Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, M.; Pozuelo, J.; Baselga, J. Electromagnetic Shielding Materials in GHz Range. Chem. Rec. 2018, 18, 1000–1009. [Google Scholar] [CrossRef]
- McCrum, N.; Buckley, C.; Bucknall, C. Principles of Polymer Engineering; Oxford Science: Oxford, NY, USA, 1996; p. 464. [Google Scholar]
- Rocha, M.; Mansur, A.; Mansur, H. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials 2009, 2, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.M. The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement; Elsevier Academic Press: New York, NY, USA, 2004; p. 379. [Google Scholar]
- Peacock, A.J. Handbook of Polyethylene: Structure, Properties and Applications; Marcel Dekker: New York, NY, USA, 2000; p. 536. [Google Scholar]
- Selyutin, G.E.; Gavrilov, Y.U.; Voskresenskaya, E.N.; Zakharov, V.A.; Nikitin, V.E.; Poluboyarov, V.A. Composite Materials Based on Ultra High Molecular Polyethylene: Properties, Application prospects. Chem. Sustain. Dev. 2010, 18, 301–314. [Google Scholar]
- Okhlopkova, A.; Nikiforov, L.; Borisova, R.; Okhlopkova, T. Polymer Nanocomposites Exploited Under the Arctic Conditions. KnE Mater. Sci. 2016, 1, 122. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Naqvi, R.A.; Abbas, N.; Khan, S.M.; Nawaz, S.; Hussain, A.; Zahra, N.; Khalid, M.W. Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review. Polymers 2020, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Bracco, P.; Bellare, A.; Bistolfi, A.; Affatato, S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical, Physical and Mechanical Properties on the Wear Behavior. A Review. Materials 2017, 10, 791. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef]
- Tsepelev, A.B.; Kiseleva, T.Y.; Zholudev, S.I.; Kovaleva, S.A.; Grigoryeva, T.F.; Ivanenko, I.P.; Devyatkina, E.T.; Ilyushin, A.S.; Lyakhov, N.Z. Electron irradiation resistance of the composite material structure based on ultra-high molecular polyethylene and boron carbide. J. Phys. Conf. Ser. 2019, 1347, 012028. [Google Scholar] [CrossRef] [Green Version]
- Manu, K.M.; Soni, S.; Murthy, V.R.K.; Sebastian, M.T. Ba(Zn1/3Ta2/3)O3 ceramics reinforced high density polyethylene for microwave applications. J. Mater. Sci. Mater. Electron. 2013, 24, 2098–2105. [Google Scholar] [CrossRef]
- Kim, E.S.; Jeon, C.J. Dependence of dielectric properties on the crystallinity of ceramic/polymer composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 1939–1946. [Google Scholar] [CrossRef]
- Garzón, A.O.; Landínez, D.A.; Roa-Rojas, J.; Fajardo-Tolosa, F.E.; Peña-Rodríguez, G.; Parra-Vargas, C.A. Production and structural, electrical and magnetic characterization of a composite material based on powdered magnetite and high density polyethylene. Rev. Acad.Colomb. Cienc. Ex. Fis. Nat. 2017, 41, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Yurkov, G.; Gubin, S.P.; Pankratov, D.A.; Koksharov, Y.A.; Kozinkin, A.V.; Spichkin, Y.I.; Nedoseikina, T.I.; Pirog, I.V.; Vlasenko, V.G. Iron(III) Oxide Nanoparticles in a Polyethylene Matrix. Inorg. Mater. 2002, 38, 137–145. [Google Scholar] [CrossRef]
- Xue, Q. The influence of particle shape and size on electric conductivity of metal–polymer composites. Eur. Polym. J. 2004, 40, 323–327. [Google Scholar] [CrossRef]
- Lu, S.-H.; Liang, G.-Z.; Zhou, Z.-W.; Li, F. Structure and properties of UHMWPE fiber/carbon fiber hybrid composites. J. Appl. Polym. Sci. 2006, 101, 1880–1884. [Google Scholar] [CrossRef]
- Dayyoub, T.; Maksimkin, A.V.; Kaloshkin, S.; Kolesnikov, E.; Chukov, D.; Dyachkova, T.P.; Gutnik, I. The Structure and Mechanical Properties of the UHMWPE Films Modified by the Mixture of Graphene Nanoplates with Polyaniline. Polymers 2018, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Kovaleva, S.A.; Zhornik, V.I.; Grigoreva, T.F.; Belotserkovskiy, M.A.; Vityaz, P.A.; Dubinchuk, A.D.; Lyakhov, N.Z. Modification of ultra high weight polyethylene by nanostructural composites B4C/W by intense mechanical activation. Chem. Sustain. Dev. 2018, 26, 489–494. [Google Scholar] [CrossRef]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef]
- Hamciuc, C.; Asandulesa, M.; Hamciuc, E.; Roman, T.; Olariu, M.A.; Pui, A. Novel Polyimide/Copper-Nickel Ferrite Composites with Tunable Magnetic and Dielectric Properties. Polymers 2021, 13, 1646. [Google Scholar] [CrossRef]
- Markevich, I.A.; Selyutin, G.E.; Drokin, N.A.; Selyutin, A.G. Electrical and Mechanical Properties of the High-Permittivity Ultra-High-Molecular-Weight Polyethylene-Based Composite Modified by Carbon Nanotubes. Tech. Phys. 2020, 65, 1106–1113. [Google Scholar] [CrossRef]
- Anh, T.T.; Vanga-Bouanga, C.; David, E.; Frechette, M. AC conductivity and dielectric properties modification of UHMWPE by graphene fillers. In Proceedings of the 016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; Volume 1, pp. 68–71. [Google Scholar] [CrossRef]
- Maharramov, A.M.; Ismayilova, R.S.; Nuriyev, M.A.; Nabiyev, A.A. Dielectric properties of nanocomposites based on ul-tra-high molecular weight polyethylene and a-SiO2. Plast. Massy 2019, 1–2, 6–8. (In Russian) [Google Scholar]
- Drakopoulos, S.X.; Psarras, G.C.; Forte, G.; Martin-Fabiani, I.; Ronca, S. Entanglement dynamics in ultra-high molecular weight polyethylene as revealed by dielectric spectroscopy. Polymer 2018, 150, 35–43. [Google Scholar] [CrossRef]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43 (Suppl. S1), S25–S30. [Google Scholar] [CrossRef]
- Wunderlich, B. Macromolecular Physics. Crystal Nucleation, Growth, Annealing; Academic Press: New York, NY, USA, 1976; p. 560. [Google Scholar]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA; London, UK, 1953; p. 690. [Google Scholar]
- Egorov, V.M.; Boiko, Y.M.; Marikhin, V.A.; Myasnikova, L.P.; Radovanova, E.I. A study of ultra-strength polymer fibers via calorimetry. Phys. Solid State 2016, 58, 1622–1626. [Google Scholar] [CrossRef]
Samples | Tonset, °C ±0.5 | Tmax, °C ±0.5 | Tend, °C ±0.5 | ΔHm0, J g−1 ±0.5 | ν ±13 | L, nm ±3 | XDSC, % ±10 |
---|---|---|---|---|---|---|---|
UHMWPE initial | 117.5 | 154.4 | 180.3 | 175.5 | 160 | 20 | 69 |
15F-MS/85UHMWPE | 129.7 | 148.7 | 178.1 | 136.2 | 204 | 25 | 53 |
30F-MS/70UHMWPE | 128.5 | 146.7 | 167.2 | 98.8 | 253 | 31 | 47 |
50F-MS/50UHMWPE | 129.7 | 143.4 | 165.1 | 90.4 | 272 | 34 | 35 |
15F-MSA/85UHMWPE | 129.1 | 153.6 | 181.4 | 133.2 | 194 | 24 | 52 |
30F-MSA/70UHMWPE | 130.1 | 146.2 | 173.5 | 101.2 | 225 | 28 | 39 |
50F-MSA/50UHMWPE | 130.2 | 144.3 | 171.9 | 85.3 | 232 | 29 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, T.; Grigoreva, T.; Kovaliova, S.; Il’in, M.; Yakuta, E.; Devyatkina, E.; Malyshkina, I.; Ivanenko, I.; Vosmerikov, S.; Lyakhov, N. Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles. Powders 2023, 2, 578-587. https://doi.org/10.3390/powders2030036
Kiseleva T, Grigoreva T, Kovaliova S, Il’in M, Yakuta E, Devyatkina E, Malyshkina I, Ivanenko I, Vosmerikov S, Lyakhov N. Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles. Powders. 2023; 2(3):578-587. https://doi.org/10.3390/powders2030036
Chicago/Turabian StyleKiseleva, Tatiana, Tatiana Grigoreva, Svetlana Kovaliova, Maxim Il’in, Ekaterina Yakuta, Evgeniya Devyatkina, Inna Malyshkina, Ilya Ivanenko, Sergey Vosmerikov, and Nikolay Lyakhov. 2023. "Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles" Powders 2, no. 3: 578-587. https://doi.org/10.3390/powders2030036
APA StyleKiseleva, T., Grigoreva, T., Kovaliova, S., Il’in, M., Yakuta, E., Devyatkina, E., Malyshkina, I., Ivanenko, I., Vosmerikov, S., & Lyakhov, N. (2023). Dielectric Performance of UHMWPE-MgFe2O4 Composites Depending on Polymer Crystallinity, and the Concentration and Size of Mechanochemically Synthesized Ferrite Particles. Powders, 2(3), 578-587. https://doi.org/10.3390/powders2030036