Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = lunar ice

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 23271 KiB  
Article
Comprehensive Evaluation of the Lunar South Pole Landing Sites Using Self-Organizing Maps for Scientific and Engineering Purposes
by Hengxi Liu, Yongzhi Wang, Shibo Wen, Sheng Zhang, Kai Zhu and Jianzhong Liu
Remote Sens. 2025, 17(9), 1579; https://doi.org/10.3390/rs17091579 - 29 Apr 2025
Viewed by 889
Abstract
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes [...] Read more.
The permanently shadowed regions of the lunar South Pole have become a key target for international lunar exploration due to their unique scientific value and engineering challenges. In order to effectively screen suitable landing zones near the lunar South Pole, this research proposes a comprehensive evaluation method based on a self-organizing map (SOM). Using multi-source remote sensing data, the method classifies and analyzes candidate landing zones by combining scientific purposes (such as hydrogen abundance, iron oxide abundance, gravity anomalies, water ice distance analysis, and geological features) and engineering constraints (such as Sun visibility, Earth visibility, slope, and roughness). Through automatic clustering, the SOM model finds the important regions. Subsequently, it integrates with a supervised learning model, a random forest, to determine the feature importance weights in more detail. The results from the research indicate the following: the areas suitable for landing account for 9.05%, 5.95%, and 5.08% in the engineering, scientific, and synthesized perspectives, respectively. In the weighting analysis of the comprehensive data, the weights of Earth visibility, hydrogen abundance, kilometer-scale roughness, and slope data all account for more than 10%, and these are thought to be the four most important factors in the automated site selection process. Furthermore, the kilometer-scale roughness data are more important in the comprehensive weighting, which is in line with the finding that the kilometer-scale roughness data represent both surface roughness from an engineering perspective and bedrock geology from a scientific one. In this study, a local examination of typical impact craters is performed, and it is confirmed that all 10 possible landing sites suggested by earlier authors are within the appropriate landing range. The findings demonstrate that the SOM-model-based analysis approach can successfully assess lunar South Pole landing areas while taking multiple constraints into account, uncovering spatial distribution features of the region, and offering a rationale for choosing desired landing locations. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

33 pages, 13813 KiB  
Review
Advances in Thermal Management for Liquid Hydrogen Storage: The Lunar Perspective
by Jing Li, Fulin Fan, Jingkai Xu, Heran Li, Jian Mei, Teng Fei, Chuanyu Sun, Jinhai Jiang, Rui Xue, Wenying Yang and Kai Song
Energies 2025, 18(9), 2220; https://doi.org/10.3390/en18092220 - 27 Apr 2025
Viewed by 834
Abstract
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage [...] Read more.
Liquid hydrogen is regarded as a key energy source and propellant for lunar bases due to its high energy density and abundance of polar water ice resources. However, its low boiling point and high latent heat of vaporization pose severe challenges for storage and management under the extreme lunar environment characterized by wide temperature variations, low pressure, and low gravity. This paper reviews the strategies for siting and deployment of liquid hydrogen storage systems on the Moon and the technical challenges posed by the lunar environment, with particular attention for thermal management technologies. Passive technologies include advanced insulation materials, thermal shielding, gas-cooled shielding layers, ortho-para hydrogen conversion, and passive venting, which optimize insulation performance and structural design to effectively reduce evaporation losses and maintain storage stability. Active technologies, such as cryogenic fluid mixing, thermodynamic venting, and refrigeration systems, dynamically regulate heat transfer and pressure variations within storage tanks, further enhancing storage efficiency and system reliability. In addition, this paper explores boil-off hydrogen recovery and reutilization strategies for liquid hydrogen, including hydrogen reliquefaction, mechanical, and non-mechanical compression. By recycling vaporized hydrogen, these strategies reduce resource waste and support the sustainable development of energy systems for lunar bases. In conclusion, this paper systematically evaluates passive and active thermal management technologies as well as vapor recovery strategies along with their technical adaptability, and then proposes feasible storage designs for the lunar environment. These efforts provide critical theoretical foundations and technical references for achieving safe and efficient storage of liquid hydrogen and energy self-sufficiency in lunar bases. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 8368 KiB  
Article
A Novel Ultrasonic Sampling Penetrator for Lunar Water Ice in the Lunar Permanent Shadow Exploration Mission
by Yinchao Wang, Zihao Yin, Chenxu Ding, Fei Liu, Weiwei Zhang, Lin Zu, Zhaozeng Gao, Guanghong Tao and Suyang Yu
Aerospace 2025, 12(4), 358; https://doi.org/10.3390/aerospace12040358 - 19 Apr 2025
Viewed by 472
Abstract
This paper presents an ultrasonic sampling penetrator with a staggered-impact mode, which has been developed for the extraction of lunar water ice. A comparison of this penetrator with existing drilling and sampling equipment reveals its effectiveness in minimizing disturbance to the in situ [...] Read more.
This paper presents an ultrasonic sampling penetrator with a staggered-impact mode, which has been developed for the extraction of lunar water ice. A comparison of this penetrator with existing drilling and sampling equipment reveals its effectiveness in minimizing disturbance to the in situ state of lunar water ice. This is due to the interleaved impact penetration sampling method, which preserves the original stratigraphic information of lunar water ice. The ultrasonic sampling penetrator utilizes a single piezoelectric stack to generate the staggered-impact motion required for the sampler. Finite element simulation methods are employed for the structural design, with modal analysis and modal degeneracy carried out. The combined utilization of harmonic response analysis and transient analysis is instrumental in attaining the staggered-impact motion. The design parameters were then used to fabricate a prototype and construct a test platform, and the design’s correctness was verified by the experimental results. In future sampling of lunar water ice at the International Lunar Research Station, the utilization of the ultrasonic sampling penetrator is recommended. Full article
Show Figures

Figure 1

20 pages, 12586 KiB  
Article
Design of an Orbital Infrastructure to Guarantee Continuous Communication to the Lunar South Pole Region
by Nicolò Trabacchin and Giacomo Colombatti
Aerospace 2025, 12(4), 289; https://doi.org/10.3390/aerospace12040289 - 30 Mar 2025
Viewed by 613
Abstract
The lunar south pole has gained significant attention due to its unique scientific value and potential for supporting future human exploration. Its potential water ice reservoirs and favourable conditions for long-term habitation make it a strategic target for upcoming space missions. This has [...] Read more.
The lunar south pole has gained significant attention due to its unique scientific value and potential for supporting future human exploration. Its potential water ice reservoirs and favourable conditions for long-term habitation make it a strategic target for upcoming space missions. This has led to a continuous increase in missions towards the Moon thanks mainly to the boost provided by NASA’s Artemis programme. This study focuses on designing a satellite constellation to provide communication coverage for the lunar south pole. Among the various cislunar orbits analysed, the halo orbit families near Earth–Moon Lagrangian points L1 and L2 emerged as the most suitable ones for ensuring continuous communication while minimising the number of satellites required. These orbits, first described by Farquhar in 1966, allow spacecraft to maintain constant communication with Earth due to their unique geometric properties. The candidate orbits were initially implemented in MATLAB using the Circular Restricted Three-Body Problem (CR3BP) to analyse their main features such as stability, periodicity, and coverage time percentage. In order to develop a more detailed and realistic scenario, the obtained initial conditions were refined using a full ephemeris model, incorporating a ground station located near the Connecting Ridge Extension to evaluate communication performance depending on the minimum elevation angle of the antenna. Different multi-body constellations were propagated; however, the constellation consisting of three satellites around L2 and a single satellite around L1 turned out to be the one that best matches the coverage requirements. Full article
(This article belongs to the Special Issue Advances in Lunar Exploration)
Show Figures

Figure 1

40 pages, 14878 KiB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Cited by 1 | Viewed by 1738
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

13 pages, 2926 KiB  
Article
Detecting Lunar Subsurface Water Ice Using FMCW Ground Penetrating Radar: Numerical Analysis with Realistic Permittivity Variations
by Shunya Takekura, Hideaki Miyamoto and Makito Kobayashi
Remote Sens. 2025, 17(6), 1050; https://doi.org/10.3390/rs17061050 - 17 Mar 2025
Viewed by 1180
Abstract
This study investigates the detectability of a putative layer of regolith containing water ice in the lunar polar regions using ground penetrating radar (GPR). Numerical simulations include realistic variations in the relative permittivity of the lunar regolith, considering both density and, for the [...] Read more.
This study investigates the detectability of a putative layer of regolith containing water ice in the lunar polar regions using ground penetrating radar (GPR). Numerical simulations include realistic variations in the relative permittivity of the lunar regolith, considering both density and, for the first time, the effects of temperature on permittivity profiles. We follow the case of previous theoretical studies of water migration, which suggest that water ice accumulates at depths ranging from a few centimeters to tens of centimeters, appropriate depths to explore using GPR. In particular, frequency-modulated continuous wave (FMCW) radar is well-suited for this purpose due to its high range resolution and robust signal-to-noise ratio. This study evaluates two scenarios for the presence of lunar water ice: (1) a layer of regolith containing water ice at a depth of 5 cm, with a thickness of 5 cm, and (2) a layer of regolith containing water ice at a depth of 20 cm, with a thickness of 10 cm. Our computational results show that FMCW GPR, equipped with a dynamic range of 90 dB, is capable of detecting reflections from the interfaces of these layers, even under conditions of low water ice content and using antennas with low directivity. In addition, optimized antenna offsets improve the resolution of the upper and lower interfaces, particularly when applied to the surface of ancient crater ejecta. This study highlights the critical importance of understanding subsurface density and temperature structures for the accurate detection of water-ice-bearing regolith layers. Full article
Show Figures

Figure 1

23 pages, 7175 KiB  
Article
Integrated Analysis of Water Ice Detection in Erlanger Crater, Lunar North Pole: Insights from Chandrayaan-1 Mini-SAR and Chandrayaan-2 DFSAR Data
by Chandani Sahu, Shashi Kumar, Himanshu Govil and Shovan Lal Chattoraj
Remote Sens. 2025, 17(1), 31; https://doi.org/10.3390/rs17010031 - 26 Dec 2024
Cited by 1 | Viewed by 1284
Abstract
The characterization of the lunar surface and subsurface through the utilization of synthetic aperture radar data has assumed a pivotal role in the domain of lunar exploration science. This investigation concentrated on the polarimetric analysis aimed at identifying water ice within a specific [...] Read more.
The characterization of the lunar surface and subsurface through the utilization of synthetic aperture radar data has assumed a pivotal role in the domain of lunar exploration science. This investigation concentrated on the polarimetric analysis aimed at identifying water ice within a specific crater, designated Erlanger, located at the lunar north pole, which is fundamentally a region that is perpetually shaded from solar illumination. The area that is perpetually shaded on the moon is defined as that region that is never exposed to sunlight due to the moon’s slightly tilted rotational axis. These permanently shaded regions serve as cold traps for water molecules. To ascertain the presence of water ice within the designated study area, we conducted an analysis of two datasets from the Chandrayaan mission: Mini-SAR data from Chandrayaan-1 and Dual-Frequency Synthetic Aperture Radar (DFSAR) data from Chandrayaan-2. The polarimetric analysis of the Erlanger Crater, located in a permanently shadowed region of the lunar north pole, utilizes data from the Dual-Frequency Synthetic Aperture Radar (DFSAR) and the Mini-SAR. This study focuses exclusively on the L-band DFSAR data due to the unavailability of S-band data for the Erlanger Crater. The crater, identified by the PSR ID NP_869610_0287570, is of particular interest for its potential water ice deposits. The analysis employs three decomposition models—m-delta, m-chi, and m-alpha—derived from the Mini-SAR data, along with the H-A-Alpha model known as an Eigenvector and Eigenvalue model, applied to the DFSAR data. The H-A-Alpha helps in assessing the entropy and anisotropy of the lunar surface. The results reveal a correlation between the hybrid polarimetric models (m-delta, m-chi, and m-alpha) and fully polarimetric parameters (entropy, anisotropy, and alpha), suggesting that volume scattering predominates inside the crater walls, while surface and double bounce scattering are more prevalent in the right side of the crater wall and surrounding areas. Additionally, the analysis of the circular polarization ratio (CPR) from both datasets suggests the presence of water ice within and around the crater, as values greater than 1 were observed. This finding aligns with other studies indicating that the high CPR values are indicative of ice deposits in the lunar polar regions. The polarimetric analysis of the Erlanger Crater contributes to the understanding of lunar polar regions and highlights the potential for future exploration and resource utilization on the Moon. Full article
(This article belongs to the Special Issue New Approaches in High-Resolution SAR Imaging)
Show Figures

Figure 1

23 pages, 6340 KiB  
Review
A Review of Lidar Technology in China’s Lunar Exploration Program
by Genghua Huang and Weiming Xu
Remote Sens. 2024, 16(23), 4354; https://doi.org/10.3390/rs16234354 - 22 Nov 2024
Viewed by 2080
Abstract
Lidar technology plays a pivotal role in lunar exploration, particularly in terrain mapping, 3D topographic surveying, and velocity measurement, which are crucial for guidance, navigation, and control. This paper reviews the current global research and applications of lidar technology in lunar missions, noting [...] Read more.
Lidar technology plays a pivotal role in lunar exploration, particularly in terrain mapping, 3D topographic surveying, and velocity measurement, which are crucial for guidance, navigation, and control. This paper reviews the current global research and applications of lidar technology in lunar missions, noting that existing efforts are primarily focused on 3D terrain mapping and velocity measurement. The paper also discusses the detailed system design and key results of the laser altimeter, laser ranging sensor, laser 3D imaging sensor, and laser velocity sensor used in the Chang’E lunar missions. By comparing and analyzing similar foreign technologies, this paper identifies future development directions for lunar laser payloads. The evolution towards multi-beam single-photon detection technology aims to enhance the point cloud density and detection efficiency. This manuscript advocates that China actively advance new technologies and conduct space application research in areas such as multi-beam single-photon 3D terrain mapping, lunar surface water ice measurement, and material composition analysis, to elevate the use of laser pay-loads in lunar and space exploration. Full article
(This article belongs to the Special Issue Laser and Optical Remote Sensing for Planetary Exploration)
Show Figures

Figure 1

23 pages, 20937 KiB  
Article
Lunarminer Framework for Nature-Inspired Swarm Robotics in Lunar Water Ice Extraction
by Joven Tan, Noune Melkoumian, David Harvey and Rini Akmeliawati
Biomimetics 2024, 9(11), 680; https://doi.org/10.3390/biomimetics9110680 - 7 Nov 2024
Viewed by 2276
Abstract
The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the framework [...] Read more.
The Lunarminer framework explores the use of biomimetic swarm robotics, inspired by the division of labor in leafcutter ants and the synchronized flashing of fireflies, to enhance lunar water ice extraction. Simulations of water ice extraction within Shackleton Crater showed that the framework may improve task allocation, by reducing the extraction time by up to 40% and energy consumption by 31% in scenarios with high ore block quantities. This system, capable of producing up to 181 L of water per day from excavated regolith with a conversion efficiency of 0.8, may allow for supporting up to eighteen crew members. It has demonstrated robust fault tolerance and sustained operational efficiency, even for a 20% robot failure rate. The framework may help to address key challenges in lunar resource extraction, particularly in the permanently shadowed regions. To refine the proposed strategies, it is recommended that further studies be conducted on their large-scale applications in space mining operations at the Extraterrestrial Environmental Simulation (EXTERRES) laboratory at the University of Adelaide. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Biomimetics)
Show Figures

Figure 1

20 pages, 5498 KiB  
Article
Terahertz Emission Modeling of Lunar Regolith
by Suyun Wang
Remote Sens. 2024, 16(21), 4037; https://doi.org/10.3390/rs16214037 - 30 Oct 2024
Cited by 1 | Viewed by 1341
Abstract
We investigate the terahertz (THz) scattering and emission properties of lunar regolith by modeling it as a random medium with rough top and bottom boundaries and a host medium situated beneath. The total scattering and emission arise from three sources: the rough boundaries, [...] Read more.
We investigate the terahertz (THz) scattering and emission properties of lunar regolith by modeling it as a random medium with rough top and bottom boundaries and a host medium situated beneath. The total scattering and emission arise from three sources: the rough boundaries, the volume, and the interactions between the boundaries and the volume. To account for these sources, we model their respective phase matrices and apply the matrix doubling approach to couple these phase matrices to compute the total emission. The model is then used to explore insights into lunar regolith scattering and emission processes. The simulations reveal that surface roughness is the primary contributor to total scattering, while dielectric contrasts between the volume and the boundaries dominate total emission. The THz emissivity is highly sensitive to the regolith dielectric constant, particularly its imaginary part, making it a promising alternative for identifying previously undetected water ice in the lunar polar regions. The THz emissivity model developed in this study can be readily applied to invert the surface parameters of lunar regolith using THz observations. Full article
(This article belongs to the Special Issue Future of Lunar Exploration)
Show Figures

Figure 1

25 pages, 18235 KiB  
Review
Lunar Exploration Based on Ground-Based Radar: Current Research Progress and Future Prospects
by Jiangwan Xu, Chunyu Ding, Yan Su, Zonghua Ding, Song Yang, Jiawei Li, Zehua Dong, Ravi Sharma, Xiaohang Qiu, Zhonghan Lei, Haoyu Chen, Changzhi Jiang, Wentao Chen, Qi Cheng and Zihang Liang
Remote Sens. 2024, 16(18), 3484; https://doi.org/10.3390/rs16183484 - 19 Sep 2024
Cited by 3 | Viewed by 3015
Abstract
Lunar exploration is of significant importance in the development and utilization of in situ lunar resources, water ice exploration, and astronomical science. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low [...] Read more.
Lunar exploration is of significant importance in the development and utilization of in situ lunar resources, water ice exploration, and astronomical science. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. Our paper introduces the fundamental principles of lunar imaging using GBR and systematically reviews studies on lunar surface/subsurface detection, the dielectric properties inversion of the lunar regolith, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of the Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for GBR radar in future lunar exploration missions. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

16 pages, 16714 KiB  
Article
Water Recuperation from Regolith at Martian, Lunar & Micro-Gravity during Parabolic Flight
by Dario Farina, Hatim Machrafi, Patrick Queeckers, Christophe Minetti and Carlo Saverio Iorio
Aerospace 2024, 11(6), 475; https://doi.org/10.3390/aerospace11060475 - 16 Jun 2024
Cited by 1 | Viewed by 2716
Abstract
Recent discoveries of potential ice particles and ice-cemented regolith on extraterrestrial bodies like the Moon and Mars have opened new opportunities for developing technologies to extract water, facilitating future space missions and activities on these extraterrestrial body surfaces. This study explores the potential [...] Read more.
Recent discoveries of potential ice particles and ice-cemented regolith on extraterrestrial bodies like the Moon and Mars have opened new opportunities for developing technologies to extract water, facilitating future space missions and activities on these extraterrestrial body surfaces. This study explores the potential for water extraction from regolith through an experiment designed to test water recuperation from regolith simulant under varying gravitational conditions. The resultant water vapor extracted from the regolith is re-condensed on a substrate surface and collected in liquid form. Three types of substrates, hydrophobic, hydrophilic, and grooved, are explored. The system’s functionality was assessed during a parabolic flight campaign simulating three distinct gravity levels: microgravity, lunar gravity, and Martian gravity. Our findings reveal that the hydrophobic surface demonstrates the highest efficiency due to drop-wise condensation, and lower gravity levels result in increased water condensation on the substrates. The experiments aimed to understand the performance of specific substrates under lunar, Martian, and microgravity conditions, providing an approach for in-situ water recovery, which is crucial for establishing economically sustainable water supplies for future missions. To enhance clarity and readability, in this paper, “H2O” will be referred to as “water”. Full article
(This article belongs to the Special Issue The (Near) Future of Space Resources)
Show Figures

Figure 1

16 pages, 8324 KiB  
Article
Temperature Prediction of Icy Lunar Soil Sampling Based on the Discrete Element Method
by Deming Zhao, Tianyi Peng, Weiwei Zhang, He Wang and Jinsheng Cui
Aerospace 2024, 11(5), 400; https://doi.org/10.3390/aerospace11050400 - 16 May 2024
Cited by 1 | Viewed by 1285
Abstract
This study is part of the preliminary research for the Chang’e 7 project in China. The Chang’e 7 project plans to drill to penetrate the lunar polar soil and collect lunar soil samples using a spiral groove structure. Ice in the cold environment [...] Read more.
This study is part of the preliminary research for the Chang’e 7 project in China. The Chang’e 7 project plans to drill to penetrate the lunar polar soil and collect lunar soil samples using a spiral groove structure. Ice in the cold environment of the lunar polar region is one of the important targets for sampling. In the vacuum environment of the lunar surface, icy soil samples are sensitive to ambient temperature and prone to solid–gas phase change as the temperature increases. To predict the temperature range of lunar soil samples, this study analyzed the effect of thermal parameters on the temperature rise of lunar soil particles and the drill using discrete element simulation. The parameters included in the thermal effect analysis included the thermal conductivity and specific heat capacity of the drilling tools and lunar soil particles. The simulation showed that the temperature of the icy lunar soil sample in the spiral groove ranged from −127.89 to −160.16 °C within the thermal parameter settings. The magnitude of the value was negatively correlated with the thermal conductivity and specific heat capacity of the lunar soil particles, and it was positively correlated with those of the drilling tools. The temperature variation in the drill bit ranged from −51.21 to −132 °C. The magnitude of the value was positively correlated with the thermal conductivity and specific heat capacity of the lunar soil particles and the thermal conductivity of the drilling tool. Full article
(This article belongs to the Special Issue Space Sampling and Exploration Robotics)
Show Figures

Figure 1

12 pages, 3019 KiB  
Article
Temperature Dependence of the Dielectric Constant on the Lunar Surface Based on Mini-RF and Diviner Observations
by Chenhao Sun, Hideaki Miyamoto and Makito Kobayashi
Geosciences 2024, 14(4), 101; https://doi.org/10.3390/geosciences14040101 - 9 Apr 2024
Cited by 1 | Viewed by 1745
Abstract
Radar observation is an effective way to understand subsurface structures in terms of the dielectric constant, whose controlling factors include chemical composition, packing density, and water/ice content. Recently, laboratory measurements have shown that the dielectric constant of lunar regolith simulants also depends on [...] Read more.
Radar observation is an effective way to understand subsurface structures in terms of the dielectric constant, whose controlling factors include chemical composition, packing density, and water/ice content. Recently, laboratory measurements have shown that the dielectric constant of lunar regolith simulants also depends on the temperature, which has never been evaluated from remote sensing data. In this study, we estimated the dielectric constant from the Miniature Radio Frequency (Mini-RF) data on a lunar crater floor in the north polar region at two different local times (i.e., different surface temperatures). We calculated the dielectric constant using the inversion method and obtained the bolometric surface temperature from the Diviner Lunar Radiometer Experiment (Diviner) data. The histograms of the estimated dielectric constant values are different between the two local times. This could be interpreted as a result of the temperature dependence of the dielectric constant, while further evaluation of the influence of topography on the incidence angle and small surface roughness is needed. Nevertheless, our result suggests that the temperature dependence of the dielectric constant should be considered when interpreting S-band radar observations of the Moon and other celestial bodies with large surface temperature differences. Full article
Show Figures

Figure 1

23 pages, 33239 KiB  
Article
Lunar Surface Resource Exploration: Tracing Lithium, 7 Li and Black Ice Using Spectral Libraries and Apollo Mission Samples
by Susana del Carmen Fernández, Fernando Alberquilla, Julia María Fernández, Enrique Díez, Javier Rodríguez, Rubén Muñiz, Javier F. Calleja, Francisco Javier de Cos and Jesús Martínez-Frías
Remote Sens. 2024, 16(7), 1306; https://doi.org/10.3390/rs16071306 - 8 Apr 2024
Viewed by 2721
Abstract
This is an exercise to explore the concentration of lithium, lithium-7 isotope and the possible presence of black dirty ice on the lunar surface using spectral data obtained from the Clementine mission. The main interest in tracing the lithium and presence of dark [...] Read more.
This is an exercise to explore the concentration of lithium, lithium-7 isotope and the possible presence of black dirty ice on the lunar surface using spectral data obtained from the Clementine mission. The main interest in tracing the lithium and presence of dark ice on the lunar surface is closely related to future human settlement missions on the moon. We investigate the distribution of lithium and 7 Li isotope on the lunar surface by employing spectral data from the Clementine images. We utilized visible (VIS–NIR) imagery at wavelengths of 450, 750, 900, 950 and 1000 nm, along with near-infrared (NIR–SWIR) at 1100, 1250, 1500, 2000, 2600 and 2780 nm, encompassing 11 bands in total. This dataset offers a comprehensive coverage of about 80% of the lunar surface, with resolutions ranging from 100 to 500 m, spanning latitudes from 80°S to 80°N. In order to extract quantitative abundance of lithium, ground-truth sites were used to calibrate the Clementine images. Samples (specifically, 12045, 15058, 15475, 15555, 62255, 70035, 74220 and 75075) returned from Apollo missions 12, 15, 16 and 17 have been correlated to the Clementine VIS–NIR bands and five spectral ratios. The five spectral ratios calculated synthesize the main spectral features of sample spectra that were grouped by their lithium and 7 Li content using Principal Component Analysis. The ratios spectrally characterize substrates of anorthosite, silica-rich basalts, olivine-rich basalts, high-Ti mare basalts and Orange and Glasses soils. Our findings reveal a strong linear correlation between the spectral parameters and the lithium content in the eight Apollo samples. With the values of the 11 Clementine bands and the 5 spectral ratios, we performed linear regression models to estimate the concentration of lithium and 7 Li. Also, we calculated Digital Terrain Models (Altitude, Slope, Aspect, DirectInsolation and WindExposition) from LOLA-DTM to discover relations between relief and spatial distribution of the extended models of lithium and 7 Li. The analysis was conducted in a mask polygon around the Apollo 15 landing site. This analysis seeks to uncover potential 7 Li enrichment through spallation processes, influenced by varying exposure to solar wind. To explore the possibility of finding ice mixed with regolith (often referred to as `black ice’), we extended results to the entire Clementine coverage spectral indices, calculated with a library (350–2500 nm) of ice samples contaminated with various concentrations of volcanic particles. Full article
(This article belongs to the Special Issue Future of Lunar Exploration)
Show Figures

Figure 1

Back to TopTop