense with the addition of ferrite and whereas the peak of Polyaniline diminishes. The crystallite size is quantified with the Debye—Scherrer formula, and it increases as the content of ferrite in the composites increases. The micro-strain decreases in the composites as the percentage of ferrite enhances in the composites. In the UV-Vis absorption spectra of composites, the peaks of Polyaniline shift to higher wavelength and there is also an absorption band in the spectra of composites corresponding to that of Magnesium ferrite particles. Both direct and indirect band gaps are calculated with the Tauc plot, and both the optical band gap decrease as the percentage of ferrite increases in the composite. The dielectric loss and dielectric constant both decrease with frequency in all the samples, and the dielectric response are in good agreement with Maxwell—Wagner model. Ferrite—polymer composites with both conducting and magnetic properties are considered useful for electromagnetic shielding and microwave absorption. Full article
(This article belongs to the Special Issue Magnetic and Dielectric Properties of Nanoscale Materials)
Show Figures

Figure 1

10 pages, 2073 KiB  
Article
Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles
by Tatiana Kiseleva, Tatiana Grigoreva, Svetlana Kovaliova, Maxim Il’in, Ekaterina Yakuta, Evgeniya Devyatkina, Inna Malyshkina, Ilya Ivanenko, Sergey Vosmerikov and Nikolay Lyakhov
Powders 2023, 2(3), 578-587; https://doi.org/10.3390/powders2030036 - 1 Aug 2023
Cited by 1 | Viewed by 1630
Abstract
Mechanochemically synthesized particles of two types of magnesium ferrites, one of which with structural distortions and an average size of 170 nm, and another that is highly crystalline with an average size of 900 nm, were introduced into a matrix of ultra-high-molecular-weight polyethylene [...] Read more.
Mechanochemically synthesized particles of two types of magnesium ferrites, one of which with structural distortions and an average size of 170 nm, and another that is highly crystalline with an average size of 900 nm, were introduced into a matrix of ultra-high-molecular-weight polyethylene via the milling processing. The final material has been formed by hot pressing mechanocomposites based on ultra-high-molecular-weight polyethylene and magnesium ferrite particles of various fineness and concentration. Structural characteristics were studied using scanning electron microscopy, differential scanning calorimetry and X-ray diffraction analysis. The dielectric properties of the obtained composites were analyzed by testing the frequency dependence of the permeability, dielectric losses, and conductivity. The effect of filler concentration and particle size, as well as the crystallinity of the polymer, on the dielectric properties of the composite material were studied. Full article
(This article belongs to the Special Issue Particle Technologies)
Show Figures

Figure 1

17 pages, 8919 KiB  
Article
Biocompatible Calcium Ion-Doped Magnesium Ferrite Nanoparticles as a New Family of Photothermal Therapeutic Materials for Cancer Treatment
by Panchanathan Manivasagan, Sekar Ashokkumar, Ala Manohar, Ara Joe, Hyo-Won Han, Sun-Hwa Seo, Thavasyappan Thambi, Hai-Sang Duong, Nagendra Kumar Kaushik, Ki Hyeon Kim, Eun Ha Choi and Eue-Soon Jang
Pharmaceutics 2023, 15(5), 1555; https://doi.org/10.3390/pharmaceutics15051555 - 21 May 2023
Cited by 36 | Viewed by 3686
Abstract
Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped [...] Read more.
Novel biocompatible and efficient photothermal (PT) therapeutic materials for cancer treatment have recently garnered significant attention, owing to their effective ablation of cancer cells, minimal invasiveness, quick recovery, and minimal damage to healthy cells. In this study, we designed and developed calcium ion-doped magnesium ferrite nanoparticles (Ca2+-doped MgFe2O4 NPs) as novel and effective PT therapeutic materials for cancer treatment, owing to their good biocompatibility, biosafety, high near-infrared (NIR) absorption, easy localization, short treatment period, remote controllability, high efficiency, and high specificity. The studied Ca2+-doped MgFe2O4 NPs exhibited a uniform spherical morphology with particle sizes of 14.24 ± 1.32 nm and a strong PT conversion efficiency (30.12%), making them promising for cancer photothermal therapy (PTT). In vitro experiments showed that Ca2+-doped MgFe2O4 NPs had no significant cytotoxic effects on non-laser-irradiated MDA-MB-231 cells, confirming that Ca2+-doped MgFe2O4 NPs exhibited high biocompatibility. More interestingly, Ca2+-doped MgFe2O4 NPs exhibited superior cytotoxicity to laser-irradiated MDA-MB-231 cells, inducing significant cell death. Our study proposes novel, safe, high-efficiency, and biocompatible PT therapeutics for treating cancers, opening new vistas for the future development of cancer PTT. Full article
(This article belongs to the Special Issue Metal Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

14 pages, 8507 KiB  
Article
Magnetic Adsorbent Based on Faujasite Zeolite Decorated with Magnesium Ferrite Nanoparticles for Metal Ion Removal
by Mariana Rodrigues Meirelles, João Otávio Donizette Malafatti, Márcia Tsuyama Escote, Alexandre Henrique Pinto and Elaine Cristina Paris
Magnetochemistry 2023, 9(5), 136; https://doi.org/10.3390/magnetochemistry9050136 - 20 May 2023
Cited by 13 | Viewed by 2399
Abstract
Magnetic nanoparticles are a promising alternative as a support in adsorption processes, aiming at the easy recovery of the aqueous medium. A faujasite zeolite (FAU) surface was decorated with magnesium ferrite (MgFe2O4) nanoparticles. FAU is a porous adsorbent with [...] Read more.
Magnetic nanoparticles are a promising alternative as a support in adsorption processes, aiming at the easy recovery of the aqueous medium. A faujasite zeolite (FAU) surface was decorated with magnesium ferrite (MgFe2O4) nanoparticles. FAU is a porous adsorbent with high specific surface area (SSA) and chemical stability. The FAU:MgFe2O4 nanocomposite 3:1 ratio (w w−1) promotes the combination of the surface and magnetic properties. The results showed the effectiveness of the MgFe2O4 immobilization on the FAU surface, exhibiting a high SSA of 400 m2 g−1. The saturation magnetization (Ms) was verified as 5.9 emu g−1 for MgFe2O4 and 0.47 emu g−1 for FAU:MgFe2O4, an environmentally friendly system with soft magnetic characteristics. The magnetic nanocomposite achieved high adsorption values of around 94% removal for Co2+ and Mn2+ ions. Regarding its reuse, the nanocomposite preserved adsorption activity of above 65% until the third cycle. Thus, the FAU:MgFe2O4 nanocomposite presented favorable adsorptive, magnetic, and recovery properties for reuse cycles in polluted water. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles: State of the Art and Future Perspectives)
Show Figures

Graphical abstract

21 pages, 5336 KiB  
Article
Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy
by Ana Rita F. Pacheco, Beatriz D. Cardoso, Ana Pires, André M. Pereira, João P. Araújo, Violeta M. Carvalho, Raquel O. Rodrigues, Paulo J. G. Coutinho, Teresa Castelo-Grande, Paulo A. Augusto, Domingos Barbosa, Rui A. Lima, Senhorinha F. C. F. Teixeira, Ana Rita O. Rodrigues and Elisabete M. S. Castanheira
Nanomaterials 2023, 13(6), 1051; https://doi.org/10.3390/nano13061051 - 15 Mar 2023
Cited by 10 | Viewed by 3577
Abstract
Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release [...] Read more.
Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX). Shape anisotropic magnetic nanoparticles of magnesium ferrite with partial substitution by calcium (Mg0.75Ca0.25Fe2O4) were synthesized, with and without calcination, and their structural, morphological and magnetic properties were investigated. Their superparamagnetic properties were evaluated and heating capabilities proven, either by exposure to an alternating magnetic field (AMF) (magnetic hyperthermia) or by irradiation with near-infrared (NIR) light (photothermia). The Mg0.75Ca0.25Fe2O4 calcined nanoparticles were selected to integrate the SMLs, surrounded by a lipid bilayer of DOPE:Ch:CHEMS (45:45:10). DOX was encapsulated in the nanosystems with an efficiency above 98%. DOX release assays showed a much more efficient release of the drug at pH = 5 compared to the release kinetics at physiological pH. By subjecting tumor cells to DOX-loaded SMLs, cell viability was significantly reduced, confirming that they can release the encapsulated drug. These results point to the development of efficient pH-sensitive nanocarriers, suitable for a synergistic action in cancer therapy with magnetic targeting, stimulus-controlled drug delivery and dual hyperthermia (magnetic and plasmonic) therapy. Full article
(This article belongs to the Special Issue Nanoparticles for Combination Therapies)
Show Figures

Figure 1

20 pages, 8504 KiB  
Article
Humidity and Temperature Sensing of Mixed Nickel–Magnesium Spinel Ferrites
by Milena P. Dojcinovic, Zorka Z. Vasiljevic, Lazar Rakocevic, Vera P. Pavlovic, Souad Ammar-Merah, Jelena D. Vujancevic and Maria Vesna Nikolic
Chemosensors 2023, 11(1), 34; https://doi.org/10.3390/chemosensors11010034 - 2 Jan 2023
Cited by 8 | Viewed by 2894
Abstract
Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined [...] Read more.
Temperature- and humidity-sensing properties were evaluated of NixMg1-x spinel ferrites (0 ≤ x ≤ 1) synthesized by a sol-gel combustion method using citric acid as fuel and nitrate ions as oxidizing agents. After the exothermic reaction, amorphous powders were calcined at 700 °C followed by characterization with XRD, FTIR, XPS, EDS and Raman spectroscopy and FESEM microscopy. Synthesized powders were tested as humidity- and temperature-sensing materials in the form of thick films on interdigitated electrodes on alumina substrate in a climatic chamber. The physicochemical investigation of synthesized materials revealed a cubic spinel Fd3¯m phase, nanosized but agglomerated particles with a partially to completely inverse spinel structure with increasing Ni content. Ni0.1Mg0.9Fe2O4 showed the highest material constant (B30,90) value of 3747 K and temperature sensitivity (α) of −4.08%/K compared to pure magnesium ferrite (B30,90 value of 3426 K and α of −3.73%/K) and the highest average sensitivity towards humidity of 922 kΩ/%RH in the relative humidity (RH) range of 40–90% at the working temperature of 25 °C. Full article
(This article belongs to the Special Issue Gas Sensors for Monitoring Environmental Changes)
Show Figures

Figure 1

13 pages, 2882 KiB  
Article
Magnesium Spinel Ferrites Development for FDM 3D-Printing Material for Microwave Absorption
by Vladimir Buzko, Sergey Ivanin, Alexander Goryachko, Ivan Shutkin, Polina Pushankina and Iliya Petriev
Processes 2023, 11(1), 60; https://doi.org/10.3390/pr11010060 - 27 Dec 2022
Cited by 6 | Viewed by 2921
Abstract
The magnesium nanosized ferrite powder with formula MgFe2O4 was synthesized via a pyrochemical sol–gel glycine–nitrate method and annealed consistently at temperatures of up to 1300 °C. The MgFe2O4 ferrite samples’ microstructure was studied by SEM and XRD [...] Read more.
The magnesium nanosized ferrite powder with formula MgFe2O4 was synthesized via a pyrochemical sol–gel glycine–nitrate method and annealed consistently at temperatures of up to 1300 °C. The MgFe2O4 ferrite samples’ microstructure was studied by SEM and XRD methods. According to the results of the studies, the increase in MgFe2O4 nanoparticles size from about 15 nm to micron-sized particles was observed when increasing annealing temperatures. The DC electrical conductivity of MgFe2O4 also clearly shows the change in conduction behavior of samples with increased calcination temperatures. The electromagnetic microwave properties of micron-sized particles of MgFe2O4 ferrite powder for a 1200 °C annealing temperature were studied for composites in paraffin matrix with produced magnetic filler mass concentration at 40% and 50%. The filament composites of polymer polylactic acid with MgFe2O4 ferrite powder samples were prepared by the FDM 3D-printing process and their microwave-absorbing properties were investigated. The application of developed PLA–MgFe2O4 ferrite filament for fabricating magnetic microwave-absorbing components also was demonstrated. Full article
Show Figures

Figure 1

Back to TopTop