Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,417)

Search Parameters:
Keywords = magnesium (Mg2+)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2868 KiB  
Article
The Biocorrosion of a Rare Earth Magnesium Alloy in Artificial Seawater Containing Chlorella vulgaris
by Xinran Yao, Qi Fu, Guang-Ling Song and Kai Wang
Materials 2025, 18(15), 3698; https://doi.org/10.3390/ma18153698 - 6 Aug 2025
Abstract
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the [...] Read more.
In the medical field, magnesium (Mg) alloys have been widely used due to their excellent antibacterial properties and biodegradability. However, in the marine environment, the antibacterial effect may be greatly attenuated, and consequently, microorganisms in the ocean are likely to adhere to the surface of Mg alloys, resulting in biocorrosion damage, which is really troublesome in the maritime industry and can even be disastrous to the navy. Currently, there is a lack of research on the biocorrosion of Mg alloys that may find important applications in marine engineering. In this paper, the biocorrosion mechanism of the Mg alloy Mg-3Nd-2Gd-Zn-Zr caused by Chlorella vulgaris (C. vulgaris), a typical marine microalga, was studied. The results showed that the biomineralization process in the artificial seawater containing a low concentration of C. vulgaris cells was accelerated compared with that in the abiotic artificial seawater, leading to the deposition of CaCO3 on the surface to inhibit the localized corrosion of the Mg alloy, whereas a high concentration of C. vulgaris cells produced a high content of organic acids at some sites through photosynthesis to significantly accelerate the surface film rupture at some sites and severe localized corrosion there, but meanwhile, it resulted in the formation of a more protective biomineralized film in the other areas to greatly alleviate the corrosion. The contradictory biocorrosion behaviors on the Mg-3Nd-2Gd-Zn-Zr alloy induced by C. vulgaris were finally explained by a mechanism proposed in the paper. Full article
(This article belongs to the Section Corrosion)
25 pages, 4393 KiB  
Article
Development and Preclinical Evaluation of Fixed-Dose Capsules Containing Nicergoline, Piracetam, and Hawthorn Extract for Sensorineural Hearing Loss
by Lucia Maria Rus, Andrei Uncu, Sergiu Parii, Alina Uifălean, Simona Codruța Hegheș, Cristina Adela Iuga, Ioan Tomuță, Ecaterina Mazur, Diana Șepeli, Irina Kacso, Fliur Macaev, Vladimir Valica and Livia Uncu
Pharmaceutics 2025, 17(8), 1017; https://doi.org/10.3390/pharmaceutics17081017 - 5 Aug 2025
Abstract
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural [...] Read more.
Background: Fixed-dose combinations have advanced in many therapeutic areas, including otorhinolaryngology, where hearing disorders are increasingly prevalent. Objectives: The present study focuses on developing and evaluating a new capsule combining nicergoline (NIC), piracetam (PIR), and hawthorn extract (HE) for the management of sensorineural hearing loss. Methods: The first phase methodology comprised preformulation studies (DSC, FTIR, and PXRD) to assess compatibility among active substances and excipients. Subsequently, four formulations were prepared and tested for flowability, dissolution behavior in acidic and neutral media, and stability under oxidative, thermal, and photolytic stress. Quantification of the active substances and flavonoids was performed using validated spectrophotometric and HPLC-UV methods. Results: Among the tested variants, the F1 formulation (4.5 mg NIC, 200 mg PIR, 50 mg HE, 2.5 mg magnesium stearate, 2.5 mg sodium starch glycolate, and 240.5 mg monohydrate lactose per capsule) displayed optimal technological properties, superior dissolution in acidic media, and was further selected for evaluation. The antioxidant activity of the formulation was confirmed through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, Trolox Equivalent Antioxidant Capacity (TEAC), and iron chelation tests, and was primarily attributed to the flavonoid content of the HE. Acute toxicity tests in mice and rats indicated a high safety margin (LD50 > 2500 mg/kg), while ototoxicity assessments showed no adverse effects on auditory function. Conclusions: The developed formulation displayed good stability, safety, and therapeutic potential, while the applied workflow could represent a model for the development of future fixed-dose combinations. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals, 2nd Edition)
Show Figures

Figure 1

20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

16 pages, 4672 KiB  
Article
Corrosion Behavior and Mechanism of Mg-1Bi and Mg-1Sn Extruded Alloys
by Hao Dong, Yongqiang Zhao, Yuying He, Shujuan Liu and Jinghuai Zhang
Metals 2025, 15(8), 871; https://doi.org/10.3390/met15080871 - 4 Aug 2025
Viewed by 89
Abstract
Improving the corrosion resistance of magnesium (Mg) alloys is a long-term challenge, especially when cost-effectiveness is taken into account. In this work, Mg-1Bi and Mg-1Sn extruded alloys are prepared, and the effects of cost-effective Bi and Sn on the corrosion behavior of Mg [...] Read more.
Improving the corrosion resistance of magnesium (Mg) alloys is a long-term challenge, especially when cost-effectiveness is taken into account. In this work, Mg-1Bi and Mg-1Sn extruded alloys are prepared, and the effects of cost-effective Bi and Sn on the corrosion behavior of Mg alloys are comparatively studied. The corrosion resistance of the Mg-1Sn alloy (PH: 2.83 ± 0.19 mm y−1) is better than that of the Mg-1Bi alloy (PH: 13.75 ± 1.12 mm y−1), being about five times greater. In addition to the relatively low dislocation density in Mg-1Sn alloy, the difference in corrosion resistance is mainly attributed to two aspects of influence brought about by the addition of Sn and Bi. The Mg2Sn phase introduced by the addition of Sn has a potential difference (PD) of ~30 mV, which is significantly lower than that (~90 mV) of the Mg3Bi2 phase introduced by adding Bi, thereby weakening the micro-couple corrosion tendency of the Mg-1Sn alloy. The addition of Bi has little effect on the corrosion film, while the addition of Sn makes the corrosion film on the Mg-1Sn alloy contain SnO2, improving the compactness of the corrosion film and thereby enhancing the corrosion protection effect. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Graphical abstract

11 pages, 1745 KiB  
Article
Comprehensive Investigation of Structural and Photocatalytic Properties of Cobalt and Nickel Co-Doped Magnesium Oxide Nanoparticles
by Shafaq Arif, Amna Sarwar and M. S. Anwar
Condens. Matter 2025, 10(3), 41; https://doi.org/10.3390/condmat10030041 - 4 Aug 2025
Viewed by 146
Abstract
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. [...] Read more.
Cobalt and Nickel (Co, Ni) co-doped magnesium oxide (MgO) nanoparticles (NPs) have been synthesized using the coprecipitation method. The structural, chemical, and optical properties of the as-synthesized NPs are systematically investigated using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and UV-visible spectroscopy. It is found that the optical bandgap of co-doped MgO NPs reduces from 2.30 to 1.98 eV (14%) with increasing Ni dopant concentrations up to 7%. The Co0.05Ni0.07Mg0.88O NPs exhibit a high photocatalytic degradation efficiency of 93% for methylene blue dye (MB) under natural sunlight irradiation for 240 min. Our findings indicate that the Co0.05NixMg0.95−xO NPs have strong potential for use as photocatalysts in industrial wastewater treatment. Full article
Show Figures

Figure 1

22 pages, 5293 KiB  
Article
Membrane Distillation for Water Desalination: Assessing the Influence of Operating Conditions on the Performance of Serial and Parallel Connection Configurations
by Lebea N. Nthunya and Bhekie B. Mamba
Membranes 2025, 15(8), 235; https://doi.org/10.3390/membranes15080235 - 4 Aug 2025
Viewed by 329
Abstract
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre [...] Read more.
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre membrane modules connected in parallel and series in direct contact membrane distillation (DCMD) for the first time. The configurations were evaluated under varying process parameters such as temperature (50–70 °C), flow rates (22.1–32.3 mL·s−1), magnesium concentration as scalant (1.0–4.0 g·L−1), and flow direction (co-current and counter-current), assessing their influence on temperature gradients (∆T), flux and pH stability, salt rejection, and crystallisation. Interestingly, the parallel module configuration maintained high operational stability with uniform flux and temperature differences (∆T) even at high recovery factors (>75%). On one hand, the serial configuration experienced fluctuating ∆T caused by thermal and concentration polarisation, causing an early crystallisation (abrupt drop in feed conductivity). Intensified polarisation effects with accelerated crystallisation increased the membrane risk of wetting, particularly at high recovery factors. Despite these changes, the salt rejection remained relatively high (99.9%) for both configurations across all tested conditions. The findings revealed that acidification trends caused by MgSO4 were configuration-dependent, where the parallel setup-controlled rate of pH collapse. This study presented a novel framework connecting membrane module architecture to mass and heat transfer phenomena, providing a transformative DCMD module configuration design in water desalination. These findings not only provide the critical knowledge gaps in DCMD module configurations but also inform optimisation of MD water desalination to achieve high recovery and stable operation conditions under realistic brine composition. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

12 pages, 2848 KiB  
Article
Microstructure and Properties of Dissoluble LA141-0.5Cu Magnesium Alloy Wires Applied to Oil and Gas Resource Exploitation
by Qiang Sun, Jianjun Xue, Yang Shi, Dingwei Weng, Shaolin Zhang, Ran Wei, Zheng Tong and Jie Qian
Metals 2025, 15(8), 860; https://doi.org/10.3390/met15080860 - 31 Jul 2025
Viewed by 176
Abstract
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu [...] Read more.
Mg-Li-based dissoluble metal is a promising material for preparing dissoluble magnesium alloy wires. However, there are few reports on the development of Mg-Li dissoluble magnesium alloy wires so far. In this paper, the mechanical properties and dissoluble properties of as-drawn and annealed LA141-0.5Cu wires were investigated in detail. It was found that the tensile strength of the LA141-0.5Cu wires decreased from 160 MPa to 127 MPa and the elongation increased from 17% to 22% after annealing. The difference in corrosion rates (93 °C/3% KCl solution) between the as-drawn wires and annealed wires is not significant, with values of 5.1 mg·cm−2·h−1 and 4.5 mg·cm−2·h−1, respectively. This can be explained as follows: after annealing, the number of dislocations in the wire decreases, the strength decreases, and the plasticity increases. The reason why the wires have a significant corrosion rate is that there is a large potential difference between the Cu-containing second phase and the magnesium matrix, which forms galvanic corrosion. The decrease in dislocation density after annealing leads to a slight reduction in the corrosion rate of the wires. This work provides a qualified material for fabricating temporary blocking knots for the exploitation of unconventional oil and gas resources. Full article
Show Figures

Figure 1

22 pages, 3461 KiB  
Article
Evaluation of the Impact of the LPBF Manufacturing Conditions on Microstructure and Corrosion Behaviour in 3.5 wt.% NaCl of the WE43 Magnesium Alloy
by Jorge de la Pezuela, Sara Sánchez-Gil, Juan Pablo Fernández-Hernán, Alena Michalcova, Pilar Rodrigo, Maria Dolores López, Belén Torres and Joaquín Rams
Materials 2025, 18(15), 3613; https://doi.org/10.3390/ma18153613 - 31 Jul 2025
Viewed by 155
Abstract
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density [...] Read more.
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density of 99.9% was achieved for 300 W and 800 mm/s, showing that the use of high laser power is not a limitation for the manufacturing of Mg alloys, as has been usually considered. Microstructural characterisation revealed refined grains and the presence of RE-rich intermetallic particles, while microhardness increased with height due to thermal gradients. Electrochemical testing in 3.5 wt.% NaCl solution, a more aggressive media than those already used, indicated that the corrosion of samples with density values below 99% is conditioned by the porosity; however, above this value, in the WE43, the corrosion evolution is more related to the microstructure of the samples, according to electrochemical evaluation. This study demonstrates the viability of high-energy LPBF processing for WE43, offering optimised mechanical and corrosion properties for biomedical and structural applications. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

11 pages, 219 KiB  
Article
Altitude-Linked Distribution Patterns of Serum and Hair Mineral Elements in Healthy Yak Calves from Ganzi Prefecture
by Chenglong Xia, Yao Pan, Jianping Wu, Dengzhu Luorong, Qingting Yu, Zhicai Zuo, Yue Xie, Xiaoping Ma, Lan Lan and Hongrui Guo
Vet. Sci. 2025, 12(8), 718; https://doi.org/10.3390/vetsci12080718 - 31 Jul 2025
Viewed by 173
Abstract
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five [...] Read more.
Mineral imbalances in livestock can critically impair growth, immunity, and productivity. Yaks inhabiting the Qinghai–Tibetan Plateau face unique environmental challenges, including high-altitude-induced nutrient variability. This study investigated the status of mineral elements and their correlations with altitude in healthy yak calves across five regions in Ganzi Prefecture, located at elevations ranging from 3100 to 4100 m. Hair and serum samples from 35 calves were analyzed for 11 essential elements (Na, K, Ca, Mg, S, Cu, Fe, Mn, Zn, Co, and Se). The results revealed widespread deficiencies. Key deficiencies were identified: hair Na and Co were significantly below references value (p < 0.05), and Se was consistently deficient across all regions, with deficiency rates ranging from 35.73% to 56.57%. Serum Mg and Cu were generally deficient (Mg deficiency > 26% above 3800 m). S, Mn (low detection), and Co were also suboptimal. Serum selenium deficiency was notably severe in lower-altitude areas (≤59.07%). Significant correlations with altitude were observed: hair sodium levels decreased with increasing altitude (r = −0.72), while hair manganese (r = 0.88) and cobalt (r = 0.65) levels increased. Serum magnesium deficiency became more pronounced at higher elevations (r = 0.58), whereas selenium deficiency in serum was more severe at lower altitudes (r = −0.61). These findings indicate prevalent multi-element deficiencies in yak calves that are closely linked to altitude and are potentially influenced by soil mineral composition and feeding practices, as suggested by previous studies. The study underscores the urgent need for region-specific nutritional standards and altitude-adapted mineral supplementation strategies to support optimal yak health and development. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
13 pages, 4261 KiB  
Article
Research on Comparative Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy in South China Sea
by Tianlong Zhang, Shuai Wu, Hao Liu, Lihui Yang, Tianxing Chen, Xiutong Wang and Yantao Li
Materials 2025, 18(15), 3585; https://doi.org/10.3390/ma18153585 - 30 Jul 2025
Viewed by 185
Abstract
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl [...] Read more.
In this study, the atmospheric corrosion behavior of AZ31 magnesium alloy exposed in Sanya and Nansha for one year was investigated. While existing studies have characterized marine corrosion of magnesium alloys, the synergistic corrosion mechanisms under extreme tropical marine conditions (simultaneous high Cl, rainfall, and temperature fluctuations) remain poorly understood—particularly regarding dynamic corrosion–product evolution. The corrosion characteristics and behavior of AZ31 magnesium alloy exposed in Sanya and Nansha were evaluated using X-ray photoelectron spectroscopy, X-ray diffraction, electrochemical measurements, scanning electron microscopy, and weight loss tests. The results showed that the main components of corrosion products were MgCO3·xH2O(x = 3, 5), Mg5(CO3)4(OH)2·4H2O, Mg2Cl(OH)3·4H2O, and Mg(OH)2. The corrosion rate exposed in the Nansha was 26.5 μm·y−1, which was almost two times than that in Sanya. Localized corrosion is the typical corrosion characteristic of AZ31 magnesium alloy in this tropical marine atmosphere. This study exposes the dynamic crack–regeneration mechanism of corrosion products under high-Cl-rainfall synergy. The corrosion types of AZ31 magnesium alloy in this tropical marine atmosphere were mainly represented by pitting corrosion and filamentous corrosion. Full article
(This article belongs to the Special Issue Future Trend of Marine Corrosion and Protection)
Show Figures

Figure 1

19 pages, 4287 KiB  
Article
Tailoring Microstructure via Rolling to Achieve Concurrent High Strength and Thermal Conductivity in Mg-Zn-Nd-Zr Alloys
by Hailong Shi, Xiaohuan Zhang, Xin Li, Yining Zhang, Siqi Li, You Wang, Xiaojun Wang, Xiaoshi Hu, Xuejian Li, Chao Xu, Weimin Gan and Chao Ding
Materials 2025, 18(15), 3578; https://doi.org/10.3390/ma18153578 - 30 Jul 2025
Viewed by 170
Abstract
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results [...] Read more.
This study examined the comprehensive properties of Mg-Zn-Nd-Zr alloys in order to achieve both high strength and thermal conductivity simultaneously. The impact of rolling on the microstructure, mechanical properties, and thermal conductivity was analyzed for Mg-5Zn-xNd-0.4Zr alloys (x = 1, 2). The results indicate that the addition of Nd promotes the formation of the W phase (Mg3Zn3RE2), which contributes to grain boundary strengthening and enhances the overall strength. Moreover, dynamic precipitation during the rolling process leads to the formation of nanoscale MgZn2 and Zn2Zr phases, significantly improving both the strength and thermal conductivity. After rolling, both the Mg-5Zn-1Nd-0.4Zr (ZNK510) and Mg-5Zn-2Nd-0.4Zr (ZNK520) alloys exhibited a notable enhancement in thermal conductivity, with ZNK520 demonstrating superior properties due to its higher Nd content. This study highlights that optimizing alloy composition and phase evolution through rolling can markedly enhance both the mechanical and thermal properties, offering a promising strategy for the development of high-performance magnesium alloys. Full article
Show Figures

Figure 1

24 pages, 6760 KiB  
Article
Influence of Microstructure and Heat Treatment on the Corrosion Resistance of Mg-1Zn Alloy Produced by Laser Powder Bed Fusion
by Raúl Reyes-Riverol, Ángel Triviño-Peláez, Federico García-Galván, Marcela Lieblich, José Antonio Jiménez and Santiago Fajardo
Metals 2025, 15(8), 853; https://doi.org/10.3390/met15080853 - 30 Jul 2025
Viewed by 289
Abstract
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD [...] Read more.
The corrosion behavior of an additively manufactured Mg-1Zn alloy was investigated in both the transverse and longitudinal directions relative to the build direction, in the as-built condition and after annealing at 350 °C for 24 h under high vacuum. Microstructural characterization using XRD and SEM revealed the presence of magnesium oxide (MgO) and the absence of intermetallic second-phase particles. Optical microscopy (OM) images and Electron Backscatter Diffraction (EBSD) maps showed a highly complex grain morphology with anomalous, anisotropic shapes and a heterogeneous grain size distribution. The microstructure includes grains with a pronounced columnar morphology aligned along the build direction and is therefore characterized by a strong crystallographic texture. Electrochemical techniques, including PDP and EIS, along with gravimetric H2 collection, concluded that the transverse plane exhibited greater corrosion resistance compared to the longitudinal plane. Additionally, an increase in cathodic kinetics was observed when comparing as-built with heat-treated samples. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

15 pages, 288 KiB  
Article
Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers
by Anissa Melo Souza, Ingrid Wilza Leal Bezerra, Karina Gomes Torres, Gabriela Santana Pereira, Raiane Medeiros Costa and Antonio Gouveia Oliveira
Nutrients 2025, 17(15), 2483; https://doi.org/10.3390/nu17152483 - 29 Jul 2025
Viewed by 249
Abstract
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its [...] Read more.
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its associations with micronutrient intake and diet quality. Methods: An observational cross-sectional survey was conducted in a representative sample of manufacturing workers through a combined stratified proportional and two-stage probability sampling plan, with strata defined by company size and industrial sector from the state of Rio Grande do Norte, Brazil. Dietary intake was assessed using 24 h recalls via the Multiple Pass Method, with Na:K ratios calculated from quantified food composition data. Diet quality was assessed with the Diet Quality Index-International (DQI-I). Multiple linear regression was used to analyze associations of Na:K ratio with the study variables. Results: The survey was conducted in the state of Rio Grande do Norte, Brazil, in 921 randomly selected manufacturing workers. The sample mean age was 38.2 ± 10.7 years, 55.9% males, mean BMI 27.2 ± 4.80 kg/m2. The mean Na:K ratio was 1.97 ± 0.86, with only 0.54% of participants meeting the WHO recommended target (<0.57). Fast food (+3.29 mg/mg per serving, p < 0.001), rice, bread, and red meat significantly increased the ratio, while fruits (−0.16 mg/mg), dairy, white meat, and coffee were protective. Higher Na:K ratios were associated with lower intake of calcium, magnesium, phosphorus, and vitamins C, D, and E, as well as poorer diet quality (DQI-I score: −0.026 per 1 mg/mg increase, p < 0.001). Conclusions: These findings highlight the critical role of processed foods in elevating Na:K ratios and the potential for dietary modifications to improve both electrolyte balance and micronutrient adequacy in industrial workers. The study underscores the need for workplace interventions that simultaneously address sodium reduction, potassium enhancement, and overall diet quality improvement tailored to socioeconomic and cultural contexts, a triple approach not previously tested in intervention studies. Future studies should further investigate nutritional consequences of imbalanced Na:K intake. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease)
15 pages, 1374 KiB  
Article
Nutrient Recovery from Dairy Processing Wastewater Using Biochar
by Toby Shapiro Ellis, Md Sydur Rahman, Michael Ingram, Shane McIntosh and Dirk Erler
Water 2025, 17(15), 2250; https://doi.org/10.3390/w17152250 - 28 Jul 2025
Viewed by 171
Abstract
In this study, we examined the capacity of magnesium-amended biochar to recover nutrients from dairy processing wastewater (DPW). Our results suggest that biochar engineered with magnesium (Mg–BC) was successful at recovering over 3 mg of PO43−-P per gram of biochar [...] Read more.
In this study, we examined the capacity of magnesium-amended biochar to recover nutrients from dairy processing wastewater (DPW). Our results suggest that biochar engineered with magnesium (Mg–BC) was successful at recovering over 3 mg of PO43−-P per gram of biochar (96%) in synthetic and raw DPW through a combination of adsorption and chemical precipitation. The addition of Mg–BC to increase the pH of the synthetic and raw DPW was likely important in promoting chemical precipitation and increased nutrient recovery. The Mg-dosed biochar also recovered 1.7 mg of NH4+-N per gram of biochar (24%) from raw DPW. However, the raw biochar (R-BC) was only capable of recovering a maximum of 0.5 mg of PO43−-P and an insignificant amount (˂0.1 mg) of NH4+-N per gram of biochar. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

18 pages, 2342 KiB  
Article
Accelerated Hydrolytic Degradation of PLA/Magnesium Composite Films: Material Properties and Stem Cell Interaction
by Valentina Fabi, Maria Luisa Valicenti, Franco Dominici, Francesco Morena, Luigi Torre, Sabata Martino and Ilaria Armentano
Polymers 2025, 17(15), 2052; https://doi.org/10.3390/polym17152052 - 27 Jul 2025
Viewed by 368
Abstract
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 [...] Read more.
The accelerated hydrolytic degradation of poly(L-lactide) (PLA)/magnesium (Mg) composite films was investigated to elucidate the influence of surface modification of Mg particles on the degradation behavior and characteristics of PLA composites. Accelerated degradation studies were conducted at 60 °C in a pH 7.4 phosphate-buffered solution over 7 weeks, with degradation monitored using several techniques: mass loss, water absorption, thermal analysis, and Raman spectroscopy. The results indicated that all composite films experienced more than 90% mass loss at the end of experiment; however, PLA/5MgTT and PLA/5MgPEI exhibited the highest resistance to degradation, likely due to the protective effect of the surface modification induced by thermal treatment and polyethylenimine (PEI). Notably, these characteristics did not compromise the biocompatibility or osteogenic potential of the films, which remained comparable to the control samples when tested on human bone marrow multipotent mesenchymal/stromal cells. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

Back to TopTop