Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = lumped capacitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5121 KiB  
Article
Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology
by Honglin Zhang, Jihong Zhang, Song Zha, Huan Jiang, Tao Zhou, Chenxi Liu and Peiguo Liu
Electronics 2025, 14(15), 3029; https://doi.org/10.3390/electronics14153029 - 30 Jul 2025
Viewed by 154
Abstract
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit [...] Read more.
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit model and translated into a physical ESS implementation. It consists of two resonant rings, vertically arranged and loaded with diodes, along with two lumped capacitors. Simulation and measurement results demonstrate that the IL is less than 3 dB when in the OFF state in a working frequency band, and the SE exceeds 20 dB when in the ON state. Moreover, the ESS’s dual-polarization, low cost, and easy-to-design characteristics hold great promise for broad applications in protecting communication and radar systems in complex electromagnetic environments. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

14 pages, 13798 KiB  
Article
An Unenclosed Quasi-Static Cavity Resonator-Based Ubiquitous 3-D Wireless Power Transfer System Supporting Simultaneous Through-Wall Wireless Communications
by Qiaoli Zhang, Lingao Fan, Fangcheng Ren, Zhen Yue, Deshuang Zhao, Shuai Ding and Bingzhong Wang
Micromachines 2025, 16(1), 13; https://doi.org/10.3390/mi16010013 - 26 Dec 2024
Cited by 1 | Viewed by 1061
Abstract
With the emergence of the Internet of Things (IoT), the demand on the wireless power supply to consumer electronics simultaneously requires much more location freedom, ease of use, and performance with wireless communications. In this paper, an unenclosed quasi-static cavity resonator (QSCR) constructed [...] Read more.
With the emergence of the Internet of Things (IoT), the demand on the wireless power supply to consumer electronics simultaneously requires much more location freedom, ease of use, and performance with wireless communications. In this paper, an unenclosed quasi-static cavity resonator (QSCR) constructed with metallic strips and the design method are proposed and theoretically analyzed. This unenclosed QSCR has a simple structure, which benefits the wireless charging for portable/wearable electronics and smart appliances in the office and home environment. Meanwhile, it can achieve simultaneous ubiquitous 3-dimensional (3-D) wireless power transfer (WPT) inside the cavity and through-wall wireless communications with external electronic devices. Simulation and experimentation are performed to verify the theoretical analysis of the proposed cavity resonator and the WPT system based on it. As demonstrated, at a powering frequency of 6.78 MHz, the unenclosed QSCR can wirelessly transfer power to the receivers with a maximum power transfer efficiency of 90.5%, and an efficiency exceeding 51.5% is obtained at almost any position within the cavity space. The measured through-wall wireless communication channel attenuation introduced by the unenclosed QSCR is below 2.87 dB. By adjusting the inserted lumped capacitor value, the system can work at any desired frequency. Full article
(This article belongs to the Special Issue Self-Assembly Circuits and Systems for Wireless Applications)
Show Figures

Figure 1

29 pages, 3929 KiB  
Review
Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review
by Rigoberto Vazquez, Elizaveta Motovilova and Simone Angela Winkler
Sensors 2024, 24(11), 3390; https://doi.org/10.3390/s24113390 - 24 May 2024
Cited by 3 | Viewed by 3837
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in [...] Read more.
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

10 pages, 6467 KiB  
Article
Flexible Film Bulk Acoustic Wave Filter Based on Poly(vinylidene fluoride-trifluorethylene)
by Xiangyu He, Jiaqi Lu, Feng Gao, Shurong Dong, Juan Li, Hao Jin and Jikui Luo
Polymers 2024, 16(1), 150; https://doi.org/10.3390/polym16010150 - 3 Jan 2024
Cited by 3 | Viewed by 1704
Abstract
Poly(vinylidene fluoride-trifluorethylene) (P(VDF-TrFE)) has promising potential applications in radio-frequency filters due to their excellent piezoelectric properties, flexibility, and stability. In this paper, a flexible film bulk acoustic wave filter is investigated based on P(VDF-TrFE) as piezoelectric film. A new method based on three-step [...] Read more.
Poly(vinylidene fluoride-trifluorethylene) (P(VDF-TrFE)) has promising potential applications in radio-frequency filters due to their excellent piezoelectric properties, flexibility, and stability. In this paper, a flexible film bulk acoustic wave filter is investigated based on P(VDF-TrFE) as piezoelectric film. A new method based on three-step annealing is developed to efficiently remove the porosity inside the P(VDF-TrFE) films so as to improve its properties. The obtained film achieved high β-phase content beyond 80% and a high piezoelectric coefficient of 27.75 pm/V. Based on the low porosity β-phase films, a flexible wide-band RF filter is designed, which consists of a bulk acoustic wave resonator and lumped inductor-capacitor elements as a hybrid configuration. The resonator sets the filter’s center frequency, while the lumped LC-based matching network extends the bandwidth and enhances out-of-band rejection. The testing results of the proposed wide-band filter show its good performance, with 12.5% fractional bandwidth and an insertion loss of 3.1 dB. To verify the possibility of folding and stacking the flexible bulk acoustic wave devices for high-density multi-filter integration in MIMO communication, bending tests of the filter are also conducted with the bending strain range up to 5500 με. The testing results show no noticeable performance degradation after four bending cycles. This work demonstrates the potential of β-phase P(VDF-TrFE) bulk acoustic wave filters to expand the scope of future flexible radio-frequency filter applications. Full article
(This article belongs to the Special Issue Research Progress of Polymer-Based Sensors)
Show Figures

Figure 1

18 pages, 3061 KiB  
Article
A Compact Microwave Quadrature Hybrid Coupler Using Capacitive Composite Lines and Meandered Stubs
by Sobhan Roshani, Salah I. Yahya, Maher Assaad, Muhammad Akmal Chaudhary, Fawwaz Hazzazi, Yazeed Yasin Ghadi, Sarmad M. Ali and Saeed Roshani
Symmetry 2023, 15(12), 2149; https://doi.org/10.3390/sym15122149 - 3 Dec 2023
Viewed by 2714
Abstract
In this paper, a new structure of the quadrature hybrid coupler (QHC) with compact size is proposed using capacitive composite lines and meandered open stubs. The proposed coupler works at 1.6 GHz with a 0.4 GHz bandwidth, which shows 25% fractional bandwidth (FBW). [...] Read more.
In this paper, a new structure of the quadrature hybrid coupler (QHC) with compact size is proposed using capacitive composite lines and meandered open stubs. The proposed coupler works at 1.6 GHz with a 0.4 GHz bandwidth, which shows 25% fractional bandwidth (FBW). The proposed QHC occupies only 15 mm × 15 mm (0.12 λ × 0.12 λ), while the typical QHC size is 32 mm × 32 mm (0.25 λ × 25 λ) at the same working frequency. In the designed structure, two symmetric meandered stubs and two symmetric π-shaped composite networks including capacitors and microstrip lines are applied together. The designed QHC has a small size and occupies only 22% of the area of the conventional QHC, resulting in a 78% size reduction. The designed prototype has been analyzed, fabricated and tested, and the experimental results verify the simulated and analysis results. The results show a better than 27 dB return loss, more than 28 dB isolation between the output ports and less than 0.4 dB insertion loss at the working frequency of 1600 MHz. With the achieved desirable specifications, the fabricated QHC is a suitable choice for wireless microwave applications. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Wireless Communication and Sensor Networks II)
Show Figures

Figure 1

13 pages, 2048 KiB  
Article
Zero-Pole Optimization of a Novel High-Quality-Factor Planar Helical Resonator
by Reza Kamali-Sarvestani and John D. Williams
Magnetism 2023, 3(4), 267-279; https://doi.org/10.3390/magnetism3040021 - 28 Sep 2023
Viewed by 1447
Abstract
A novel micro-solenoid resonator has been designed, simulated, and measured. The solenoid core consisted of a DuroidTM circuit board with a relative permittivity of 2.2. The resonator design incorporated four embedded copper vias with a radius of 125 µm and three surface [...] Read more.
A novel micro-solenoid resonator has been designed, simulated, and measured. The solenoid core consisted of a DuroidTM circuit board with a relative permittivity of 2.2. The resonator design incorporated four embedded copper vias with a radius of 125 µm and three surface conductors to form a rectangular coil. A pitch size of 250 µm was used for a 3.02 mm thick substrate. To enhance the resonator’s performance at higher frequencies, a capacitance was introduced in series through the via. This additional capacitor effectively couples the inductance, resistance, and stray capacitance. The optimization of the quality factor was investigated through pole transfer analysis, resulting in an increased resonance frequency of 12.25 GHz and an elevated Q-factor of 306. Moreover, besides its very high Q-factor, this resonator offers a simplified design and easy integration. An analytical lumped circuit model was employed to investigate the design, and the measured S-parameters closely matched the analytical model and electromagnetic simulation results. The tuned resonator exhibited a superior quality factor compared to other micro-resonators. Full article
Show Figures

Figure 1

14 pages, 8969 KiB  
Article
A Compact Fourth-Order Tunable Bandpass Filter Based on Varactor-Loaded Step-Impedance Resonators
by Shuang Li, Shengxian Li and Jianrong Yuan
Electronics 2023, 12(11), 2539; https://doi.org/10.3390/electronics12112539 - 5 Jun 2023
Cited by 5 | Viewed by 2319
Abstract
In this paper, a compact high-selectivity frequency tunable bandpass filter (BPF) with constant absolute bandwidth (ABW) based on varactor-loaded step-impedance resonators (SIRs) is presented. By introducing cross coupling between resonators, a pair of transmission zeros (TZs) close to the passband are produced and [...] Read more.
In this paper, a compact high-selectivity frequency tunable bandpass filter (BPF) with constant absolute bandwidth (ABW) based on varactor-loaded step-impedance resonators (SIRs) is presented. By introducing cross coupling between resonators, a pair of transmission zeros (TZs) close to the passband are produced and the selectivity of the filter is enhanced significantly. Another pair of TZs are generated to improve the out-of-band rejection by using source-load coupling. The varactor-loaded SIRs are utilized to design the compact fourth-order tunable BPF in order to realize wide tuning range and compact size. In addition, the frequency-dependent coupling feeding structures are employed instead of lumped capacitors used in conventional feeding structures, as a result, the insertion-loss performance is improved. The simulated and measured results are presented and show good agreement. The measured results exhibit a tuning range from 0.8 to 1.14 GHz with a 3 dB constant ABW of about 47 ± 5 MHz, the return loss of the filter is greater than 13.9 dB, and the insertion loss is about 2.7–3.1 dB. Moreover, four TZs are generated, and the proposed tunable filter shows high selectivity with a rectangular coefficient of 2.3–3.1. Full article
(This article belongs to the Special Issue Microwave Devices: Analysis, Design, and Application)
Show Figures

Figure 1

20 pages, 36211 KiB  
Article
Methodology for Modeling Multiple Non-Homogeneous Thermal Zones Using Lumped Parameters Technique and Graph Theory
by Frank Florez, Jesús Alejandro Alzate-Grisales, Pedro Fernández de Córdoba and John Alexander Taborda-Giraldo
Energies 2023, 16(6), 2693; https://doi.org/10.3390/en16062693 - 14 Mar 2023
Cited by 1 | Viewed by 2064
Abstract
Asymmetric thermal zones or even non-rectangular structures are common in residential buildings. These types of structures are not easy to model with specialized programs, and it is difficult to know the heat flows and the relationships between the different variables. This paper presents [...] Read more.
Asymmetric thermal zones or even non-rectangular structures are common in residential buildings. These types of structures are not easy to model with specialized programs, and it is difficult to know the heat flows and the relationships between the different variables. This paper presents a methodology for modeling structures with multiple thermal zones using the graph theory arrangement. The methodology allows for generating a mathematical model using all the walls of each thermal zone. The modeling method uses the lumped parameter technique with a structure of two resistors and two capacitors for each thermal zone. The walls and internal surfaces of each zone define the thermal resistances, and the elements for the network structure are created by reducing resistances. The structure selected as a case study is similar to a residential apartment, which demonstrates the possibility of modeling complex and non-traditional structures. The accuracy of the generated mathematical model is verified by comparison with experimental data recorded in a scaled-down model. The reduced model is constructed using a 1:10 ratio with a real apartment. The proposed methodology is used to generate a graph arrangement adjusted to the case study, using the surfaces to build the mathematical model. The experimental data allowed to adjust the simulation results with errors in the range of 1.88% to 6.63% for different thermal zones. This methodology can be used to model different apartments, offices, or non-asymmetric structures and to analyze individual levels in buildings. Full article
(This article belongs to the Special Issue Smart Buildings for a Sustainable Future)
Show Figures

Graphical abstract

20 pages, 3456 KiB  
Article
Bilayer Lipid Membrane as Memcapacitance: Capacitance–Voltage Pinched Hysteresis and Negative Insertion Conductance
by Elena Yu. Smirnova and Andrey A. Anosov
Membranes 2023, 13(1), 97; https://doi.org/10.3390/membranes13010097 - 11 Jan 2023
Cited by 4 | Viewed by 2435
Abstract
Inelastic (dissipative) effects of different natures in lipid bilayer membranes can lead to hysteresis phenomena. Early, it was shown that lipid bilayer membranes, under the action of a periodic sinusoidal voltage, demonstrate pinched-hysteresis loops in the experimental capacitance–voltage dependences and are almost the [...] Read more.
Inelastic (dissipative) effects of different natures in lipid bilayer membranes can lead to hysteresis phenomena. Early, it was shown that lipid bilayer membranes, under the action of a periodic sinusoidal voltage, demonstrate pinched-hysteresis loops in the experimental capacitance–voltage dependences and are almost the only example of the physical implementation of memcapacitance. Here, we propose an equivalent circuit and mathematical framework for analyzing the dynamic nonlinear current response of a lipid bilayer membrane as an externally controlled memcapacitance. Solving a nonlinear differential equation for the equivalent circuit of a membrane in the form of a parallel connection of a nonlinear viscoelastic capacitor and an active resistance using the small parameter method, we obtain explicit analytical dependences for the current response of the membrane and pinched-hysteresis loops. The explicit solutions and their comparison with experimental data allow us to identify the lumped equivalent circuit parameters that govern the memcapacitor behavior of the membrane and hence the magnitude of the hysteresis. We quantify the memcapacitance hysteresis in terms of negative work done by the control signal. An analysis of the formulas leads to the conclusion that the determining factor for the appearance of pinched hysteresis is the type of nonlinear dependence of the device capacitance on voltage. Full article
Show Figures

Figure 1

15 pages, 4069 KiB  
Article
Lumped-Element Circuit Modeling for Composite Scaffold with Nano-Hydroxyapatite and Wangi Rice Starch
by Xiao Jian Tan, Ee Meng Cheng, Nashrul Fazli Mohd Nasir, Mohd Shukry Abdul Majid, Mohd Ridzuan Mohd Jamir, Shing Fhan Khor, Kim Yee Lee, Kok Yeow You and Che Wan Sharifah Robiah Mohamad
Polymers 2023, 15(2), 354; https://doi.org/10.3390/polym15020354 - 10 Jan 2023
Viewed by 2067
Abstract
Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and [...] Read more.
Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum) during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents the morphological, structural and chemical characteristics of the bone scaffold. The developed models describe the impedance characteristics of plant tissue. In this study, it was found that the ε′ and ε″ of scaffold composites exhibited up and down trends over frequencies for both X-band and Ku-band. The circuit models presented the lowest mean percentage errors of Z′ and Z″, i.e., 3.60% and 13.80%, respectively. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Design, Preparation and Applications)
Show Figures

Figure 1

22 pages, 8688 KiB  
Article
Assessment of Impact Energy Harvesting in Composite Beams with Piezoelectric Transducers
by Nikolaos Margelis, Theofanis S. Plagianakos, Panagiotis Karydis-Karandreas and Evangelos G. Papadopoulos
Sensors 2021, 21(22), 7445; https://doi.org/10.3390/s21227445 - 9 Nov 2021
Cited by 6 | Viewed by 3743
Abstract
Piezoelectric energy harvesting (PEH) is studied in the case of a low-velocity impact of a rigid mass on a composite beam. A methodology is outlined, encompassing modelling of the open-circuit impact response in a finite element (FE) package, formulation of a lumped parameter [...] Read more.
Piezoelectric energy harvesting (PEH) is studied in the case of a low-velocity impact of a rigid mass on a composite beam. A methodology is outlined, encompassing modelling of the open-circuit impact response in a finite element (FE) package, formulation of a lumped parameter (LP) model for the piezoelectric transducer connected with the harvesting circuit, and experimental verification of the impact using a custom portable configuration with impactor motion control. The subcircuit capacitor charging effect, the impactor mass and velocity on the harvesting subcircuit response, and the obtained output power are quantified. The results indicate that the current methodology can be used as a design tool for the structure and the harvesting circuit to achieve power output from composite beams with piezoelectric patches under impact conditions. Full article
Show Figures

Figure 1

23 pages, 58727 KiB  
Article
A Comparative Performance Analysis of Zero Voltage Switching Class E and Selected Enhanced Class E Inverters
by Ratil H. Ashique, Md Hasan Maruf, Kazi Md Shahnawaz Habib Sourov, Md Mahadul Islam, Aminul Islam, Mamun Rabbani, Md Rasidul Islam, Mohammad Monirujjaman Khan and ASM Shihavuddin
Electronics 2021, 10(18), 2226; https://doi.org/10.3390/electronics10182226 - 10 Sep 2021
Cited by 3 | Viewed by 3807
Abstract
This paper presents a comparative analysis of the class E and selected enhanced class E inverters, namely, the second and third harmonic group of class EFn, E/Fn and the class E Flat Top inverter. The inverters are designed under identical [...] Read more.
This paper presents a comparative analysis of the class E and selected enhanced class E inverters, namely, the second and third harmonic group of class EFn, E/Fn and the class E Flat Top inverter. The inverters are designed under identical specifications and evaluated against the variation of switching frequency (f), duty ratio (D), capacitance ratio (k), and the load resistance (RL). To offer a comparative understanding, the performance parameters, namely, the power output capability, efficiency, peak switch voltage and current, peak resonant capacitor voltages, and the peak current in the lumped network, are determined quantitatively. It is found that the class EF2 and E/F3 inverters, in general, have higher efficiency and comparable power output capability with respect to the class E inverter. More specifically, the class EF2 (parallel LC and in series to the load network) and E/F3 (parallel LC and in series to the load network) maintain 90% efficiency compared to 80% for class E inverter at the optimum operating condition. Furthermore, the peak switch voltage and current in these inverters are on average 20–30% lower than the class E and other versions for k > 1. The analysis also shows that the class EF2 and E/F3 inverters should be operated in the stretch of 1 < k < 5 and D = 0.3–0.6 at the optimum load to sustain the high-performance standard. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

11 pages, 5461 KiB  
Article
A Broadband Asymmetrical GaN MMIC Doherty Power Amplifier with Compact Size for 5G Communications
by Peisen Cheng, Quan Wang, Wei Li, Yeting Jia, Zhichao Liu, Chun Feng, Lijuan Jiang, Hongling Xiao and Xiaoliang Wang
Electronics 2021, 10(3), 311; https://doi.org/10.3390/electronics10030311 - 28 Jan 2021
Cited by 10 | Viewed by 4085
Abstract
This paper proposes a broadband asymmetrical monolithic microwave integrated circuit (MMIC) Doherty power amplifier (DPA) using 0.25-μm gallium-nitride process with a compact chip size of 2.37 × 1.86 mm2 for 5G communication. It adopts an unequal Wilkinson’s power divider with a ratio [...] Read more.
This paper proposes a broadband asymmetrical monolithic microwave integrated circuit (MMIC) Doherty power amplifier (DPA) using 0.25-μm gallium-nitride process with a compact chip size of 2.37 × 1.86 mm2 for 5G communication. It adopts an unequal Wilkinson’s power divider with a ratio of 2.5:1, where 71.5% of the total power is transferred to the main amplifier for higher gain. Different input matching networks are used to offset phase difference while completing impedance conversion. This design also applies a novel topology to solve the problem of large impedance transformer ratio (ITR) in conventional DPA, and it optimizes the ITR from 4:1 to 2:1 for wider band. Moreover, most of the components of the DPA including power divider and matching networks use lumped inductors and capacitors instead of long transmission line (TL) for a smaller space area. The whole circuit is designed and simulated using Agilent’s advanced design system (ADS). The simulated small-signal gain of DPA is 8–11 dB and the saturation output power is more than 39.5 dBm with 800 MHz band from 4.5 GHz to 5.3 GHz. At 6-dB output power back-off, the DPA demonstrates 38–41.3% power added efficiency (PAE), whereas 44–54% PAE is achieved at saturation power. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 4577 KiB  
Article
An Adaptive Model Predictive Voltage Control for LC-Filtered Voltage Source Inverters
by Hosein Gholami-Khesht, Pooya Davari and Frede Blaabjerg
Appl. Sci. 2021, 11(2), 704; https://doi.org/10.3390/app11020704 - 13 Jan 2021
Cited by 17 | Viewed by 3207
Abstract
The three-phase inductor and capacitor filter (LC)-filtered voltage source inverter (VSI) is subjected to uncertain and time-variant parameters and disturbances, e.g., due to aging, thermal effects, and load changes. These uncertainties and disturbances have a considerable impact on the performance of a VSI’s [...] Read more.
The three-phase inductor and capacitor filter (LC)-filtered voltage source inverter (VSI) is subjected to uncertain and time-variant parameters and disturbances, e.g., due to aging, thermal effects, and load changes. These uncertainties and disturbances have a considerable impact on the performance of a VSI’s control system. It can degrade system performance or even cause system instability. Therefore, considering the effects of all system uncertainties and disturbances in the control system design is necessary. In this respect and to tackle this issue, this paper proposes an adaptive model predictive control (MPC), which consists of three main parts: an MPC, an augmented state-space model, and an adaptive observer. The augmented state-space model considers all system uncertainties and disturbances and lumps them into two disturbance inputs. The proposed adaptive observer determines the lumped disturbance functions, enabling the control system to keep the nominal system performance under different load conditions and parameters uncertainty. Moreover, it provides load-current-sensorless operation of MPC, which reduces the size and cost, and simultaneously improves the system reliability. Finally, MPC selects the proper converter voltage vector that minimizes the tracking errors based on the augmented model and outputs of the adaptive observer. Simulations and experiments on a 5 kW VSI examine the performance of the proposed adaptive MPC under different load conditions and parameter uncertainties and compare them with the conventional MPC. Full article
Show Figures

Figure 1

14 pages, 4829 KiB  
Article
Design of Dual-Band Dual-Mode Band-Pass Filter Utilizing 0° Feed Structure and Lumped Capacitors for WLAN/WiMAX Applications
by Ahmed A. Ibrahim, Wael A. E. Ali and Mahmoud A. Abdelghany
Electronics 2020, 9(10), 1697; https://doi.org/10.3390/electronics9101697 - 15 Oct 2020
Cited by 9 | Viewed by 3792
Abstract
Two dual-band second-order highly selective band pass filters operated at 3.5/5.5 GHz and 3.5/6 GHz for wireless local area network /worldwide interoperability for microwave access WLAN/WiMAX applications are introduced in this paper. The designed filters are inspired of utilizing two coupled open-loop resonators [...] Read more.
Two dual-band second-order highly selective band pass filters operated at 3.5/5.5 GHz and 3.5/6 GHz for wireless local area network /worldwide interoperability for microwave access WLAN/WiMAX applications are introduced in this paper. The designed filters are inspired of utilizing two coupled open-loop resonators loaded with stub, spiral resonators and lumped capacitors. The filters are designed based on calculating the desired coupling matrix and the external quality factor. The first and the second filters are designed at the fundamental mode of 3.5 GHz then the first filter is loaded with two spiral resonators in the microstrip line to produce the desired band stop behaviour, which in turn achieves the second pass-band. However, the second band of the second filter is achieved by loading the stub with the lumped capacitors, which controls the second mode. The centre frequency of the second band is adjusted by varying the lumped capacitors values. The two designed filters have insertion loss less than 0.7 dB in the pass-band region, high selectivity with more than 4 transmission zeros and more than 20 dB attenuation level in the stop band region. The suggested filter has compact size and high selectivity with tunability behavior. The two filters are fabricated and measured to validate the simulated results. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop