Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = lunge angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1136 KiB  
Article
Impact of Technical Standardization on Pneumothorax and Chest Tube Insertion Rates: A Retrospective Learning Curve Analysis of CT-Guided Lung Biopsies
by Rosa Alba Pugliesi, Younesse Nasser, Amina Benchekroun, Roua BenAyed, Andreas H. Mahnken, Nour Maalouf and Jonas Apitzsch
J. Clin. Med. 2025, 14(14), 4838; https://doi.org/10.3390/jcm14144838 - 8 Jul 2025
Viewed by 279
Abstract
Background: Pneumothorax (PTX) is the most common complication of CT-guided lung biopsies. New technical advances, namely the optimization of needle approach angles within an a priori defined “safe zone,” are intended to reduce this risk. This study evaluates whether PTX incidence and chest [...] Read more.
Background: Pneumothorax (PTX) is the most common complication of CT-guided lung biopsies. New technical advances, namely the optimization of needle approach angles within an a priori defined “safe zone,” are intended to reduce this risk. This study evaluates whether PTX incidence and chest tube placement decreased significantly after these technical advances were implemented. Methods: We retrospectively analyzed 118 consecutive patients who had undergone CT-guided lung biopsy between 9 January 2020, and 4 April 2025. The study was divided into three periods of increasingly growing institutional procedural experience: Pre-Knowledge (January 2020–March 2022; n = 45), Partial Knowledge (April–December 2022; n = 18), and Full Knowledge (January 2023–April 2025; n = 55). PTX incidence and chest tube use were compared across periods using chi-square and Fisher’s exact tests, while Kaplan–Meier survival analysis was used to evaluate PTX-free survival over time. Results: Overall PTX incidence significantly declined from 71.1% in the Pre-Knowledge Period to 21.8% in the Full Knowledge Period (p < 0.000001). Rates of chest tube placements also decreased from 17.8% to 9.1%, although this difference was not statistically significant (p = 0.372). Kaplan–Meier analysis showed a statistically significant improvement in PTX-free survival over time (indicating improvement in the timing of complication onset; p = 0.0042). Procedural optimization was also fostered by a large median intrapulmonary needle length and consistent needle angulation within the safe zone. Conclusions: Formal implementation of needle angle optimization and procedural protocol standardization has effectively reduced the frequency and severity of PTX following CT-guided lung biopsies. These results highlight the benefit of continuous education and technique standardization in improving patient safety and clinical outcomes. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

10 pages, 1700 KiB  
Article
Serial Casting for Early-Onset Scoliosis
by Jakub Adamczyk, Slawomir Duda, Wojciech Kacki, Barbara Jasiewicz and Tomasz Potaczek
J. Clin. Med. 2025, 14(12), 4329; https://doi.org/10.3390/jcm14124329 - 18 Jun 2025
Viewed by 393
Abstract
Background: Early-onset scoliosis (EOS) is a severe spinal deformity that can compromise thoracic development and pulmonary function if left untreated. While Mehta casting is widely used to manage deformity non-surgically in young children, its effects on spinal and thoracic growth remain underexplored. [...] Read more.
Background: Early-onset scoliosis (EOS) is a severe spinal deformity that can compromise thoracic development and pulmonary function if left untreated. While Mehta casting is widely used to manage deformity non-surgically in young children, its effects on spinal and thoracic growth remain underexplored. Methods: In this retrospective case series, 15 children with EOS underwent serial elongation–derotation–flexion (EDF) Mehta casting. Radiographic assessments were performed pre-treatment, post-casting, and at follow-up, including measurements of Cobb angle, rib–vertebral angle difference (RVAD), Th1–Th12 spinal length, coronal chest width (CCW), and space available for lung (SAL). Growth rates were estimated based on the duration of treatment. Correlation analyses were conducted to examine associations between baseline deformity and structural outcomes. Results: Serial casting reduced the mean Cobb angle by 22.2° and RVAD by 15.5°. During treatment, measurable increases were observed in Th1–Th12 length (mean: 2.93 cm), CCW (1.12 cm), SAL-L (2.60 cm), and SAL-R (2.98 cm). Estimated annual growth was significantly greater in children with lower initial Cobb and RVAD values. In contrast, total casting duration showed no consistent correlation with growth outcomes. Conclusions: Mehta casting is effective not only in correcting spinal deformity but also in supporting thoracic and axial growth in children with EOS. Early application in flexible, less severe curves may optimize structural outcomes and preserve thoracic development during early growth. Full article
(This article belongs to the Special Issue New Progress in Pediatric Orthopedics and Pediatric Spine Surgery)
Show Figures

Figure 1

12 pages, 1619 KiB  
Article
The Combination of Temporal and Spatial Dose Fractionation in Microbeam Radiation Therapy
by Jessica Stolz, Kristina Rogal, Sandra Bicher, Johanna Winter, Mabroor Ahmed, Susanne Raulefs, Stephanie E. Combs, Stefan H. Bartzsch and Thomas E. Schmid
Biomedicines 2025, 13(3), 678; https://doi.org/10.3390/biomedicines13030678 - 10 Mar 2025
Viewed by 930
Abstract
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the [...] Read more.
Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. Methods: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). Results: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. Conclusions: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

15 pages, 3877 KiB  
Article
UV-Curable Optical-Silicone-Modified Coatings Prepared from CO2-Based Non-Isocyanate Polyurethane Diol
by Nana Sun, Hongyu Zhu, Shuxin Wang, Junyi Li, Guoqiao Lai and Xiongfa Yang
Coatings 2025, 15(2), 165; https://doi.org/10.3390/coatings15020165 - 2 Feb 2025
Viewed by 960
Abstract
Though polyurethanes (PUs) are widely used in people’s daily lives, traditional PUs are generally fabricated from toxic (poly)isocyanates. Furthermore, (poly)isocyanates are commonly industrially prepared from a seriously toxic and injurious chemical compound named phosgene, which is a dangerous gas that can cause lung [...] Read more.
Though polyurethanes (PUs) are widely used in people’s daily lives, traditional PUs are generally fabricated from toxic (poly)isocyanates. Furthermore, (poly)isocyanates are commonly industrially prepared from a seriously toxic and injurious chemical compound named phosgene, which is a dangerous gas that can cause lung irritation and eventually death. As is known to all, the consumption of carbon dioxide (CO2)-based raw materials in chemical reactions and productions will be conducive to reducing the greenhouse effect. In this paper, non-isocyanate polyurethane (NIPU) diol was fabricated through a polyaddition reaction from ethylenediamine and CO2-based ethylene carbonate, and then NIPU-based silicone-containing thiol hyperbranched polymers (NIPU-SiHPs) were synthesized from the NIPU diol. Finally, UV-curable optical-silicone-modified CO2-based coatings (UV-NIPUs) were fabricated from NIPU-SiHPs and pentaerythritol triacrylate by a UV-initiated thiol-ene click reaction without a UV initiator. The UV-NIPUs demonstrated high transparency over 90% (400–800 nm), good mechanical performance with tensile strength reaching 3.49 MPa, superior thermal stability with an initial decomposition temperature (Td5) in the range of 239.7–265.6 °C, moderate hydrophilicity with a water contact angle in the range of 42.6–62.1°, a high pencil hardness in the range of 5–9H, and good adhesive performance of grade 0. The results indicate that it is a promising green chemical strategy to fabricate CO2-based high-performance materials. Full article
Show Figures

Figure 1

16 pages, 8772 KiB  
Article
The Influence of Exogenous Particles on the Behavior of Non-Newtonian Mucus Fluid
by Agata Penconek, Urszula Michalczuk, Małgorzata Magnuska and Arkadiusz Moskal
Processes 2024, 12(12), 2765; https://doi.org/10.3390/pr12122765 - 5 Dec 2024
Viewed by 760
Abstract
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the [...] Read more.
Every day, approximately 7 m3 of air flows through the lungs of an adult, which comes into contact with 80 m2 of the lung surface. This air contains both natural and anthropogenic particles, which can deposit on the surface of the mucus lining the respiratory tract. The presence of particles in the mucus leads to changes in its rheology and, consequently, in its functions. Therefore, this research aimed to determine how a non-Newtonian fluid suspension will behave during flow, illustrating the movement of mucus during coughing. The model mucus was an aqueous solution of carboxymethylcellulose (CMC). The tested particles suspended in a non-Newtonian fluid were Arizona Fine Dust, diesel exhaust particles, polyethylene microparticles, and pine pollen. It was noticed that as the fluid viscosity increases, the number of Kelvin–Helmholtz instabilities increases. The fluid’s expansion angle at the output of the measuring cell decreased, and the values of parameters characterizing the aerosol generated at the outlet decrease for selected particles present in the fluid. The research shows that the deposition of particles from polluted air in the respiratory tract, although they do not enter the bloodstream, may affect the human body. Deposited particles can change the behavior of mucus, which may translate into its functions. Full article
(This article belongs to the Special Issue Technological Processes for Chemical and Related Industries)
Show Figures

Figure 1

16 pages, 2605 KiB  
Article
The Effect of the Cheneau Brace on Respiratory Function in Girls with Adolescent Idiopathic Scoliosis Participating in a Schroth Exercise Program
by Anna Badowska, Paulina Okrzymowska, Elzbieta Piatek-Krzywicka, Bozena Ostrowska and Krystyna Rozek-Piechura
J. Clin. Med. 2024, 13(23), 7143; https://doi.org/10.3390/jcm13237143 - 26 Nov 2024
Cited by 1 | Viewed by 1651
Abstract
Objectives: The aim of this study was to evaluate the effect of brace use application and the Schroth intervention on lung ventilation and respiratory muscle strength in patients treated long-term with a Chaneau brace and the Schroth method. Methods: A total [...] Read more.
Objectives: The aim of this study was to evaluate the effect of brace use application and the Schroth intervention on lung ventilation and respiratory muscle strength in patients treated long-term with a Chaneau brace and the Schroth method. Methods: A total of 26 post-menarche females aged 15.7 ± 1.5 years, with a Cobb angle of 18–48° and a diagnosis of AIS in inpatient rehabilitation were examined. All participants received brace treatment for a minimum of 3 months with a dosage of 20–22 h/day. This study protocol was performed three times: 1—brace intervention—first day of the present study; 2—without the brace—second day of the present study; and 3—Schroth intervention on the same day. Results: During the period of brace use, girls treated with a long-term therapy showed significantly reduced values for VC, FVC, and FEV1 and significantly higher values for inspiratory muscle strength PImax compared to values obtained in studies without the brace and after single exercises. Expiratory muscle strength did not differ significantly. Conclusions: The majority showed restrictive lung ventilation disorders and decreased respiratory muscle strength in relation to norms. There was a significant correlation of PImax with the duration of wearing the brace and the duration of therapy. Full article
Show Figures

Figure 1

15 pages, 3804 KiB  
Article
Elimination of Ethanol for the Production of Fucoidans from Brown Seaweeds: Characterization and Bioactivities
by Periaswamy Sivagnanam Saravana, Shanmugapriya Karuppusamy, Dilip K. Rai, Janith Wanigasekara, James Curtin and Brijesh K. Tiwari
Mar. Drugs 2024, 22(11), 493; https://doi.org/10.3390/md22110493 - 31 Oct 2024
Cited by 1 | Viewed by 1830
Abstract
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and [...] Read more.
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and its associated bioactivities. Fucoidans from brown seaweeds, Fucus vesiculosus and Ascophyllum nodosum, were extracted using green solvents such as citric acid (CA) followed by MWCO (molecular weight cut-off) filtration to obtain high-purity polysaccharides. The presence of functional groups typical to fucoidans, namely, fucose, sulfate, and glycosidic bonds, in the extracts were confirmed through the data obtained from FTIR (Fourier-transform infrared spectroscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), and solid-state CP–MAS (cross-polarization magic angle spinning) analysis. The MWCO analysis identified that the >300 kDa fraction can have better content of fucoidan (FV-CA 79.16%, FV-HCl 63.59%, AN-CA 79.21%, AN-HCl 80.70%) than the conventional extraction process. Furthermore, the >300 kDa fraction showed significantly higher antioxidant activities compared to crude fucoidan extracts. Crude fucoidan extracts showed significant inhibition of cell viability in human lung (A459 lung carcinoma cells) and colorectal adenocarcinoma (Caco-2) cells at higher concentrations. The fucoidan extracted with green solvents and avoiding alcohol-based precipitation has substantial antioxidant/antitumor action, so, due to this activity, it can be employed as functional foods in food applications. Full article
(This article belongs to the Special Issue Green Extraction for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

18 pages, 3015 KiB  
Review
Chest Tubes and Pleural Drainage: History and Current Status in Pleural Disease Management
by Claudio Sorino, David Feller-Kopman, Federico Mei, Michele Mondoni, Sergio Agati, Giampietro Marchetti and Najib M. Rahman
J. Clin. Med. 2024, 13(21), 6331; https://doi.org/10.3390/jcm13216331 - 23 Oct 2024
Cited by 2 | Viewed by 20617
Abstract
Thoracostomy and chest tube placement are key procedures in treating pleural diseases involving the accumulation of fluids (e.g., malignant effusions, serous fluid, pus, or blood) or air (pneumothorax) in the pleural cavity. Initially described by Hippocrates and refined through the centuries, chest drainage [...] Read more.
Thoracostomy and chest tube placement are key procedures in treating pleural diseases involving the accumulation of fluids (e.g., malignant effusions, serous fluid, pus, or blood) or air (pneumothorax) in the pleural cavity. Initially described by Hippocrates and refined through the centuries, chest drainage achieved a historical milestone in the 19th century with the creation of closed drainage systems to prevent the entry of air into the pleural space and reduce infection risk. The introduction of plastic materials and the Heimlich valve further revolutionized chest tube design and function. Technological advancements led to the availability of various chest tube designs (straight, angled, and pig-tail) and drainage systems, including PVC and silicone tubes with radiopaque stripes for better radiological visualization. Modern chest drainage units can incorporate smart digital systems that monitor and graphically report pleural pressure and evacuated fluid/air, improving patient outcomes. Suction application via wall systems or portable digital devices enhances drainage efficacy, although careful regulation is needed to avoid complications such as re-expansion pulmonary edema or prolonged air leak. To prevent recurrent effusion, particularly due to malignancy, pleurodesis agents can be applied through the chest tube. In cases of non-expandable lung, maintaining a long-term chest drain may be the most appropriate approach and procedures such as the placement of an indwelling pleural catheter can significantly improve quality of life. Continued innovations and rigorous training ensure that chest tube insertion remains a cornerstone of effective pleural disease management. This review provides a comprehensive overview of the historical evolution and modern advancements in pleural drainage. By addressing both current technologies and procedural outcomes, it serves as a valuable resource for healthcare professionals aiming to optimize pleural disease management and patient care. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

13 pages, 521 KiB  
Article
The Effect of Stretching Exercises Applied to Caregivers of Children with Development Disabilities on Musculoskeletal Muscle Mobility and Respiratory Function
by Amine Atac and Ebrar Atak
Int. J. Environ. Res. Public Health 2024, 21(10), 1361; https://doi.org/10.3390/ijerph21101361 - 15 Oct 2024
Viewed by 1702
Abstract
We aimed to investigate the effect of stretching exercises applied to the hamstring, one of the posterior muscle chains, on musculoskeletal flexibility, chest mobility, and respiratory function. Proprioceptive neuromuscular facilitation and static stretching exercises were applied to 30 healthcare personnel caring for children [...] Read more.
We aimed to investigate the effect of stretching exercises applied to the hamstring, one of the posterior muscle chains, on musculoskeletal flexibility, chest mobility, and respiratory function. Proprioceptive neuromuscular facilitation and static stretching exercises were applied to 30 healthcare personnel caring for children with developmental delays using a crossover randomized study design. Posterior muscle chain mobility was assessed using the popliteal angle test (PAT) for the hamstring muscle, the mobility of the lumbar muscles was assessed using the Schober test (ST), and the mobility of the posterior chain muscles as a whole was assessed using the finger-to-floor distance test. Chest mobility was measured using chest circumference measurements and lung volumes were measured using the pulmonary function test (PFT). The results showed that stretching exercises applied to the hamstrings led to significant improvements in PAT, ST, and chest mobility in the direction of maximal expiration (p < 0.05), without being superior to each other. Ten males (33.3%) and twenty females (66.7%) who met the inclusion criteria were analyzed. The mean age of the participants was 26.6 ± 5.9 years, the mean height was 169.53 ± 8.67 cm, the mean weight was 65.26 ± 12.03 kg, and the mean body mass index was 22.58 ± 3 kg/m2. Chest inspiratory mechanics also showed a low positive correlation with posterior muscle mobility (r = 0.381; p = 0.038). There was no significant change in PAT. Within the framework of the myofascial theory, stretching exercises that can contribute positively to the musculoskeletal and respiratory system structures of healthcare professionals can be recommended and encouraged to healthcare professionals. Full article
Show Figures

Figure 1

22 pages, 7173 KiB  
Article
An Automated Clubbed Fingers Detection System Based on YOLOv8 and U-Net: A Tool for Early Prediction of Lung and Cardiovascular Diseases
by Wen-Shin Hsu, Guan-Tsen Liu, Su-Juan Chen, Si-Yu Wei and Wei-Hsun Wang
Diagnostics 2024, 14(19), 2234; https://doi.org/10.3390/diagnostics14192234 - 7 Oct 2024
Cited by 1 | Viewed by 4706
Abstract
Background/Objectives: Lung and cardiovascular diseases are leading causes of mortality worldwide, yet early detection remains challenging due to the subtle symptoms. Digital clubbing, characterized by the bulbous enlargement of the fingertips, serves as an early indicator of these diseases. This study aims [...] Read more.
Background/Objectives: Lung and cardiovascular diseases are leading causes of mortality worldwide, yet early detection remains challenging due to the subtle symptoms. Digital clubbing, characterized by the bulbous enlargement of the fingertips, serves as an early indicator of these diseases. This study aims to develop an automated system for detecting digital clubbing using deep-learning models for real-time monitoring and early intervention. Methods: The proposed system utilizes the YOLOv8 model for object detection and U-Net for image segmentation, integrated with the ESP32-CAM development board to capture and analyze finger images. The severity of digital clubbing is determined using a custom algorithm based on the Lovibond angle theory, categorizing the condition into normal, mild, moderate, and severe. The system was evaluated using 1768 images and achieved cloud-based and real-time processing capabilities. Results: The system demonstrated high accuracy (98.34%) in real-time detection with precision (98.22%), sensitivity (99.48%), and specificity (98.22%). Cloud-based processing achieved slightly lower but robust results, with an accuracy of 96.38%. The average processing time was 0.15 s per image, showcasing its real-time potential. Conclusions: This automated system provides a scalable and cost-effective solution for the early detection of digital clubbing, enabling timely intervention for lung and cardiovascular diseases. Its high accuracy and real-time capabilities make it suitable for both clinical and home-based health monitoring. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

20 pages, 1518 KiB  
Review
Insights into the Two Most Common Cancers of Primitive Gut-Derived Structures and Their Microbial Connections
by Amitabha Ray, Thomas F. Moore, Dayalu S. L. Naik and Daniel M. Borsch
Medicina 2024, 60(9), 1515; https://doi.org/10.3390/medicina60091515 - 18 Sep 2024
Viewed by 2450
Abstract
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations [...] Read more.
The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases—both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Synthesis and Structure of 5-Methyl-9-(trifluoromethyl)-12H-quino[3,4-b][1,4]benzothiazinium Chloride as Anticancer Agent
by Andrzej Zieba, Violetta Kozik, Kinga Suwinska, Agata Kawulok, Tadeusz Pluta, Josef Jampilek and Andrzej Bak
Molecules 2024, 29(18), 4337; https://doi.org/10.3390/molecules29184337 - 12 Sep 2024
Cited by 1 | Viewed by 1482
Abstract
In this work, the synthesis, structural analysis and anticancer properties of 5-methyl-9-trifluoromethyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (3) are described. Compound 3 was synthesized by reacting 1-methyl-4-butylthio-3-(benzoylthio)quinolinium chloride with 4-(trifluoromethyl)aniline, respectively. The structure of the resulting product was determined using 1 [...] Read more.
In this work, the synthesis, structural analysis and anticancer properties of 5-methyl-9-trifluoromethyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (3) are described. Compound 3 was synthesized by reacting 1-methyl-4-butylthio-3-(benzoylthio)quinolinium chloride with 4-(trifluoromethyl)aniline, respectively. The structure of the resulting product was determined using 1H-NMR and 13C-NMR spectroscopy as well as HR-MS spectrometry. The spatial geometry of agent 3 and the arrangement of molecules in the crystal (unit cell) were also confirmed using X-ray diffraction. The tetracyclic quinobenzothiazinium system is fairly planar because the dihedral angle between the planes formed by the benzene ring and the quinoline system is 173.47°. In order to obtain insight into the electronic charge distribution of the investigated molecule, electronic structure calculations employing the Density Functional Theory (DFT) were performed. Moreover, antiproliferative activity against a set of pancreatic cancer cell lines was tested, with compound 3 showing IC50 values against human primary pancreatic adenocarcinoma BxPC-3 and human epithelioid pancreatic carcinoma Panc-1 of 0.051 µM and 0.066 µM, respectively. The IC50 value of cytotoxicity/cell viability of the investigated compound assessed on normal human lung fibroblasts WI38 was 0.36 µM. Full article
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
Comparative Analysis of the Kinematic Characteristics of Lunge-Style and Squat-Style Jerk Techniques in Elite Weightlifters
by Gongju Liu, Zhanyang He, Binyong Ye, Haiying Guo, Huiju Pan, Houwei Zhu and Guanliang Meng
Life 2024, 14(9), 1086; https://doi.org/10.3390/life14091086 - 29 Aug 2024
Cited by 2 | Viewed by 1389
Abstract
This study aimed to discuss the differences in technical characteristics between the lunge-style and squat-style jerk techniques and to reveal the adaptability of these techniques for individual weightlifters. A total of 52 attempts by 32 male weightlifters were selected, and the video data [...] Read more.
This study aimed to discuss the differences in technical characteristics between the lunge-style and squat-style jerk techniques and to reveal the adaptability of these techniques for individual weightlifters. A total of 52 attempts by 32 male weightlifters were selected, and the video data were digitized manually using the SIMI Motion 7.50 three-dimensional analysis system. The technical characteristics of the lunge split and squat jerk were fundamentally consistent during the pre-squat, force exertion, and inertia ascent phases. The primary differences between the lunge split and squat jerk techniques were observed during the squatting and support phases, including the vertical descent velocity of the barbell at the end of the squat shoulder-locking phase and the stability angles in the sagittal and coronal axes. The vertical velocity of the barbell at the end of the squat shoulder-locking phase was significantly greater in the squat style (−0.41 ± 0.17 vs. −0.88 ± 0.14) compared to the lunge style (t = 6.393, p < 0.05). The stability angle on the sagittal axis at the end of the squat-supporting phase in the lunge style was significantly greater (46.99 ± 3.23 vs. 13.64 ± 0.51) than that of the squat style (t = 45.639, p < 0.05). Full article
Show Figures

Figure 1

17 pages, 1320 KiB  
Article
The Importance of Topographical Recognition of Pulmonary Arteries in Diagnostics and Treatment of CTEPH, Based on an Analysis of a Dissected Case Model—A Pilot Study
by Matiss Zicans, Dzintra Kazoka, Mara Pilmane and Andris Skride
Diagnostics 2024, 14(15), 1684; https://doi.org/10.3390/diagnostics14151684 - 3 Aug 2024
Cited by 1 | Viewed by 1806
Abstract
Background: Knowledge of the anatomy of pulmonary arteries is essential in many invasive procedures concerning pulmonary circulation. In the diagnosis and treatment of chronic thromboembolic pulmonary hypertension (CTEPH), two-dimensional (2D) pulmonary angiography is used. Recognizing the topographic course of the pulmonary arteries and [...] Read more.
Background: Knowledge of the anatomy of pulmonary arteries is essential in many invasive procedures concerning pulmonary circulation. In the diagnosis and treatment of chronic thromboembolic pulmonary hypertension (CTEPH), two-dimensional (2D) pulmonary angiography is used. Recognizing the topographic course of the pulmonary arteries and understanding the status in three dimensions (3D) is paramount. This study aimed to evaluate and describe the branching variant of pulmonary arteries in a single case, as well as morphological parameters of the segmental arteries, like length, diameter and branching angles. Methods: One pair of embalmed human cadaver lungs was dissected by a scalpel and surgical forceps and was measured up to the subsegmental arteries. Results: The diameters (ranging from 3.04 to 9.29 mm) and lengths (ranging from 9.09 to 53.91 mm) of the pulmonary segmental arteries varied. The proximal branching angles were wide and close to perpendicular, while distally, the angles between the segmental and subsegmental arteries were narrower (30–45°). Upon evaluating the branching, rare variations were identified and delineated, notably in the lower lobes of both lungs. Conclusions: Utilizing knowledge and data in clinical settings is instrumental for effectively diagnosing and treating CTEPH. Further research is required to explore the complications in invasive procedures related to various anatomical variations. Full article
(This article belongs to the Special Issue Advances in Human Anatomy)
Show Figures

Figure 1

21 pages, 6251 KiB  
Article
Preparation and Evaluation of Inhalable Microparticles with Improved Aerodynamic Performance and Dispersibility Using L-Leucine and Hot-Melt Extrusion
by Jin-Hyuk Jeong, Ji-Su Kim, Yu-Rim Choi, Dae Hwan Shin, Ji-Hyun Kang, Dong-Wook Kim, Yun-Sang Park and Chun-Woong Park
Pharmaceutics 2024, 16(6), 784; https://doi.org/10.3390/pharmaceutics16060784 - 8 Jun 2024
Cited by 1 | Viewed by 1987
Abstract
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility [...] Read more.
Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery. Full article
Show Figures

Figure 1

Back to TopTop