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Abstract: As a partial histamine H1 receptor agonist and H3 antagonist, betahistine has been reported
to partially prevent olanzapine-induced dyslipidemia and obesity through a combination therapy,
although the underlying epigenetic mechanisms are still not known. Recent studies have revealed
that histone regulation of key genes for lipogenesis and adipogenesis in the liver is one of the
crucial mechanisms for olanzapine-induced metabolic disorders. This study investigated the role
of epigenetic histone regulation in betahistine co-treatment preventing dyslipidemia and fatty liver
caused by chronic olanzapine treatment in a rat model. In addition to abnormal lipid metabolism, the
upregulation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding
protein (C/EBPα), as well as the downregulation of carnitine palmitoyltransferase 1A (CPT1A)
in the liver induced by olanzapine, were significantly attenuated by betahistine co-treatment. In
addition, betahistine co-treatment significantly enhanced the global expression of H3K4me and
the enrichment of H3K4me binding on the promoter of Cpt1a gene as revealed by ChIP-qPCR, but
inhibited the expression of one of its site-specific demethylases, lysine (K)-specific demethylase 1A
(KDM1A). Betahistine co-treatment also significantly enhanced the global expression of H3K9me and
the enrichment of H3K9me binding on the promoter of the Pparg gene, but inhibited the expression
of two of its site-specific demethylases, lysine demethylase 4B (KDM4B) and PHD finger protein 2
(PHF2). These results suggest that betahistine attenuates abnormal adipogenesis and lipogenesis
triggered by olanzapine through modulating hepatic histone methylation, and thus inhibiting the
PPARγ pathway-mediated lipid storage, while at the same time promoting CP1A-mediated fatty
acid oxidation.
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1. Introduction

Second-generation antipsychotics (SGAs), such as olanzapine, have a remarkable ther-
apeutic effect in schizophrenia and other psychotic disorders [1]. However, SGA treatment
induces obesity and other severe metabolic disorders [2,3]. Accumulated evidence has re-
vealed that multiple neurotransmitter receptors, including the histaminergic H1, muscarinic
M3, and serotonin 5-HT2C receptors, contribute to SGA-induced weight gain/obesity and
other metabolic side effects. Of these, the H1 receptor has been identified as a main indi-
cator predicting weight gain induced by SGAs [4–7]. Betahistine acts as a modulator of
the histaminergic system and has both H1 receptor agonistic and H3 receptor antagonistic
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properties in the brain [8,9]. Although the preclinical results remain to be completely
replicated by clinical studies, recent evidence has demonstrated that olanzapine-induced
weight gain and metabolic side effects were significantly alleviated by co-treatment with
betahistine in both preclinical animal models and clinical trials [4,10–14]. However, the
underlying mechanisms have still not been well investigated. Using a rat model, it has
been revealed that betahistine may reduce/prevent olanzapine-induced weight gain, par-
tially through modulating the hypothalamic histamine H1 receptor–AMP activated protein
kinase (AMPK)–neuropeptide Y (NPY) pathway [4,15]. Recent studies have reported that
peripheral metabolic organs such as the liver participate in the modulation of olanzapine-
induced dyslipidemia side effects, while betahistine could alleviate dyslipidemia and fatty
liver caused by olanzapine treatment [16,17].

Peroxisome proliferator-activated receptor gamma (PPARγ), as one of three PPARs
(PPAR-α, PPARδ/β, and PPAR-γ), is mostly involved in the regulation of adipogenesis,
the energy balance, and lipid biosynthesis [18,19]. Evidence from both animal and clinical
studies has revealed that modification of the PPARγ regulatory system is a therapeutic
target for hepatic diseases and lipid disorders [20–23]. Our recent study in a rat model
observed that hepatic dyslipidemia/adipogenesis caused by olanzapine was correlated
with histone modulation of the PPARγ pathway and lipid storage [24]. Carnitine palmi-
toyltransferase 1A (CPT1A), as one of the three isoforms of CPT1, is mainly expressed
in the liver, and its master role has been well recognized in triglyceride metabolism [25].
Moreover, CPT1A is a key enzyme function for fatty acid oxidation in mitochondria of the
liver through modulating fatty acid uptake in the mitochondria [26]. CPT1A gene polymor-
phisms were associated with metabolic disturbance in woman during pregnancy [27]. Our
previous study showed that the hepatic SREBP–CPT1A pathway exhibited downregulation
after chronic olanzapine treatment, while it was upregulated in both betahistine-only and
betahistine co-treatment rats [16]. Accumulated evidence in recent years has demonstrated
that epigenetic mechanisms play critical roles in the transcriptional regulation of Cpt1a,
including DNA methylation, miRNAs, and histone modification [26,28,29]. However, it is
still unknown whether epigenetic modulation is a mechanism involved in the therapeutic
effect of betahistine on olanzapine-induced dyslipidemia, which has been addressed in
this study.

It is well known that chromatin can repress or activate mRNA transcription through dy-
namically altering their structures [30]. Modification at the special site of lysine (K) residues
on the histone N-terminal tail affects the chromatin structure and gene expression [31].
Generally, the methylation of K4 on histone 3 (H3K4me) is linked to gene activation, while
the methylation of K9 or methylation of K27 on H3 (H3K9me or H3K27me) represses
gene expression [32]. It has been reported that H3K4me, H3K9me, and H3K27me are
associated with the expression of CPT1A, PPARγ, and C/EBPα [24,33–35]. In addition, it
is well known that histone methylations are dynamically written by site- and cell-specific
histone methyltransferases and erased by histone demethylases [36]. Therefore, this study
measured the global changes in these histone marks and their enrichment binding on
the promoter regions of the above genes in female rats after treatment with olanzapine
and/or betahistine. In addition, the expression of the list of position- and cell-type-specific
histone methyltransferases (such as KMT2C, EHMT2, and EZH2) and demethylases (such
as KDM1A, KDM4B, and PHF2) was also examined.

2. Results
2.1. Betahistine Co-Treatment Ameliorated Dyslipidemia Caused by Olanzapine

As in our previous report, betahistine co-treatment significantly reversed the increased
food intake and weight gain induced by olanzapine treatment [13]. As shown in Figure 1A,
the rats with olanzapine-only treatment had significantly higher plasma TG and TC levels
than the control (p < 0.01, p < 0.05, respectively). However, only a significant decrease
in TG, but not TC levels, was observed in the O+B co-treatment group compared to the
olanzapine-only group (p < 0.05). Meanwhile, although only a slight increase in the plasma
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NEFA concentration was observed in the olanzapine-only group compared to the control
(p > 0.05), the NEFA level was significantly lower in the O+B group than in the olanzapine-
only group (p < 0.05).
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Figure 1. The effects of chronic olanzapine and/or betahistine treatment on (A) plasma triglycerides
(TG) and non-esterified fatty acid (NEFA). (B) Data from Oil Red O (ORO) staining of liver sections
are presented. (C) Image of hepatic ORO staining. Data are presented as mean ± SEM (n = 12 per
group). * p < 0.05, ** p < 0.01, *** p < 0.001, vs. control; # p < 0.05, ## p < 0.01, vs. olanzapine. O+B,
co-treatment of olanzapine and betahistine.

As shown in Figure 1B, olanzapine treatment led to a significant increase in liver
weight compared to the control (p < 0.05), while O+B co-treatment significantly reduced
the liver weight compared to the olanzapine-only group (p < 0.05). Figure 1C presents
representative images of Oil-Red-O-stained histological sections of livers. Olanzapine
treatment significantly increased the total Oil Red O (p < 0.001) and the size of lipid drops
(p < 0.01) in the hepatic tissue compared to the control, while the increases were significantly
reversed by O+B co-treatment (vs. olanzapine-only, p < 0.01 and p < 0.05, respectively;
Figure 1B,C).

2.2. Betahistine Co-Treatment Partly Alleviated Activation of the PPARγ/C/EBPα Pathway
Induced by Olanzapine

For PPARγ, there was a significant interaction between olanzapine and betahistine
on both its mRNA expression (F1,18 = 5.307, p = 0.033) and protein level (F1,20 = 8.41,
p = 0.009). The Pparg mRNA level in the olanzapine-only group was significantly increased
compared to the control (p < 0.05), while it was significantly decreased by O+B co-treatment
(vs. olanzapine-only, p < 0.05) (Figure 2A). Similarly, the Pparγ protein concentration was
significantly higher in olanzapine-only rats (vs. control, p < 0.01), while it was significantly
lower in the O+B group (vs. olanzapine, p < 0.01) (Figure 2B,C).
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Figure 2. Effect of chronic olanzapine and/or betahistine treatment on PPARγ pathway. (A) mRNA
expression of Pparg; (B) relative protein levels of Pparγ; (C) representative images of Western
blot for PPARγ (57-KDa) and β-actin (42-KDa; as loading controls); (D) mRNA expression of
Cebpa; (E) relative protein levels of C/ebpα; (F) representative images of Western blot for C/ebpα
(43-KDa) and β-actin (42-KDa; as loading controls). Data are presented as mean ± SEM. The sample
size is 6 per group. * p < 0.05, ** p < 0.01, *** p < 0.001, vs. control; # p < 0.05, ## p < 0.01, vs.
olanzapine. Abbreviations: C, control; O, olanzapine; B, betahistine; O+B, co-treatment of olanzapine
and betahistine.

For C/EBPα, there was a significant main effect of the olanzapine factor
(F1,20 = 36.460, p < 0.001) and a significant interaction between olanzapine and betahistine
(F1,20 = 14.360, p = 0.001) on mRNA expression. Further post-hoc analysis showed the
significant upregulation of Cebpα mRNA in the olanzapine-only-treated group compared
to the control group (p < 0.001; Figure 2D). Although a significant increase in Cebpα mRNA
was observed in the betahistine-only group (vs. control, p < 0.05), co-treatment with betahis-
tine partially but significantly reduced Cebpα mRNA expression (O+B vs. olanzapine-only,
p < 0.01; O+B vs. Control, p < 0.01; Figure 2D). Consistently, there was a significant main
effect of the olanzapine factor (F1,19 = 6.679, p = 0.018) and an interaction between these two
factors (F1, 19 = 4.937, p = 0.039) on C/ebpα protein levels. A post-hoc analysis also showed
that the C/EBPα protein levels in the olanzapine-only group were significantly higher than
those of the control (p < 0.001), while O+B co-treatment significantly reduced the C/ebpα
protein levels (vs. olanzapine-only, p < 0.05; Figure 2E,F). Additionally, a strong positive
correlation between Pparγ and C/ebpα protein levels was observed (r = 0.402, p = 0.032).

2.3. Betahistine Co-Treatment Reversed the CPT1A Inhibition Induced by Olanzapine

This study observed a main effect of the betahistine factor (F1,20 = 18.16, p < 0.001)
and a trend of interaction between olanzapine and betahistine on Cpt1a mRNA levels
(F1,20 = 3.847, p = 0.063). There was also a main effect of the betahistine factor (F1,20 = 61.640,
p < 0.001) and a significant interaction between these two drugs (F1,20 = 27.900, p < 0.001) on
the Cpt1a protein concentration. Although olanzapine-only treatment did not significantly
decrease Cpt1a mRNA expression (Figure 3A), it significantly decreased the Cpt1a protein
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levels compared to the control (p < 0.001; Figure 3B). The betahistine-only treatment tended
to increase Cpt1a mRNA expression (p = 0.064) and Cpt1a protein levels (p = 0.075) compared
to the control. The O+B co-treatment significantly upregulated Cpt1a mRNA (vs. control,
p < 0.001; vs. olanzapine-only, p< 0.001) and reversed the olanzapine-induced decrease in
Cpt1a protein levels (O+B vs. control, p< 0.001; O+B vs. olanzapine-only, p< 0.001; Figure 3).
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Figure 3. Effect of chronic olanzapine and/or betahistine treatment on CPT1A expression. (A) mRNA
expression of Cpt1a; (B) relative protein levels of Cpt1a; (C) representative images of Western blot
for Cpt1a (87-KDa) and β-actin (42-KDa; as loading controls). Data are presented as mean ± SEM
(n = 6/group). *** p < 0.001, vs. control; ### p < 0.001, vs. olanzapine. Abbreviations: C, control; O,
olanzapine; B, betahistine; O+B, co-treatment of olanzapine and betahistine.

2.4. Global Profile of H3K4me, H3K9me, and H3K27me in the Hepatic Tissue

As shown in Figure 4A,D, in the case of global H3K4me2 levels, betahistine-only
treatment significantly upregulated global H3K4me2 expression (vs. control, p < 0.05),
while O+B showed a trend of increased global H3K4me2 compared to the olanzapine-only
group (p = 0.064) (Figure 4A). The global H3K9me2 level was significantly decreased in
olanzapine-only-treated rats (vs. control, p < 0.05), while it was significantly increased in
the O+B co-treatment rats (vs. control, p < 0.05; vs. olanzapine-only, p < 0.01) (Figure 4B,E).
There were not any significant differences between treatments in the global H3K27me2
protein level (all p > 0.05, Figure 4C,F).
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(β-actin 42-KDa acted as control) for (D) H3K4me2 (15 KDa), (E) H3K9me2 (17 KDa), (F) H3K27me2
(17 KDa). Data are presented as mean ± SEM (n = 6/group); * p < 0.05, vs. control; ## p < 0.01, vs.
olanzapine. Abbreviations: C, control; O, olanzapine; B, betahistine; O+B, co-treatment of olanzapine
and betahistine.

2.5. Betahistine Co-Treatment Reversed the Activation of Kdm1a and Kdm4 Induced by Olanzapine

To further explore the role of site-specific enzymes in H3K4me, H3K9me, and H3K27me
modification, the mRNA levels of three histone methyltransferases and three demethy-
lases were analyzed using qPCR. They were KMT2C (methyltransferase for H3K4me),
EHMT2 (methyltransferase for H3K9me), EZH2 (methyltransferase for H3K27me), KDM1A
(demethylase for both H3K4me and H3K9me), KDM4B (demethylase for H3K9me), and
PHF2 (demethylase for both H3K9me and H3K27me).

For Kdm1a mRNA expression, there were significant main effects of the olanzapine
(F1,18 = 9.646, p = 0.006) and betahistine factors (F1,18 = 13.330, p = 0.002). Compared to
the control, the Kdm1a mRNA level was significantly higher in olanzapine-only-treated
rats (p < 0.05), but lower in the betahistine-only group (p < 0.05). Moreover, co-treatment
with betahistine significantly reduced Kdm1a mRNA expression, elevated by olanzapine
(olanzapine-only vs. O+B co-treatment, p < 0.05) (Figure 5D). There was a significant
interaction between the olanzapine and betahistine factors on Kdm4b mRNA expression
(F1,20 = 5.814, p = 0.026). Kdm4b levels significantly increased in olanzapine-only rats (vs.
control, p < 0.05), but were significantly decreased in O+B co-treatment rats (vs. olanzapine-
only, p < 0.05; Figure 5E). In comparison with the control, there was higher expression of
Phf2 mRNA in the olanzapine-only rats (p = 0.051), but significantly lower Phf2 mRNA
in the betahistine-only rats (p < 0.05). However, there were no significant changes in the
mRNA expression of Kmt2c, Ehmt2, or Ezh2 (all p > 0.05, Figure 5A–C).
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(C) Ezh2 (H3K27me); histone demethylase (HDMs) of (D) Kdm1a (H3K4me and H3K9me),
(E) Kdm4b (H3K9me), (F) Phf2 (H3K9me and H3K27me). Data are presented as mean ± SEM
(n = 6/group); * p < 0.05, vs. control; # p < 0.05, vs. olanzapine. O+B, co-treatment of olanzapine and
betahistine.

2.6. Betahistine Co-Treatment Increased the Enrichment of H3k9me3 Binding on the Promoter
Region Pparg2, and H3K4me2 Binding on the Promoter Region Cpt1a

As revealed by the ChIP-qPCR experiment (Figure 6B), the amount of H3K9me3
binding peaking on the promoter region of Pparg2 tended to be decreased in the olanzapine-
only rats (vs. control, p = 0.082), while it was significantly increased in those with O+B
co-treatment (both p < 0.05). No significant changes in H3K4me2 or H3K27me2 binding
were observed on the promoter region of Pparg2 (all p > 0.05, Figure 6A,C). On the other
hand, H3K4me2 significantly increased binding on the promoter region of Cpt1a in both
the betahistine-only group and O+B group (vs. control, p < 0.05 and p < 0.01, respectively;
Figure 6D). Although there was no significant difference between the olanzapine-only
and the control groups (p > 0.05), H3K4me2 peaking on the promoter region of Cpt1a
was significantly higher in the O+B co-treated rats than olanzapine-only rats (p < 0.01;
Figure 6D). There were no changes in H3K9me3 or H3K27me2 binding on the promoter
region of Cpt1a (all p > 0.05, Figure 6E,F). Neither H3K4me2 nor H3K9me3 were detected
on the promoter regions on Pparg1.
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(A–C) and Cpt1a (D–F) genes were measured by ChIP-qPCR with antibodies against (A,D) H3k4me2
(active mark), (B,E) H3K9me3 (inactive mark), and (C,F) H3K27me2 (inactive mark) in the livers
of rats treated with olanzapine and/or olanzapine control (n = 6/group). Data are presented as
mean ± SEM. * p < 0.05, ** p < 0.01, vs. control; # p < 0.05, ## p < 0.01, vs. olanzapine. O+B,
co-treatment of olanzapine and betahistine.
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3. Discussion

This study explored the epigenetic histone methylation mechanisms in the ameliora-
tion effect of betahistine co-treatment on dyslipidemia after chronic olanzapine administra-
tion in a female rat model. As reported previously [15,16], the hyperlipidemia and hepatic
lipid/adipocyte accumulation caused by chronic olanzapine treatment were ameliorated
by four weeks of co-treatment of betahistine and olanzapine. The upregulation of hepatic
Pparγ and C/ebpα (master regulators in adipogenesis) induced by olanzapine was re-
versed by co-treatment with betahistine. On the other hand, as reported previously [16], the
expression of Cpt1a (the limiting enzyme related to the progress of fatty acid oxidation) was
downregulated by olanzapine treatment, but upregulated with betahistine co-treatment.
In addition, our epigenetic analysis showed that (1) betahistine co-treatment reversed the
olanzapine-induced suppression of hepatic global H3K9me; (2) the mRNA expression of
two H3K9me-specific histone demethylases (Kdm4b and Phf2) and a histone demethylase
specific to H3K4 (Kdm1a) was significantly upregulated in the olanzapine-treated group,
but downregulated in the O+B co-treatment group; (3) betahistine co-treatment improved
the enrichment of both H3K9me binding on the Pparg2 promoter and H3K4me binding
on the Cpt1a promoter, restrained by the olanzapine treatment. These results suggest that
betahistine co-treatment attenuated olanzapine-induced dyslipidemia and hepatic lipid
accumulation through epigenetic histone modulation on key genes responding to hepatic
lipid storage and fatty acid oxidation.

The upregulation of hepatic PPARγ is robustly related to fatty liver/steatosis in hu-
man and animal models [37,38]. Although single-nucleotide polymorphism studies have
not identified an association between PPARγ and antipsychotic-induced weight gain in
schizophrenia patients with olanzapine and clozapine treatment [39,40], our previous study
indicated that the activation of the hepatic Pparγ pathway was linked to the olanzapine-
induced hepatic adipogenesis and lipid accumulation in the liver [24]. A study in the
3T3-L1 cell model revealed that berberine alleviated olanzapine-induced adipogenesis by
downregulating the expression of genes regulating the processes, including PPARγ [41].
This study revealed downregulated Pparγ expression in the betahistine co-treatment group
compared to olanzapine-only treatment, accompanied by decreased plasma TG and NEFA
concentrations, as well as reduced adiposity and lipid droplets in the liver. These results
suggest that PPARγ signaling is involved in the effect of betahistine in preventing abnormal
lipid metabolism caused by olanzapine. It is consistent with our previous report that
betahistine-only treatment had no effects on lipid metabolism in the animal model [12,13].
C/EBPα is another critical regulator in the cascade of PPARγ pathway-mediated adipogen-
esis or lipid accumulation in the liver [42]. They have a broad overlap in their downstream
transcriptional targets; moreover, they mutually stimulate each other and cross-regulate in
maintaining the process of adipose differentiation [43]. In this study, C/ebpα expression
was also found to be downregulated by olanzapine treatment, but upregulated by the
O+B co-treatment. Moreover, a significant positive correlation in the protein concentration
between Pparγ and C/ebpα was observed. CPT1A is a rate-limiting enzyme that facilitates
fatty acid transport into the mitochondria for the subsequent process of oxidation, while
CPT1A deficiency leads to fatty liver in humans (Bonnefont et al., 2004); this makes it an
attractive target for therapeutic interventions [26]. A significant enhancement in Cpt1a
mRNA and protein expression was observed in the O+B co-treatment. By contrast, Cpt1a
was significantly inhibited by long-term olanzapine administration. Therefore, betahis-
tine co-treatment may ameliorate olanzapine-induced lipid dysfunction, partly through
promoting the CPT1A-mediated acceleration of fatty acid oxidation.

Our previous study showed that H3K9me, a silencing histone marker, played a crucial
role in regulating the cascade of adipogenesis through modulating the promoter region of
PPARg [24]. This study found that betahistine co-treatment significantly improved both
the hepatic global levels of H3K9me and its specific binding on the promoter region of
Pparg that were inhibited by chronic olanzapine treatment. PHF2 and KDM4B are the
H3K9-specific histone demethylases and have been identified in modulating the lipid
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metabolism process [44,45]. Consistently, this study found that the mRNA expression
of both Phf2 and Kdm4b was increased by olanzapine-only treatment. This suggests that
olanzapine promoted PHF2 and KDM4B to erase methylation on H3K9 and subsequently
alleviate H3K9me binding on the promoter region of PPARg, leading to the acceleration
of its expression and adipogenesis, whereas betahistine co-treatment decreased KDM4B
expression. Phf2 expression was also inhibited by the betahistine-only treatment, while
there was also no significant difference in Phf2 expression between the O+B and control
groups. However, there were no differences in Ehmt2 (a histone methyltransferase for
H3K9me) between groups. Therefore, betahistine inhibits PHF2 and KDM4B to wipe off
H3K9me, and then enhances H3K9me binding on the PPARγ2 promoter area and inhibits
PPARγ expression and adipogenesis.

On the other hand, H3K4me, with the opposite effect to H3K9me, has been reported to
be correlated with gene activation in metabolic pathways, including CPT1a-mediated fatty
acid oxidation [34,35]. Similarly, this study found that betahistine significantly increased
the global levels of H3K4me and its specific binding on the promoter region of Cpt1a in the
liver. This provides the first evidence to suggest that H3K4me contributes to the activation
of Cpt1a caused by betahistine. Meanwhile, KDM1A (LSD1) is a histone demethylase that
erases methylation at K4 on histone H3 [46]. This study revealed the upregulation of Kdm1a
mRNA expression in the olanzapine-only group and downregulation in the betahistine
group compared to the control, while the co-treatment with betahistine reversed the increase
in Kdm1a mRNA expression induced by olanzapine. However, there were no differences in
Kmt2c (a histone methyltransferase for H3K4me) between groups. These results suggest
that olanzapine promoted KDM1A, a histone demethylase, causing demethylation on
H3K4, and subsequently reduced H3K4me binding on the CPT1A promoter region, which
led to lower CPT1A expression and the process of fatty acid oxidation. On the other hand,
betahistine co-treatment inhibits KDM1A to improve methylation on H3K4 and accelerates
CPT1A expression and fatty acid oxidation. Interestingly, there were not any significant
differences in H3K27me on both global levels and on the specific gene loci (both Pparg and
Cpt1a), as well as no differences in Ezh2 (a H3K27 methyltransferase) among the four groups.
Although EZH2 has been previously reported to have a role in facilitating adipogenesis [47],
results from this study suggest that H3K27me is not involved in the effects of olanzapine
and/or betahistine treatment on adipogenesis.

It is worth noting that, in line with the finding of no clear enrichment of H3K4me
on the Cpt1a promoter, there were not any significant changes in Cpt1a transcription
following chronic olanzapine treatment. This outcome suggests that the reduction in
Cpta1 protein levels induced by olanzapine may not be associated with transcriptional
mechanisms, but translational or posttranslational ones. One limitation of this study is
that only female rats have been investigated. The female model was chosen in this study
because both preclinical and clinical studies reported that females showed more severe
weight gain and metabolic responses to antipsychotic treatment, partly due to the effects of
sex hormones such as estrogen [48,49]. Although there are sex differences, antipsychotics
cause the accumulation of visceral adipose tissue and dyslipidemia in both male and female
subjects [49,50]. Therefore, further studies are necessary to investigate whether betahistine
has similar effects in preventing antipsychotic-induced dyslipidemia and other metabolic
disorders in males. It should also be noted that the effects of betahistine on lipid metabolism
in the rat model may not be directly relevant to the major effect of betahistine in clinical
human studies, which requires further investigations.

In summary, this study further confirmed our previous report on the role of the histone
modulation of the PPARγ pathway in olanzapine-induced metabolic disorders [24]. Impor-
tantly, this study provided novel evidence that betahistine co-treatment could enhance the
enrichment of H3K4me and H3K9me binding on the promoter regions of Cpt1a and Pparg,
respectively. This leads to an increase in the CPT1A pathway in promoting the progress of
fatty acid oxidation but a decrease in the PPARγ pathway in inhibiting adipogenesis in the
liver. Coupled with the inhibition effect of betahistine on the expression of Kdm1a, Kdm4b,
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and Phf2, this study demonstrated that the activation of the CPT1A pathway and the inhi-
bition of the PPARγ pathway induced by co-treatment with betahistine were modulated
by hepatic KDM1A-mediated H3K4me to CPT1A, and both KDM4B- and PHF2-mediated
H3K9me to PPARg. Taken together, for the first time, this study reveals the epigenetic his-
tone modulation mechanisms underlying the amelioration effect of betahistine co-treatment
on dyslipidemia and hepatic adipose accumulation caused by olanzapine.

4. Materials and Methods
4.1. Animal Treatment

The animal experiment procedures were approved by the Animal Ethics Commit-
tee, University of Wollongong (AE11/10), and complied with the Australian Code of
Practice for the Care and Use of Animals for Scientific Purposes (National Health and
Medical Research Council, Australia, 2004). In order to examine the chronic effect of
olanzapine and betahistine, the whole experimental period lasted for 11 weeks and was
separated into three stages, as reported previously [13]. In brief, at stage one, after one
week of environmental adaptation, 48 Sprague-Dawley female rats purchased from the
Animal Resources Centre (Perth, WA, Australia) were randomly divided into two groups
(n = 24/group) and treated with 3.5 weeks of cookie pellets (vehicle; 0.3 g, including 30.9%
cornstarch, 30.9% sucrose, 6.3% gelatin, 15.5% casein, 6.4% fiber, 8.4% minerals, and 1.6%
vitamins) or cookie pellets with olanzapine (1 mg/kg, 3 times/day; Eli Lilly, Indianapolis,
IN, USA). At stage two, olanzapine was withdrawn for 2.5 weeks, during which none of the
rats received any treatment. At stage three, the two groups were further divided into four
subgroups (n = 12/subgroup) for further treatment for 5 weeks: (1) control (treated with
cookie pellets without drug), (2) betahistine-only (9.6 mg/kg, 3 times/day; Manus Aktteva,
Gujarat, India); (3) olanzapine-only (1 mg/kg, 3 times/day), (4) co-treated with olanzapine
and betahistine (O+B; 1 mg/kg olanzapine plus 9.6 mg/kg betahistine, 3 times/day). The
drug dosages were translated from human dosages to rats based on the body surface area
and followed the FDA guidelines [51,52]. In consideration of the shorter half-lives of these
drugs in rats than in humans, 1 mg/kg olanzapine and 9.6 mg/kg betahistine in rats are
equivalent to ~10 mg olanzapine clinical dosage and ~48 mg betahistine used in clinical
trials, respectively [10,14,16].

4.2. Plasma and Liver Lipid Assays

Plasma was separated from a 5 mL cardiac blood sample through centrifugation
(3000 RPM for 15 min at 4 ◦C) immediately after the rats were euthanized by carbon dioxide
asphyxiation. A Konelab 30i biochemistry analyzer (Thermo Fisher Scientific Oy, Vantaa,
Finland) was used to measure total triglycerides (TG) and total cholesterol (TC). A non-
esterified fatty acid (NEFA) ELISA kit (Wako Chemicals, Richmond, VA, USA) was used to
test NEFA levels. Livers were dissected at 12 µm using a cryostat and stained with Oil Red
O (Sigma–Aldrich 1516, St Louis, MO, USA) to evaluate hepatic lipid accumulation [13,16].

4.3. Examining Hepatic Gene Expression Using Quantitative Reverse Transcription PCR
(qRT-PCR)

In brief, the Aurum TM RNA Mini Kit (Bio-Rad, Hercules, CA, USA) was used to ex-
tract the total hepatic RNA, and the iScriptTMRT Supermix Kit (Bio-Rad, Hercules, CA, USA)
was used to synthesize the first chain of cDNA, according to the manufacturer’s manuals.
The RNA was quantified using a Nano Drop 2000 (Thermo Fisher, Waltham, MA, USA). The
10.00 µL qRT-PCR reaction mixture, including 5.0µL TaqMan®Gene Expression Master Mix
(Applied Biosystems™, Foster City, CA, USA), 0.50 µL TaqMan®Gene Expression Assay
(Thermo Fisher, Waltham, MA, USA), 2.00 µL (5.00 ng/µL) cDNA, and 2.50 µL dH2O, was
amplified on a Quant Studio 5 Real-Time PCR System (Thermo Fisher, Waltham, MA, USA),
using the following parameters: 95 ◦C 10 min; 95 ◦C 15 s, 60 ◦C 1 min, 40 cycles. The nine tar-
get genes were Pparg (Rn00562597_m1), Cebpα (Rn00563565_m1), Cpt1a (Rn00580702_m1),
Kdm1a (Rn01181029_m1), Phf2 (Rn01435384_m1), Kmt2c (Rn01410347_m1), Kdm4b
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(Rn01527809_m1), Ehmt2 (Rn01525918_m1), and Ezh2 (Rn01500693_m1). The four endoge-
nous control genes were Actb (Rn00667869 ml), Rplp0 (Rn03302271_gH), Hprt1
(Rn01527840_m1), and Gapdh (Rn01775763_gl). Each sample examination was performed
twice. Endogenous control genes were used as the interior reference to normalize the
original PCR data from target genes, and further relative expression was evaluated by the
2−∆∆CT method.

4.4. Analyses of Global Histone Methylation Using Western Blot

To investigate whether histone methylation is involved in the modulation of the lipid
metabolic signaling pathways, this study first evaluated the profiles of global histone
methylation in H3K4me, H3K9me, and H3K27me. Protein from nearly 20 mg liver tissue
was extracted using cell lysis buffer containing 9.80 mL NP40 (Invitrogen, Camarillo, CA,
USA), 100 µL protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA), 100 µL
50 mM β-Glycerophosphate (Invitrogen, Carlsbad, CA, USA), and 33.30 µL 0.3 M phenyl-
methylsulfonyl fluoride (Sigma-Aldrich, St. Louis, MO, USA). The 8% to 12% sodium
dodecyl sulfate–polyacrylamide gel and polyvinylidene difluoride membrane (Bio-Rad,
Hercules, CA, USA) were, respectively, used in the electrophoretic separation and shifting
of aliquots containing 10 µg of protein. After incubation with the first antibodies overnight
at 4 ◦C and matching second antibodies for one hour at room temperature, images of
the separated protein bands were achieved using the Amersham Hyperfilm Gel Imager
(GE Healthcare, Life Science, FISHERS, IN, USA) and then quantified using a Fiji image
processing package. The first antibodies were anti-H3K4me2 (1:1000, Abcam, ab176878;
Cambridge, UK), anti-H3K9me2 (1:1000, Abcam, ab176882), anti-H3K27me2 (1:500, Abcam,
ab194690), anti-Cpt1a (1:1000, Abcam, ab176320), anti-Pparγ (1:1000, Abcam, ab209350),
anti-C/ebpα (1:1000, Abcam, ab40764), and anti-β-actin (1:3000, Merck, MAB1501; Darm-
stadt, Germany). The second antibodies were HRP-linked anti-rabbit IgG (1:3000, Cell
Signaling, #7074s; Beverly, MA, USA) and HRP-linked anti-mouse IgG (1:3000, Cell Signal-
ing, #7076s). All Western blot quantifications were normalized to the loading control and
the untreated control values.

4.5. Analysis of DNA Fragment Binding on Histone Methylation Marks Using ChIP-qPCR

A chromatin immunoprecipitation (ChIP) experiment was applied to analyze DNA–
protein interactions in the liver tissue using ChIP Kits for H3K4me2 (P-2009-48), H3K9me3
(P-2008-48), and H3K27me2 (P-2016-48; Epigentek, Farmingdale, NY, USA). Briefly, 40 mg
liver tissue was homogenized by a Precellys®24 homogenizer (Bertin Technologies, Breton-
neux, France). After completing the procedure of in vivo cross-linking with 1% formalde-
hyde, the suitable DNA fragment (200~1000 bp) was sheared using the Branson 450 Digital
Sonifier (Branson, St. Louis, MO, USA) on ice. Strip microplate cups were used to perform
the DNA–protein immunoprecipitation, while columns were used for ChIP DNA purifica-
tion. Finally, quantitative PCRs for the special promoter region for Pparg1 and Pparg2, as
well as Cpt1a, were double analyzed using SYBR Green Master Mix (Qiagen, Germantown,
MD, USA) on a Quant Studio 5 Real-Time PCR System (Thermo Fisher, Waltham, MA,
USA), and qPCR data were shown as a % of input. The primers are referred to in the
literature [35,53].

4.6. Statistical Analysis

SPSS 28 (IBM, Chicago, IL, USA) was used to analyze all data. The Kolmogorov–
Smirnov test was used to examine the distribution of data from all experiments. All data
were analyzed by two-way ANOVAs (betahistine × olanzapine), followed by a post-hoc
Tukey test to perform multiple comparisons. If the data did not show a normal distribution,
a nonparametric Mann–Whitney U test was used. Finally, the correlation among the
measurements was analyzed by Pearson’s correlation test. Statistical significance was
accepted when p < 0.05. Results were presented as the mean ± SEM. GraphPad Prism
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7.04 (GraphPad Software Inc., San Diego, CA, USA) was used to create all graphs in this
manuscript.
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AMPK activating protein kinase;
C/EBPs CCAAT/enhancer binding proteins;
ChIP chromatin immunoprecipitation;
CPT1A carnitine palmitoyltransferase 1A;
FAS fatty acid synthase;
H3K4me histone H3 methylations at 4 lysine residue;
H3K9me histone H3 methylations at 9 lysine residue;
KDM1A lysine (K)-specific demethylase 1A;
KDM4B lysine demethylase 4B;
NAFLD non-alcoholic fatty liver disease;
NEFA non-esterified fatty acid;
NPY neuropeptide Y;
PPAR peroxisome proliferator-activated receptor;
PHF2 PHD finger protein 2;
qRT-PCR quantitative reverse transcription PCR;
SGAs second-generation antipsychotics;
TC cholesterol;
TG total triglycerides.
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