Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (115)

Search Parameters:
Keywords = macromolecular drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1220 KiB  
Article
Viscoelastic Response of Double Hydrophilic Block Copolymers for Drug Delivery Applications
by Achilleas Pipertzis, Angeliki Chroni, Stergios Pispas and Jan Swenson
Polymers 2025, 17(13), 1857; https://doi.org/10.3390/polym17131857 - 2 Jul 2025
Viewed by 350
Abstract
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are [...] Read more.
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are governed by the interfacial glass transition temperature (Tginter), verifying the disordered state of these copolymers. An increase in zero shear viscosity can be observed by increasing the VBTMAC content, yielding a transition from liquid-like to gel-like and finally to an elastic-like response for the PVBTMAC homopolymer. By changing the block arrangement along the backbone from statistical to sequential, a distinct change in the viscoelastic response is obvious, indicating the presence/absence of bulk-like regions. The tunable viscosity values and shear-thinning behavior achieved through alteration of the copolymer composition and block arrangement along the backbone render the studied DHBCs promising candidates for drug delivery applications. In the second part, the rheological data are analyzed within the framework of the classical free volume theories of glass formation. Specifically, the copolymers exhibit reduced fractional free volume and similar fragility values compared to the PVBTMAC homopolymer. On the contrary, the activation energy increases by increasing the VBTMAC content, reflecting the required higher energy for the relaxation of the glassy VBTMAC segments. Overall, this study provides information about the viscoelastic properties of DHBCs with densely grafted macromolecular architecture and shows how the mechanical and dynamical properties can be tailored for different drug delivery applications by simply altering the ratio between the two homopolymers. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

30 pages, 3428 KiB  
Review
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery
by Alharith A. A. Hassan, Eslam Ramadan, Katalin Kristó, Géza Regdon and Tamás Sovány
Pharmaceutics 2025, 17(6), 797; https://doi.org/10.3390/pharmaceutics17060797 - 19 Jun 2025
Viewed by 1487
Abstract
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome [...] Read more.
The efficient oral delivery of therapeutic proteins and peptides poses a tremendous challenge due to their inherent instability, large molecular size, and susceptibility to enzymatic degradation. Several nanocarrier systems, such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles, have been explored to overcome these problems. Liposomes and other lipid-based nanocarriers show excellent biocompatibility and the ability to encapsulate hydrophobic and hydrophilic drugs; however, they often suffer from poor structural stability, premature leakage of the loaded drugs, and poor encapsulation efficiency for macromolecular peptides and proteins. On the other hand, polymeric nanoparticles are more stable and allow better control over drug release; nevertheless, they usually lack the necessary biocompatibility and cellular uptake efficiency. Recently, lipid-polymer hybrid nanoparticles (LPHNs) have emerged as an advanced solution combining the structural stability of polymers and the biocompatibility and surface functionalities of lipids to enhance the controlled release, stability, and bioavailability of protein and peptide drugs. In this review, an attempt was made to set a clear definition of the LPHNs and extend the concept and area, so to our knowledge, this is the first review that highlights six categories of the LPHNs based on their anatomy. Moreover, this review offers a detailed analysis of LPHN preparation methods, including conventional and nonconventional one-step and two-step processes, nanoprecipitation, microfluidic mixing, and emulsification methods. Moreover, the material attributes and critical process parameters affecting the output of the preparation methods were illustrated with supporting examples to enable researchers to select the suitable preparation method, excipients, and parameters to be manipulated to get the LPHNs with the predetermined quality. The number of reviews focusing on the formulation of peptide/protein pharmaceutics usually focus on a specific drug like insulin. To our knowledge, this is the first review that generally discusses LPHN-based delivery of biopharmaceuticals. by discussing representative examples of previous reports comparing them to a variety of nanocarrier systems to show the potentiality of the LPHNs to deliver peptides and proteins. Moreover, some ideas and suggestions were proposed by the authors to tackle some of the shortcomings highlighted in these studies. By presenting this comprehensive overview of LPHN preparation strategies and critically analyzing literature studies on this topic and pointing out their strong and weak points, this review has shown the gaps and enlightened avenues for future research. Full article
Show Figures

Graphical abstract

21 pages, 9638 KiB  
Article
Development of GSH-Stimuli-Responsive Micelles Using a Targeted Paclitaxel Prodrug for Enhanced Anticancer Effect
by Qian Ning, Guangping Yu, Wenkai Yi, Minhui Gu, Qianqian Xu, Zhiting Ye, Mengxia Zhang and Shengsong Tang
Pharmaceutics 2025, 17(4), 538; https://doi.org/10.3390/pharmaceutics17040538 - 21 Apr 2025
Viewed by 560
Abstract
Background: Cancer ranks as a leading cause of death worldwide. It is urgent to develop intelligent co-delivery systems for cancer chemotherapy to achieve reduced side-effects and enhanced therapeutic efficacy. Methods: We chose oligo-hyaluronic acid (oHA, a low molecular weight of HA) as the [...] Read more.
Background: Cancer ranks as a leading cause of death worldwide. It is urgent to develop intelligent co-delivery systems for cancer chemotherapy to achieve reduced side-effects and enhanced therapeutic efficacy. Methods: We chose oligo-hyaluronic acid (oHA, a low molecular weight of HA) as the carrier, and adriamycin (ADM) and paclitaxel (PTX) as the co-delivered drugs. The oHA-ss-PTX macromolecular prodrug was synthesized by introducing glutathione-stimuli-responsive disulfide bonds through chemical reactions. Then, we constructed ADM-loading micelles (ADM/oHA-ss-PTX) in one step by microfluidic preparation. The delivery efficacy was evaluated comprehensively in vitro and in vivo. The biocompatibility of ADM/oHA-ss-PTX was assessed by hemolysis activity analysis, BSA adsorption testing, and cell viability assay in endothelial cells. Results: The resulting ADM/oHA-ss-PTX micelles possessed a dynamic size (127 ± 1.4 nm, zeta potential −9.0 mV), a high drug loading content of approximately 21.2% (PTX) and 7.6% (ADM). Compared with free ADM+PTX, ADM/oHA-ss-PTX showed enhanced blood stability and more efficiently inhibited cancer cell proliferation. Moreover, due to the CD44-mediated endocytosis pathway, a greater number of ADM/oHA-ss-PTX micelles were absorbed by A549 cells than by oHA-saturated A549 cells. In vivo experiments also showed that ADM/oHA-ss-PTX micelles had excellent therapeutic effects and targeting ability. These results show that ADM/oHA-ss-PTX micelles were a promising platform for co-delivery sequential therapy in CD44-positive cancer. Conclusions: In conclusion, these results convincingly demonstrate that ADM/oHA-ss-PTX micelles hold great promise as a novel platform for co-delivering multiple drugs. Their enhanced properties not only validate the potential of this approach for sequential cancer therapy in CD44-positive cancers but also pave the way for future clinical translation and further optimization in cancer treatment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

37 pages, 3074 KiB  
Review
Novel Small-Molecule Treatment and Emerging Biological Therapy for Psoriasis
by Yuanyuan Li, Yiheng Cheng, Yuchen Cai, Zhenduo Duan, Hong Xu, Yunan Huang, Xiaonan Ma, Xiaofei Xin and Lifang Yin
Biomedicines 2025, 13(4), 781; https://doi.org/10.3390/biomedicines13040781 - 23 Mar 2025
Viewed by 2488
Abstract
Psoriasis is an immune-related disorder that is marked by abnormal thickening of the skin, the rapid multiplication of keratinocytes, and complex interactions between immune cells and the affected areas. Although psoriasis cannot currently be cured, drugs can alleviate symptoms by regulating immune homeostasis [...] Read more.
Psoriasis is an immune-related disorder that is marked by abnormal thickening of the skin, the rapid multiplication of keratinocytes, and complex interactions between immune cells and the affected areas. Although psoriasis cannot currently be cured, drugs can alleviate symptoms by regulating immune homeostasis and preventing comorbidities. There are many types of drugs to treat psoriasis: small-molecule drugs, including corticosteroids; retinoids; vitamin D analogs; and immunosuppressants, such as glucocorticoid ointment, tretinoin cream, methotrexate tablets, etc. Macromolecular biological drugs, such as Certolizumab, Secukinumab, Guselkumab, etc., include monoclonal antibodies that target various inflammatory signaling pathways. Compared with traditional small-molecule drugs, biological therapies offer better targeting and lower systemic side effects, but their high costs and invasive administration modes constrict their widespread use. Spesolimab is the latest biological agent used to target the interleukin-36 receptor (IL-36R) to be approved for market use, which significantly reduces the risk of general pustular psoriasis (GPP) flare by 84%. Additionally, there are several biological agents used to target the interleukin-23/T helper 17 cell pathway that have already entered Phase II and III clinical trials. At present, the first-line therapeutic strategy for mild psoriasis is topical administration. Systemic therapy and phototherapy are preferred for treating moderate to severe types. However, the current therapeutic drugs for psoriasis cannot completely meet the clinical needs. More advanced drug delivery systems with optimized target effects and better bioavailability are required. Nanocarriers are emerging for the delivery of proteins, nucleic acids, and cell-based therapies. In this review, we analyze the current status of psoriasis therapeutics and discuss novel delivery systems for diverse psoriasis drugs, as well as emerging cell-based therapies. We also summarize the therapeutic effectiveness of different delivery strategies. Full article
Show Figures

Graphical abstract

26 pages, 727 KiB  
Review
Targeting Brain Drug Delivery with Macromolecules Through Receptor-Mediated Transcytosis
by Yuanke Li, Ruiying Liu and Zhen Zhao
Pharmaceutics 2025, 17(1), 109; https://doi.org/10.3390/pharmaceutics17010109 - 15 Jan 2025
Cited by 5 | Viewed by 2972
Abstract
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood–brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with [...] Read more.
Brain diseases pose significant treatment challenges due to the restrictive nature of the blood–brain barrier (BBB). Recent advances in targeting macromolecules offer promising avenues for overcoming these obstacles through receptor-mediated transcytosis (RMT). We summarize the current progress in targeting brain drug delivery with macromolecules for brain diseases. This exploration details the transport mechanisms across the BBB, focusing on RMT and its use of natural ligands for drug delivery. Furthermore, the review examines macromolecular ligands such as antibodies, peptides, and aptamers that leverage RMT for effective BBB traversal. Advancements in macromolecules-based delivery systems for brain diseases are summarized, emphasizing their therapeutic potential and limitations. Finally, emerging RMT strategies, including viral vectors, exosomes, and boron neutron capture therapy, are discussed for their precision in brain-targeted treatments. This comprehensive overview underscores the potential of RMT-based approaches to revolutionize brain disease therapy. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
N-Oxalylglycine-Conjugated Hyaluronic Acid as a Macromolecular Prodrug for Therapeutic Angiogenesis
by Andrew H. DeMaria, Jeoung Soo Lee and Ken Webb
Gels 2025, 11(1), 27; https://doi.org/10.3390/gels11010027 - 2 Jan 2025
Cited by 1 | Viewed by 819
Abstract
Hypoxia-inducible factor-1α (HIF-1α) initiates the cellular response to low oxygen levels, making it an attractive target for stimulating therapeutic angiogenesis. Several small molecules have been identified that stabilize HIF-1α and activate the angiogenic signaling pathway. However, achieving therapeutic doses of bioactive small molecules [...] Read more.
Hypoxia-inducible factor-1α (HIF-1α) initiates the cellular response to low oxygen levels, making it an attractive target for stimulating therapeutic angiogenesis. Several small molecules have been identified that stabilize HIF-1α and activate the angiogenic signaling pathway. However, achieving therapeutic doses of bioactive small molecules in target tissues remains challenging. In this paper, we report the synthesis and characterization of a new macromolecular prodrug composed of the pro-angiogenic small molecule N-oxalylglycine conjugated to hyaluronic acid (HA-NOG). NOG was conjugated to HA by esterification, and release was significantly increased in the presence of degradative enzymes, esterase and hyaluronidase, compared to physiological buffer, confirming that the release of NOG is primarily enzymatically driven. Normal human dermal fibroblasts (NHDFs) cultured with HA-NOG exhibited HIF-1α accumulation in the cell nucleus and dose-dependent increases in mRNA expression levels of three direct HIF transcriptional targets. Conditioned medium from these cells stimulated endothelial cell tubulogenesis. As an initial evaluation of safety and possible side effects, HA-NOG was found not to significantly affect NHDF metabolic activity, proliferation, or collagen deposition. These studies demonstrate that HA-NOG releases NOG in response to cellular enzymatic activity, activating the HIF signaling pathway and culminating in the secretion of soluble factors that activate endothelial cells without adversely affecting other cellular metabolic pathways. Full article
(This article belongs to the Special Issue Functional Gels Applied in Tissue Engineering)
Show Figures

Graphical abstract

13 pages, 3932 KiB  
Article
Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles
by Tomasz Urbaniak, Yauheni Milasheuski and Witold Musiał
Int. J. Mol. Sci. 2024, 25(23), 12921; https://doi.org/10.3390/ijms252312921 - 1 Dec 2024
Cited by 1 | Viewed by 1109
Abstract
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was [...] Read more.
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism. The LV-PCL particles were subsequently coated using the layer-by-layer (LbL) technique, with polyelectrolyte multilayers assembled to potentially modify the carrier’s properties. The LbL assembly process was comprehensively analyzed, including assessments of shell thickness, changes in ζ-potential, and thermodynamic properties, to provide insights into the multilayer structure and interactions. The sustained LV release over 7 weeks was observed, following zero-order kinetics (R2 > 0.99), indicating a controlled and predictable release mechanism. Carriers coated with polyethylene imine/heparin and chitosan/heparin tetralayers exhibited a distinct increase in the release rate after 6 weeks and 10 weeks, respectively, suggesting that this coating can facilitate the autocatalytic degradation of the polyester microparticles. These findings indicate the potential of this system for long-term, localized drug delivery applications, requiring sustained release with minimal burst effects. Full article
Show Figures

Figure 1

14 pages, 2267 KiB  
Review
The Potential Role of Plant Polysaccharides in Treatment of Ulcerative Colitis
by Yilizilan Dilixiati, Adila Aipire, Ming Song, Dilaram Nijat, Abudukahaer Wubuli, Qi Cao and Jinyao Li
Pharmaceutics 2024, 16(8), 1073; https://doi.org/10.3390/pharmaceutics16081073 - 16 Aug 2024
Cited by 8 | Viewed by 2250
Abstract
Ulcerative colitis (UC) results in inflammation and ulceration of the colon and the rectum’s inner lining. The application of herbal therapy in UC is increasing worldwide. As natural macromolecular compounds, polysaccharides have a significant role in the treatment of UC due to advantages [...] Read more.
Ulcerative colitis (UC) results in inflammation and ulceration of the colon and the rectum’s inner lining. The application of herbal therapy in UC is increasing worldwide. As natural macromolecular compounds, polysaccharides have a significant role in the treatment of UC due to advantages of better biodegradation, good biocompatibility, immunomodulatory activity, and low reactogenicity. Therefore, polysaccharide drug formulation is becoming a potential candidate for UC treatment. In this review, we summarize the etiology and pathogenesis of UC and the therapeutic effects of polysaccharides on UC, such as regulating the expression of cytokines and tight junction proteins and modulating the balance of immune cells and intestinal microbiota. Polysaccharides can also serve as drug delivery carriers to enhance drug targeting and reduce side effects. This review provides a theoretical basis for applying natural plant polysaccharides in the prevention and treatment of UC. Full article
Show Figures

Figure 1

16 pages, 4696 KiB  
Review
Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy
by Xinyi Yan and Qi Chen
Polymers 2024, 16(14), 2022; https://doi.org/10.3390/polym16142022 - 15 Jul 2024
Cited by 7 | Viewed by 2670
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for [...] Read more.
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain’s natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles. Full article
Show Figures

Figure 1

16 pages, 4697 KiB  
Article
Ionic Liquid-Based Immunization Patch for the Transdermal Delivery of Antigens
by Rashedul Islam, Fahmida Habib Nabila, Rie Wakabayashi, Yoshirou Kawaguchi, Noriho Kamiya, Muhammad Moniruzzaman and Masahiro Goto
Molecules 2024, 29(13), 2995; https://doi.org/10.3390/molecules29132995 - 24 Jun 2024
Cited by 4 | Viewed by 2258
Abstract
Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, [...] Read more.
Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

27 pages, 1154 KiB  
Review
Vesicular Drug Delivery Systems: Promising Approaches in Ocular Drug Delivery
by Eslim Batur, Samet Özdemir, Meltem Ezgi Durgun and Yıldız Özsoy
Pharmaceuticals 2024, 17(4), 511; https://doi.org/10.3390/ph17040511 - 16 Apr 2024
Cited by 18 | Viewed by 5808
Abstract
Ocular drug delivery poses unique challenges due to the complex anatomical and physiological barriers of the eye. Conventional dosage forms often fail to achieve optimal therapeutic outcomes due to poor bioavailability, short retention time, and off-target effects. In recent years, vesicular drug delivery [...] Read more.
Ocular drug delivery poses unique challenges due to the complex anatomical and physiological barriers of the eye. Conventional dosage forms often fail to achieve optimal therapeutic outcomes due to poor bioavailability, short retention time, and off-target effects. In recent years, vesicular drug delivery systems have emerged as promising solutions to address these challenges. Vesicular systems, such as liposome, niosome, ethosome, transfersome, and others (bilosome, transethosome, cubosome, proniosome, chitosome, terpesome, phytosome, discome, and spanlastics), offer several advantages for ocular drug delivery. These include improved drug bioavailability, prolonged retention time on the ocular surface, reduced systemic side effects, and protection of drugs from enzymatic degradation and dilution by tears. Moreover, vesicular formulations can be engineered for targeted delivery to specific ocular tissues or cells, enhancing therapeutic efficacy while minimizing off-target effects. They also enable the encapsulation of a wide range of drug molecules, including hydrophilic, hydrophobic, and macromolecular drugs, and the possibility of combination therapy by facilitating the co-delivery of multiple drugs. This review examines vesicular drug delivery systems, their advantages over conventional drug delivery systems, production techniques, and their applications in management of ocular diseases. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

50 pages, 4315 KiB  
Review
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics
by Bartłomiej Pyrak, Karolina Rogacka-Pyrak, Tomasz Gubica and Łukasz Szeleszczuk
Int. J. Mol. Sci. 2024, 25(6), 3527; https://doi.org/10.3390/ijms25063527 - 20 Mar 2024
Cited by 23 | Viewed by 3258
Abstract
Cyclodextrin-based nanosponges (CDNSs) are complex macromolecular structures composed of individual cyclodextrins (CDs) and nanochannels created between cross-linked CD units and cross-linkers. Due to their unique structural and physicochemical properties, CDNSs can possess even more beneficial pharmaceutical features than single CDs. In this comprehensive [...] Read more.
Cyclodextrin-based nanosponges (CDNSs) are complex macromolecular structures composed of individual cyclodextrins (CDs) and nanochannels created between cross-linked CD units and cross-linkers. Due to their unique structural and physicochemical properties, CDNSs can possess even more beneficial pharmaceutical features than single CDs. In this comprehensive review, various aspects related to CDNSs are summarized. Particular attention was paid to overviewing structural properties, methods of synthesis, and physicochemical analysis of CDNSs using various analytical methods, such as DLS, PXRD, TGA, DSC, FT-IR, NMR, and phase solubility studies. Also, due to the significant role of CDNSs in pharmaceutical research and industry, aspects such as drug loading, drug release studies, and kinetics profile evaluation of drug–CDNS complexes were carefully reviewed. The aim of this paper is to find the relationships between the physicochemical features and to identify crucial characteristics that are influential for using CDNSs as convenient drug delivery systems. Full article
(This article belongs to the Special Issue Cyclodextrin-Based Polymer Systems for Biomedical Applications)
Show Figures

Figure 1

29 pages, 2279 KiB  
Review
Biomaterials in Traumatic Brain Injury: Perspectives and Challenges
by Sarah Aqel, Najlaa Al-Thani, Mohammad Z. Haider, Samar Abdelhady, Asmaa A. Al Thani, Firas Kobeissy and Abdullah A. Shaito
Biology 2024, 13(1), 21; https://doi.org/10.3390/biology13010021 - 29 Dec 2023
Cited by 18 | Viewed by 6100
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates [...] Read more.
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood–brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

19 pages, 4646 KiB  
Article
Exploring the Potential of siRNA Delivery in Acute Myeloid Leukemia for Therapeutic Silencing
by Anyeld M. Ubeda Gutierrez, K. C. Remant Bahadur, Joseph Brandwein and Hasan Uludağ
Nanomaterials 2023, 13(24), 3167; https://doi.org/10.3390/nano13243167 - 18 Dec 2023
Cited by 1 | Viewed by 2049
Abstract
We investigated the feasibility of using siRNA therapy for acute myeloid leukemia (AML) by developing macromolecular carriers that facilitated intracellular delivery of siRNA. The carriers were derived from low-molecular-weight (<2 kDa) polyethyleneimine (PEI) and modified with a range of aliphatic lipids. We identified [...] Read more.
We investigated the feasibility of using siRNA therapy for acute myeloid leukemia (AML) by developing macromolecular carriers that facilitated intracellular delivery of siRNA. The carriers were derived from low-molecular-weight (<2 kDa) polyethyleneimine (PEI) and modified with a range of aliphatic lipids. We identified linoleic acid and lauric acid-modified PEI as optimal carriers for siRNA delivery to AML cell lines KG1 and KG1a, as well as AML patient-derived mononuclear cells. As they have been proven to be potent targets in the treatment of AML, we examined the silencing of BCL2L12 and survivin and showed how it leads to the decrease in proliferation of KG1 and stem-cell-like KG1a cells. By optimizing the transfection schedule, we were able to enhance the effect of the siRNAs on proliferation over a period of 10 days. We additionally showed that with proper modifications of PEI, other genes, including MAP2K3, CDC20, and SOD-1, could be targeted to decrease the proliferation of AML cells. Our studies demonstrated the versatility of siRNA delivery with modified PEI to elicit an effect in leukemic cells that are difficult to transfect, offering an alternative to conventional drugs for more precise and targeted treatment options. Full article
(This article belongs to the Special Issue Nanoparticles in Drug Delivery Applications)
Show Figures

Figure 1

22 pages, 2695 KiB  
Review
Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment
by Chenyu Zhao, Boyue Pan, Tianlin Wang, Huazhe Yang, David Vance, Xiaojia Li, Haiyang Zhao, Xinru Hu, Tianchang Yang, Zihao Chen, Liang Hao, Ting Liu and Yang Wang
Pharmaceutics 2023, 15(12), 2729; https://doi.org/10.3390/pharmaceutics15122729 - 4 Dec 2023
Cited by 14 | Viewed by 2908
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage [...] Read more.
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body. Full article
(This article belongs to the Collection Advanced Pharmaceutical Science and Technology)
Show Figures

Graphical abstract

Back to TopTop