Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = lysine finger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2450 KiB  
Article
Interaction Between PHF8 and a Segment of KDM2A, Which Is Controlled by the Phosphorylation Status at a Specific Serine in an Intrinsically Disordered Region of KDM2A, Regulates rRNA Transcription and Cell Proliferation in a Breast Cancer Cell Line
by Kengo Okamoto, Yutaro Mihara, Sachiko Ogasawara, Takashi Murakami, Sinya Ohmori, Tetsuya Mori, Toshiyuki Umata, Yuki Kawasaki, Kazuya Hirano, Hirohisa Yano and Makoto Tsuneoka
Biomolecules 2025, 15(5), 661; https://doi.org/10.3390/biom15050661 - 2 May 2025
Viewed by 583
Abstract
Mild starvation due to low concentrations of an inhibitor of glycolysis, 2-deoxy-D-glucose, activates AMP-activated protein kinase (AMPK) and lysine-specific demethylase 2A (KDM2A) to reduce rRNA transcription and cell proliferation in breast cancer cells. However, the mechanisms of how AMPK regulates KDM2A are unknown. [...] Read more.
Mild starvation due to low concentrations of an inhibitor of glycolysis, 2-deoxy-D-glucose, activates AMP-activated protein kinase (AMPK) and lysine-specific demethylase 2A (KDM2A) to reduce rRNA transcription and cell proliferation in breast cancer cells. However, the mechanisms of how AMPK regulates KDM2A are unknown. Here, we found that PHD finger protein 8 (PHF8) interacted with KDM2A and contributed to the reduction in rRNA transcription and cell proliferation by 2-deoxy-D-glucose in a breast cancer cell line, MCF-7. We analyzed how KDM2A bound PHF8 in detail and found that PHF8 interacted with KDM2A via two regions of KDM2A. One of the regions contained an intrinsically disordered region (IDR). IDRs can show rapidly switchable protein–protein interactions. Deletion of the PHF8-binding region activated KDM2A to reduce rRNA transcription, and 2-deoxy-D-glucose reduced the interaction between PHF8 and the KDM2A fragment containing the PHF8-binding region. A 2-deoxy-D-glucose or AMPK activator dephosphorylated KDM2A at Ser731, which is located on the N-terminal side of the PHF8-binding region. Replacement of Ser731 by Ala decreased binding of PHF8 to the KDM2A fragment that contains the PHF8-binding region and Ser731 and reduced rRNA transcription and cell proliferation. These results suggest that the mode of interaction between KDM2A and PHF8 is regulated via dephosphorylation of KDM2A through AMPK to control rRNA transcription, and control of the phosphorylation state of Ser731 would be a novel target for breast cancer therapy. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Breast Cancer)
Show Figures

Graphical abstract

15 pages, 1022 KiB  
Review
PHF8/KDM7B: A Versatile Histone Demethylase and Epigenetic Modifier in Nervous System Disease and Cancers
by Tingyu Fan, Jianlian Xie, Guo Huang, Lili Li, Xi Zeng and Qian Tao
Epigenomes 2024, 8(3), 36; https://doi.org/10.3390/epigenomes8030036 - 15 Sep 2024
Cited by 2 | Viewed by 2759
Abstract
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone [...] Read more.
Many human diseases, such as malignant tumors and neurological diseases, have a complex pathophysiological etiology, often accompanied by aberrant epigenetic changes including various histone modifications. Plant homologous domain finger protein 8 (PHF8), also known as lysine-specific demethylase 7B (KDM7B), is a critical histone lysine demethylase (KDM) playing an important role in epigenetic modification. Characterized by the zinc finger plant homology domain (PHD) and the Jumonji C (JmjC) domain, PHF8 preferentially binds to H3K4me3 and erases repressive methyl marks, including H3K9me1/2, H3K27me1, and H4K20me1. PHF8 is indispensable for developmental processes and the loss of PHF8 enzyme activity is linked to neurodevelopmental disorders. Moreover, increasing evidence shows that PHF8 is highly expressed in multiple tumors as an oncogenic factor. These findings indicate that studying the role of PHF8 will facilitate the development of novel therapeutic agents by the manipulation of PHF8 demethylation activity. Herein, we summarize the current knowledge of PHF8 about its structure and demethylation activity and its involvement in development and human diseases, with an emphasis on nervous system disorders and cancer. This review will update our understanding of PHF8 and promote the clinical transformation of its predictive and therapeutic value. Full article
Show Figures

Figure 1

14 pages, 2047 KiB  
Article
Lysine Demethylase KDM2A Promotes Proteasomal Degradation of TCF/LEF Transcription Factors in a Neddylation-Dependent Manner
by Tijana Šopin, František Liška, Tomáš Kučera, Dušan Cmarko and Tomáš Vacík
Cells 2023, 12(22), 2620; https://doi.org/10.3390/cells12222620 - 13 Nov 2023
Cited by 3 | Viewed by 1639
Abstract
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential [...] Read more.
Canonical Wnt signaling is essential for a plethora of biological processes ranging from early embryogenesis to aging. Malfunctions of this crucial signaling pathway are associated with various developmental defects and diseases, including cancer. Although TCF/LEF transcription factors (TCF/LEFs) are known to be essential for this pathway, the regulation of their intracellular levels is not completely understood. Here, we show that the lysine demethylase KDM2A promotes the proteasomal destabilization of TCF/LEFs independently of its demethylase domain. We found that the KDM2A-mediated destabilization of TCF/LEFs is dependent on the KDM2A zinc finger CXXC domain. Furthermore, we identified the C-terminal region of TCF7L2 and the CXXC domain of KDM2A as the domains responsible for the interaction between the two proteins. Our study is also the first to show that endogenous TCF/LEF proteins undergo KDM2A-mediated proteasomal degradation in a neddylation-dependent manner. Here, we reveal a completely new mechanism that affects canonical Wnt signaling by regulating the levels of TCF/LEF transcription factors through their KDM2A-promoted proteasomal degradation. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

17 pages, 6694 KiB  
Article
Revealing Allosteric Mechanism of Amino Acid Binding Proteins from Open to Closed State
by Quanshan Shi, Ling Liu, Huaichuan Duan, Yu Jiang, Wenqin Luo, Guangzhou Sun, Yutong Ge, Li Liang, Wei Liu, Hubing Shi and Jianping Hu
Molecules 2023, 28(20), 7139; https://doi.org/10.3390/molecules28207139 - 17 Oct 2023
Cited by 1 | Viewed by 2672
Abstract
Amino acid binding proteins (AABPs) undergo significant conformational closure in the periplasmic space of Gram-negative bacteria, tightly binding specific amino acid substrates and then initiating transmembrane transport of nutrients. Nevertheless, the possible closure mechanisms after substrate binding, especially long-range signaling, remain unknown. Taking [...] Read more.
Amino acid binding proteins (AABPs) undergo significant conformational closure in the periplasmic space of Gram-negative bacteria, tightly binding specific amino acid substrates and then initiating transmembrane transport of nutrients. Nevertheless, the possible closure mechanisms after substrate binding, especially long-range signaling, remain unknown. Taking three typical AABPs—glutamine binding protein (GlnBP), histidine binding protein (HisJ) and lysine/arginine/ornithine binding protein (LAOBP) in Escherichia coli (E. coli)—as research subjects, a series of theoretical studies including sequence alignment, Gaussian network model (GNM), anisotropic network model (ANM), conventional molecular dynamics (cMD) and neural relational inference molecular dynamics (NRI-MD) simulations were carried out. Sequence alignment showed that GlnBP, HisJ and LAOBP have high structural similarity. According to the results of the GNM and ANM, AABPs’ Index Finger and Thumb domains exhibit closed motion tendencies that contribute to substrate capture and stable binding. Based on cMD trajectories, the Index Finger domain, especially the I-Loop region, exhibits high molecular flexibility, with residues 11 and 117 both being potentially key residues for receptor–ligand recognition and initiation of receptor allostery. Finally, the signaling pathway of AABPs’ conformational closure was revealed by NRI-MD training and trajectory reconstruction. This work not only provides a complete picture of AABPs’ recognition mechanism and possible conformational closure, but also aids subsequent structure-based design of small-molecule oncology drugs. Full article
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator
by Lu Gao, Zihan Zhang, Xiaoman Zheng, Fan Wang, Yi Deng, Qian Zhang, Guoyan Wang, Yong Zhang and Xu Liu
Int. J. Mol. Sci. 2023, 24(14), 11377; https://doi.org/10.3390/ijms241411377 - 12 Jul 2023
Cited by 7 | Viewed by 2981
Abstract
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) [...] Read more.
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) expression was higher at the EGA stage than at the oocyte stage in all three species (adjusted p-value < 0.05 |log2(foldchange)| ≥ 1). Subsequently, we found that Zfp296 was conserved across human, mouse, goat, sheep, pig, and bovine embryos. In addition, we identified that ZFP296 interacts with the epigenetic regulators KDM5B, SMARCA4, DNMT1, DNMT3B, HP1β, and UHRF1. The Cys2-His2(C2H2) zinc finger domain TYPE2 TYPE3 domains of ZFP296 co-regulated the modification level of the trimethylation of lysine 9 on the histone H3 protein subunit (H3K9me3). According to ChIP-seq analysis, ZFP296 was also enriched in Trim28, Suv39h1, Setdb1, Kdm4a, and Ehmt2 in the mESC genome. Then, knockdown of the expression of Zfp296 at the late zygote of the mouse led to the early developmental arrest of the mouse embryos and failure resulting from a decrease in H3K9me3. Together, our results reveal that Zfp296 is an H3K9me3 modulator which is essential to the embryonic genome activation of mouse embryos. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Late Oogenesis and Early Embryogenesis)
Show Figures

Figure 1

21 pages, 4439 KiB  
Article
Acetylation-Mimic Mutation of TRIM28-Lys304 to Gln Attenuates the Interaction with KRAB-Zinc-Finger Proteins and Affects Gene Expression in Leukemic K562 Cells
by Yao-Jen Chang, Steven Lin, Zhi-Fu Kang, Bin-Jon Shen, Wen-Hai Tsai, Wen-Ching Chen, Hsin-Pin Lu, Yu-Lun Su, Shu-Jen Chou, Shu-Yu Lin, Sheng-Wei Lin, Yin-Jung Huang, Hsin-Hui Wang and Ching-Jin Chang
Int. J. Mol. Sci. 2023, 24(12), 9830; https://doi.org/10.3390/ijms24129830 - 6 Jun 2023
Cited by 1 | Viewed by 2954
Abstract
TRIM28/KAP1/TIF1β is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have [...] Read more.
TRIM28/KAP1/TIF1β is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Epigenetic Histone Methylation of PPARγ and CPT1A Signaling Contributes to Betahistine Preventing Olanzapine-Induced Dyslipidemia
by Yueqing Su, Chao Deng, Xuemei Liu and Jiamei Lian
Int. J. Mol. Sci. 2023, 24(11), 9143; https://doi.org/10.3390/ijms24119143 - 23 May 2023
Cited by 5 | Viewed by 2685
Abstract
As a partial histamine H1 receptor agonist and H3 antagonist, betahistine has been reported to partially prevent olanzapine-induced dyslipidemia and obesity through a combination therapy, although the underlying epigenetic mechanisms are still not known. Recent studies have revealed that histone regulation of key [...] Read more.
As a partial histamine H1 receptor agonist and H3 antagonist, betahistine has been reported to partially prevent olanzapine-induced dyslipidemia and obesity through a combination therapy, although the underlying epigenetic mechanisms are still not known. Recent studies have revealed that histone regulation of key genes for lipogenesis and adipogenesis in the liver is one of the crucial mechanisms for olanzapine-induced metabolic disorders. This study investigated the role of epigenetic histone regulation in betahistine co-treatment preventing dyslipidemia and fatty liver caused by chronic olanzapine treatment in a rat model. In addition to abnormal lipid metabolism, the upregulation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), as well as the downregulation of carnitine palmitoyltransferase 1A (CPT1A) in the liver induced by olanzapine, were significantly attenuated by betahistine co-treatment. In addition, betahistine co-treatment significantly enhanced the global expression of H3K4me and the enrichment of H3K4me binding on the promoter of Cpt1a gene as revealed by ChIP-qPCR, but inhibited the expression of one of its site-specific demethylases, lysine (K)-specific demethylase 1A (KDM1A). Betahistine co-treatment also significantly enhanced the global expression of H3K9me and the enrichment of H3K9me binding on the promoter of the Pparg gene, but inhibited the expression of two of its site-specific demethylases, lysine demethylase 4B (KDM4B) and PHD finger protein 2 (PHF2). These results suggest that betahistine attenuates abnormal adipogenesis and lipogenesis triggered by olanzapine through modulating hepatic histone methylation, and thus inhibiting the PPARγ pathway-mediated lipid storage, while at the same time promoting CP1A-mediated fatty acid oxidation. Full article
Show Figures

Figure 1

20 pages, 7717 KiB  
Article
NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection
by Liyun Song, Yubing Jiao, Hongping Song, Yuzun Shao, Daoshun Zhang, Chengying Ding, Dong An, Ming Ge, Ying Li, Lili Shen, Fenglong Wang and Jinguang Yang
Cells 2023, 12(4), 590; https://doi.org/10.3390/cells12040590 - 11 Feb 2023
Cited by 5 | Viewed by 2846
Abstract
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana [...] Read more.
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection. Full article
Show Figures

Figure 1

10 pages, 1382 KiB  
Case Report
PHF21A Related Disorder: Description of a New Case
by Ambra Butera, Antonio Gennaro Nicotera, Gabriella Di Rosa, Sebastiano Antonino Musumeci, Girolamo Aurelio Vitello, Antonino Musumeci, Mirella Vinci, Angelo Gloria, Concetta Federico, Salvatore Saccone and Francesco Calì
Int. J. Mol. Sci. 2022, 23(24), 16130; https://doi.org/10.3390/ijms232416130 - 17 Dec 2022
Cited by 7 | Viewed by 2581
Abstract
PHF21A (PHD finger protein 21A) gene, located in the short arm of chromosome 11, encodes for BHC80, a component of the Lysine Specific Demethylase 1, Corepressor of REST (LSD1-CoREST) complex. BHC80 is mainly expressed in the human fetal brain and skeletal [...] Read more.
PHF21A (PHD finger protein 21A) gene, located in the short arm of chromosome 11, encodes for BHC80, a component of the Lysine Specific Demethylase 1, Corepressor of REST (LSD1-CoREST) complex. BHC80 is mainly expressed in the human fetal brain and skeletal muscle and acts as a modulator of several neuronal genes during embryogenesis. Data from literature relates PHF21A variants with Potocki–Shaffer Syndrome (PSS), a contiguous gene deletion disorder caused by the haploinsufficiency of PHF21A, ALX4, and EXT2 genes. Clinical cardinal features of PSS syndrome are multiple exostoses (due to the EXT2 involvement), biparietal foramina (due to the ALX4 involvement), intellectual disability, and craniofacial anomalies (due to the PHF21A involvement). To date, to the best of our knowledge, a detailed description of PHF21A-related disorder clinical phenotype is not described in the literature; in fact, only 14 subjects with microdeletion frameshift or nonsense variants concerning only PHF21A gene have been reported. All reported cases did not present ALX4 or EXT2 variants, and their clinical features did not fit with PSS diagnosis. Herein, by using Exome sequencing, and Sanger sequencing of the region of interest, we describe a case of a child with a paternally inherited (mosaicism of 5%) truncating variant of the PHF21A gene (c.649_650del; p.Gln217ValfsTer6), and discuss the new evidence. In conclusion, these patients showed varied clinical expressions, mainly including the presence of intellectual disability, epilepsy, hypotonia, and dysmorphic features. Our study contributes to describing the genotype–phenotype spectrum of patients with PHF21A-related disorder; however, the limited data in the literature have been unable to provide a precise diagnostic protocol for patients with PHF21A-related disorder. Full article
(This article belongs to the Special Issue Neurological Diseases: A Molecular Genetic Perspective)
Show Figures

Figure 1

29 pages, 5024 KiB  
Article
Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases
by Maria I. Kozlova, Daria N. Shalaeva, Daria V. Dibrova and Armen Y. Mulkidjanian
Biomolecules 2022, 12(10), 1345; https://doi.org/10.3390/biom12101345 - 22 Sep 2022
Cited by 12 | Viewed by 4517
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their [...] Read more.
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article. Full article
(This article belongs to the Section Enzymology)
Show Figures

Graphical abstract

12 pages, 1698 KiB  
Review
Efp/TRIM25 and Its Related Protein, TRIM47, in Hormone-Dependent Cancers
by Kotaro Azuma and Satoshi Inoue
Cells 2022, 11(15), 2464; https://doi.org/10.3390/cells11152464 - 8 Aug 2022
Cited by 7 | Viewed by 4163
Abstract
Increasing attention has been paid to the biological roles of tripartite motif-containing (TRIM) family proteins, which typically function as E3 ubiquitin ligases. Estrogen-responsive finger protein (Efp), a member of the TRIM family proteins, also known as TRIM25, was originally identified as a protein [...] Read more.
Increasing attention has been paid to the biological roles of tripartite motif-containing (TRIM) family proteins, which typically function as E3 ubiquitin ligases. Estrogen-responsive finger protein (Efp), a member of the TRIM family proteins, also known as TRIM25, was originally identified as a protein induced by estrogen and plays critical roles in promoting endocrine-related cancers, including breast cancer, endometrial cancer, and prostate cancer. The pathophysiological importance of Efp made us interested in the roles of other TRIM family proteins that share a similar structure with Efp. Based on a phylogenetic analysis of the C-terminal region of TRIM family proteins, we focused on TRIM47 as a protein belonging to the same branch as Efp. TRIM47 is a poor prognostic factor in both breast cancer and prostate cancer. Atypical lysine-27-like poly-ubiquitination was involved in the underlying mechanism causing endocrine resistance in breast cancer. We also discuss the functions of Efp and TRIM47 in other types of cancers and innate immunity by introducing substrates the are modified by poly-ubiquitination. Full article
(This article belongs to the Special Issue Mechanism of Nuclear Hormone Receptors in Cancer)
Show Figures

Figure 1

15 pages, 3514 KiB  
Article
JmjC Family of Histone Demethylases Form Nuclear Condensates
by Marta Vicioso-Mantis, Samuel Aguirre and Marian A. Martínez-Balbás
Int. J. Mol. Sci. 2022, 23(14), 7664; https://doi.org/10.3390/ijms23147664 - 11 Jul 2022
Cited by 12 | Viewed by 3703
Abstract
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from [...] Read more.
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

16 pages, 1364 KiB  
Review
HAUSP Is a Key Epigenetic Regulator of the Chromatin Effector Proteins
by Omeima Abdullah and Mahmoud Alhosin
Genes 2022, 13(1), 42; https://doi.org/10.3390/genes13010042 - 24 Dec 2021
Cited by 3 | Viewed by 4490
Abstract
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, [...] Read more.
HAUSP (herpes virus-associated ubiquitin-specific protease), also known as Ubiquitin Specific Protease 7, plays critical roles in cellular processes, such as chromatin biology and epigenetics, through the regulation of different signaling pathways. HAUSP is a main partner of the “Epigenetic Code Replication Machinery,” ECREM, a large protein complex that includes several epigenetic players, such as the ubiquitin-like containing plant homeodomain (PHD) and an interesting new gene (RING), finger domains 1 (UHRF1), as well as DNA methyltransferase 1 (DNMT1), histone deacetylase 1 (HDAC1), histone methyltransferase G9a, and histone acetyltransferase TIP60. Due to its deubiquitinase activity and its ability to team up through direct interactions with several epigenetic regulators, mainly UHRF1, DNMT1, TIP60, the histone lysine methyltransferase EZH2, and the lysine-specific histone demethylase LSD1, HAUSP positions itself at the top of the regulatory hierarchies involved in epigenetic silencing of tumor suppressor genes in cancer. This review highlights the increasing role of HAUSP as an epigenetic master regulator that governs a set of epigenetic players involved in both the maintenance of DNA methylation and histone post-translational modifications. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5398 KiB  
Article
SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification
by Helen M. Bellchambers, Kristen S. Barratt, Koula E. M. Diamand and Ruth M. Arkell
Int. J. Mol. Sci. 2021, 22(19), 10437; https://doi.org/10.3390/ijms221910437 - 28 Sep 2021
Cited by 8 | Viewed by 3943
Abstract
The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is [...] Read more.
The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction. Full article
(This article belongs to the Special Issue Neural Crest Development in Health and Disease)
Show Figures

Graphical abstract

19 pages, 1681 KiB  
Article
Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures
by Loredana Poeta, Agnese Padula, Maria Brigida Lioi, Hans van Bokhoven and Maria Giuseppina Miano
Genes 2021, 12(7), 1088; https://doi.org/10.3390/genes12071088 - 18 Jul 2021
Cited by 17 | Viewed by 4658
Abstract
Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless [...] Read more.
Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments. Full article
(This article belongs to the Special Issue Deciphering Epigenetic Signature in Human Health and Disease)
Show Figures

Graphical abstract

Back to TopTop