Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = low-pressure leaching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5098 KiB  
Article
The Evolutionary Behavior of Shear Strength and Microscopic Mechanisms of Ionic Rare Earths Under Varying Leaching Conditions
by Zhongqun Guo, Zhaoming Huang, Qiqi Liu, Haoxuan Wang and Xiaoming Lin
Metals 2025, 15(7), 712; https://doi.org/10.3390/met15070712 - 26 Jun 2025
Viewed by 277
Abstract
The shear strength properties of ionic rare earth ore bodies are directly related to the stability of mine slopes, which provides important theoretical and engineering support for preventing geological disasters and ensuring the safe extraction of resources. This study investigates the effects of [...] Read more.
The shear strength properties of ionic rare earth ore bodies are directly related to the stability of mine slopes, which provides important theoretical and engineering support for preventing geological disasters and ensuring the safe extraction of resources. This study investigates the effects of different confining pressures, leaching agent types, and MgSO4 concentrations on the shear strength of ionic rare earth ores through triaxial shear tests. A scanning electron microscopy (SEM) analysis of post-shear mineral samples was conducted to examine the microscopic pore structure, revealing the evolution patterns of the ionic rare earth ore’s microscopic pore structure under various leaching conditions. The results show that the shear strength of the ore body varies significantly under different leaching conditions. After leaching, the shear strength values of the ore body, ranked from highest to lowest, are (NH4)2SO4 > MgSO4 > Al2(SO4)3 > pure water. The (NH4)2SO4 leaching group exhibited an average shear strength approximately 9.8% higher than the pure water group. When comparing the cohesion and internal friction angle of the pure water leaching group, the (NH4)2SO4-leached ore body showed significantly higher cohesion and a smaller internal friction angle. In contrast, the MgSO4 and Al2(SO4)3 leaching groups demonstrated lower cohesion and higher internal friction angles. As the MgSO4 concentration increases, the cohesion of the ore body gradually decreases, the internal friction angle increases, and the shear strength correspondingly increases. Under low-concentration MgSO4 leaching, the number and area of pores in the ore samples initially increase and then decrease, leading to a more complex pore structure. At higher concentrations of MgSO4, the variety of pore shapes increases and becomes more complex, pore randomness decreases, the probability entropy value decreases, and the pore distribution becomes more ordered. Full article
Show Figures

Figure 1

22 pages, 9625 KiB  
Article
Sustainable Recovery of Vanadium from Stone Coal via Nitric Acid Oxygen Pressure Leaching
by Keyu Shen, Fei Li, Yuqin Long, Yang Yang, Huan Long, Ruixin Luo, Wenyuan Ma, Jun Hua, Zhaoxia Yang, Ou Zhuo and Feng Gao
Materials 2025, 18(11), 2530; https://doi.org/10.3390/ma18112530 - 27 May 2025
Viewed by 412
Abstract
To overcome the low extraction efficiency and environmental concerns associated with traditional vanadium extraction methods, this study proposes an innovative nitric acid oxygen pressure leaching approach integrated with nitrogen recycling. Through systematic single-factor experiments and response surface optimization, key parameters, including nitric acid [...] Read more.
To overcome the low extraction efficiency and environmental concerns associated with traditional vanadium extraction methods, this study proposes an innovative nitric acid oxygen pressure leaching approach integrated with nitrogen recycling. Through systematic single-factor experiments and response surface optimization, key parameters, including nitric acid concentration, leaching temperature, liquid-to-solid ratio, and total pressure, were carefully evaluated and optimized. Under optimal conditions, consisting of 1.5 mol/L nitric acid, a temperature of 127.43 °C, a liquid-to-solid ratio of 5 mL/g, and a total pressure of 2 MPa, the vanadium leaching efficiency reached 73.1%. Cyclic leaching experiments confirmed the feasibility of nitrogen recycling. Characterization analyses by SEM-EDS, XRD, BET, and FTIR revealed that nitric acid oxygen pressure leaching significantly disrupted the mineral lattice structure, altering the coordination environment of metal ions and increasing surface porosity, thereby facilitating efficient vanadium dissolution from stone coal. This study provides valuable insights and establishes a scientific foundation for developing efficient, environmentally friendly, and economically viable vanadium extraction techniques from low-grade stone coal resources, thereby contributing to sustainable mining practices and resource utilization. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

23 pages, 4984 KiB  
Review
Leaching of Scheelite Concentrate for Tungsten Extraction
by Xinran Li, Hao Jiang, Zhiwei Peng, Anan Duan, Tong Zhang and Zexi Gong
Minerals 2025, 15(5), 475; https://doi.org/10.3390/min15050475 - 30 Apr 2025
Cited by 1 | Viewed by 690
Abstract
As a critical raw material, tungsten plays a broad role in machining, electronics, aerospace, and other high-tech industries. The extraction of tungsten from tungsten concentrates is a prerequisite for the production of high-purity products. Approximately 70% of China’s tungsten resources are in the [...] Read more.
As a critical raw material, tungsten plays a broad role in machining, electronics, aerospace, and other high-tech industries. The extraction of tungsten from tungsten concentrates is a prerequisite for the production of high-purity products. Approximately 70% of China’s tungsten resources are in the form of scheelite. The extraction method of low-quality scheelite is crucial for the production application of the tungsten process as resources of high-quality wolframite are gradually being depleted. This article systematically reviews the processes and challenges faced in the hydrometallurgical process of scheelite concentrates and provides useful insights. Typical leaching processes for scheelite concentrate have shown excellent leaching efficiencies, with tungsten trioxide (WO3) recoveries exceeding 90%. Alkaline leaching processes are promising, but temperature and pressure are crucial for this method. The sintering–leaching process is energy-consuming and costly. Meanwhile, leaching with hydrochloric acid (HCl) or sulfuric acid (H2SO4) often results in the formation of tungstic acid (H2WO4) on the mineral surface, which inhibits further leaching and leads to a low extraction rate. In contrast, the mixed-acid leaching method is more promising, with recovery close to 100%, a short process, and low-cost, and the acid leaching solution is recyclable. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

16 pages, 30990 KiB  
Article
Reservoir Characterization of Tight Sandstone Gas Reservoirs: A Case Study from the He 8 Member of the Shihezi Formation, Tianhuan Depression, Ordos Basin
by Zihao Dong, Xinzhi Yan, Jingong Zhang, Zhiqiang Chen and Hongxing Ma
Processes 2025, 13(5), 1355; https://doi.org/10.3390/pr13051355 - 29 Apr 2025
Viewed by 437
Abstract
Tight sandstone gas reservoirs, characterized by low porosity (typically < 10%) and ultra-low permeability (commonly < 0.1 × 10⁻3 μm2), represent a critical transitional resource in global energy transition, accounting for over 60% of total natural gas production in regions [...] Read more.
Tight sandstone gas reservoirs, characterized by low porosity (typically < 10%) and ultra-low permeability (commonly < 0.1 × 10⁻3 μm2), represent a critical transitional resource in global energy transition, accounting for over 60% of total natural gas production in regions such as North America and Canada. In the northern Tianhuan Depression of the Ordos Basin, the Permian He 8 Member (He is the abbreviation of Shihezi) of the Shihezi Formation serves as one of the primary gas-bearing intervals within such reservoirs. Dominated by quartz sandstones (82%) with subordinate lithic quartz sandstones (15%), these reservoirs exhibit pore systems primarily supported by high-purity quartz and rigid lithic fragments. Diagenetic processes reveal sequential cementation: early-stage quartz cementation provides a framework for subsequent lithic fragment cementation, collectively resisting compaction. Depositionally, these sandstones are associated with fluvial-channel environments, evidenced by a sand-to-mud ratio of ~5.2:1. Pore structures are dominated by intergranular pores (65%), followed by dissolution pores (25%) formed via selective leaching of unstable minerals by acidic fluids in hydrothermal settings, and minor intragranular pores (10%). Authigenic clay minerals, predominantly kaolinite (>70% of total clays), act as the main interstitial material. Reservoir properties average 7.01% porosity and 0.5 × 10⁻3 μm2 permeability, defining a typical low-porosity, ultra-low-permeability system. Vertically stacked sand bodies in the He 8 Member display large single-layer thicknesses (5–12 m) and moderate sealing capacity (caprock breakthrough pressure > 8 MPa), hosting gas–water mixed-phase occurrences. Rock mechanics experiments demonstrate that fractures enhance permeability by >60%, significantly controlling reservoir heterogeneity. Full article
Show Figures

Figure 1

17 pages, 9231 KiB  
Article
Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy
by Dianchun Ju, Yunjie Bao, Leyan Jiang, Yingying Li and Chunyu Chen
Metals 2025, 15(4), 350; https://doi.org/10.3390/met15040350 - 23 Mar 2025
Viewed by 647
Abstract
Deep eutectic solvents are widely employed in the recycling and reuse of spent lithium-ion battery cathode materials because of their non-toxicity, low cost, and recyclability. Although DESs have a high recovery rate for metals and are more environmentally friendly, they typically require a [...] Read more.
Deep eutectic solvents are widely employed in the recycling and reuse of spent lithium-ion battery cathode materials because of their non-toxicity, low cost, and recyclability. Although DESs have a high recovery rate for metals and are more environmentally friendly, they typically require a longer time or higher temperatures. High temperature and pressure considerably improve leaching efficiency in traditional aqueous systems; this study investigates whether the same is true in DES systems. The physicochemical properties of a DES composed of choline chloride (ChCl) and malonic acid (MA) (1:1) were measured before and after high-temperature and high-pressure treatments, along with their effects on the leaching efficiency of cathode materials for spent lithium-ion batteries (LIBs). The results show that after treatment, the 632.03 cm−1 twisted vibration peak of C-O was red-shifted to 603 cm−1 and the alkyl chain of the DES was lengthened, whereas the 1150.52 cm−1 C-O peak was blue-shifted to 1219 cm−1 and the hydrogen-bonding effect was weakened. At long reaction times, crystals appeared inside the DES. Over time, the crystals increased in size and became less dense, and the color of the material changed from clear to blue to green. After pressurization treatment, the conductivity of the DES increased considerably over its value at atmospheric pressure. The leaching efficiency of Li, Co, Ni, and Mn were 53.20, 47.24, 26.27, and 48.57%, respectively, at 3 h of leaching at atmospheric pressure. The leaching efficiency increased to 78.20, 79.74, 69.76, and 81.80%, respectively, after being pressurized at 3.3 MPa. On this basis, the reaction time was extended to 6 h, and the leaching efficiency of Li, Co, Ni, and Mn were 96.41, 97.62, 98.13, and 97.34%, respectively, trending towards complete leaching. The leaching efficiency of spent LIB cathode materials in DESs was considerably improved under pressurized conditions, providing an efficient method for recovering spent LIB cathode materials using DESs. Full article
Show Figures

Figure 1

17 pages, 6304 KiB  
Article
Research on the Mechanical Activation Mechanism of Coal Gangue and Its CO2 Mineralization Effect
by Lei Zhu, Chengyong Liu, Gang Duan, Zhicheng Liu, Ling Jin, Yuejin Zhou and Kun Fang
Sustainability 2025, 17(6), 2364; https://doi.org/10.3390/su17062364 - 7 Mar 2025
Cited by 1 | Viewed by 1036
Abstract
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the [...] Read more.
During the extraction and utilization of coal resources, a large amount of CO2 and coal-based solid wastes (CBSW), such as coal gangue, are generated. To reduce the carbon and waste emissions, an effective approach is to mineralize the CO2 with the CBSW and then backfill the mineralized materials into the goaf area. However, efficient CO2 mineralization is challenging due to the low reactivity of coal gangue. To this end, mechanical activation was used for the modification of coal gangue, and the mechanical activation mechanism of coal gangue was revealed from a microcosmic perspective by dry powder laser particle size testing (DPLPST), X-ray diffractometer (XRD) analysis, Fourier-transform infrared spectrometer (FTIR) analysis, and scanning electron microscopy (SEM). The results showed that compared with the unground coal gangue, the average particle size of coal gangue after 0.5 h, 1 h, and 1.5 h milling decreases by 94.3%, 95%, and 95.3%, respectively; additionally, the amorphous structures of the coal gangue after milling increase, and their edges and corners gradually diminish. After the pressure mineralization of coal gangues with different activation times, thermogravimetric (TG) analysis was performed, and the CO2 mineralization effect of the mechanically activated coal gangue was explored. It is found that the carbon fixation capacity of the coal gangue after 0.5 h, 1.0 h, and 1.5 h mechanical activation is increased by 1.18%, 3.20%, and 7.57%, respectively. Through the XRD and SEM, the mechanism of CO2 mineralization in coal gangue was revealed from a microcosmic perspective as follows: during the mineralization process, alkali metal ions of calcium and magnesium in anorthite and muscovite are leached and participate in the mineralization reaction, resulting in the formation of stable carbonates such as calcium carbonate. Full article
Show Figures

Figure 1

19 pages, 11629 KiB  
Article
Efficient Removal of Impurities from Refractory Oolitic Magnetite Concentrate via High-Pressure Alkaline Leaching and Ultrasonic Acid Leaching Process
by Mengjie Hu, Deqing Zhu, Jian Pan, Zhengqi Guo, Congcong Yang, Siwei Li and Wen Cao
Minerals 2025, 15(3), 220; https://doi.org/10.3390/min15030220 - 24 Feb 2025
Cited by 4 | Viewed by 673
Abstract
Acid leaching is an effective method for dephosphorization; however, it is time-consuming and requires a high amount of acid consumption, resulting in increased production costs and environmental risks. This work aims to remove silicon, aluminum, and phosphorus from high-phosphorus oolitic magnetite concentrate through [...] Read more.
Acid leaching is an effective method for dephosphorization; however, it is time-consuming and requires a high amount of acid consumption, resulting in increased production costs and environmental risks. This work aims to remove silicon, aluminum, and phosphorus from high-phosphorus oolitic magnetite concentrate through high-pressure alkaline leaching and ultrasonic acid leaching. Compared with traditional acid leaching processes, the sulfuric acid dosage can be significantly reduced from 200 kg/t to 100 kg/t, and the pickling time is shortened from 60 min to 10 min. Thermodynamic and kinetic studies have demonstrated that acid leaching facilitates apatite dissolution at low temperatures, whereas the dephosphorization reaction is controlled mainly by diffusion. The application of ultrasonic waves leads to finer particle sizes and greatly increased specific surface areas, thereby accelerating the diffusion rate of the leaching agent. Furthermore, microscopic analysis revealed that under the influence of ultrasonic waves, numerous micro-fragments and pores form on particle surfaces due to cavitation effects and mechanical forces generated by ultrasonic waves. These factors promote both the reaction rates and diffusion processes of the leaching agent while enhancing the overall leaching efficiency. Full article
Show Figures

Graphical abstract

29 pages, 11665 KiB  
Article
The Dissolution Behavior of Pyrite and Chalcopyrite in Their Mixture During Low-Temperature Pressure Oxidation: A Kinetic Analysis
by Kirill Karimov, Maksim Tretiak and Denis Rogozhnikov
Materials 2025, 18(3), 551; https://doi.org/10.3390/ma18030551 - 25 Jan 2025
Viewed by 1033
Abstract
The research presented in this paper focused on the pressure leaching of pyrite and chalcopyrite in their mixture at a low temperature (100 ± 2 °C). The mathematical models of chalcopyrite and pyrite dissolution in their mixture are obtained. According to kinetic analyses, [...] Read more.
The research presented in this paper focused on the pressure leaching of pyrite and chalcopyrite in their mixture at a low temperature (100 ± 2 °C). The mathematical models of chalcopyrite and pyrite dissolution in their mixture are obtained. According to kinetic analyses, the oxidation process of chalcopyrite and pyrite is limited by intra-diffusion limitations. An elemental sulfur film passivates the surface of chalcopyrite and pyrite particles according to the SEM and EDX mappings. The data show that the oxidation mechanism of chalcopyrite and pyrite in their mixture has changed. The activation energy values of chalcopyrite and pyrite have increased from 51.2 to 59.0 kJ/mol, respectively. The oxidation degree of pyrite in its mixture with chalcopyrite increased significantly from 54.5 to 80.3% within 0–230 min. Copper and iron ions during oxidation were not associated with an increase in the dissolution degree of pyrite with the addition of chalcopyrite. The positive effect of pyrite in its mixture with chalcopyrite on its oxidation degree can be explained by the formation of an electrochemical bond between the minerals. Microphotographs and EDX mapping confirm that the positive effect of the chalcopyrite additive is correlated with a decrease in the formation of elemental sulfur on the pyrite surface. With no formation of conglomerates, the mineral’s sulfur content becomes more uniform, confirming the sulfides’ interaction with each other. Full article
Show Figures

Figure 1

11 pages, 561 KiB  
Article
Animal as the Solution II: Phenotyping for Low Milk Urea Nitrogen A1PF Dairy Cows
by Fabiellen C. Pereira, Sagara Kumara, Anita Fleming, Shu Zhan Lai, Ella Wilson and Pablo Gregorini
Animals 2025, 15(1), 32; https://doi.org/10.3390/ani15010032 - 26 Dec 2024
Viewed by 712
Abstract
The societal pressure on intensive pastoral dairying demands the search for strategies to reduce the amount of N flowing through and excreted by dairy cows. One of the strategies that is being currently explored focuses on the animal as a solution, as there [...] Read more.
The societal pressure on intensive pastoral dairying demands the search for strategies to reduce the amount of N flowing through and excreted by dairy cows. One of the strategies that is being currently explored focuses on the animal as a solution, as there are differences in N metabolism between cows even within the same herd. This work was conducted to explore such an approach in A1PF herds in New Zealand and the possibility of identifying A1PF cows that are divergent for milk urea nitrogen (MUN) concentration through phenotyping as a potential viable strategy to reduce N leaching and emissions from temperate dairy systems. Three herd tests were conducted to select a population sample of 200 cows (exhibiting the lowest 100 and highest 100 MUN concentrations). Milk samples were collected from the 200 cows during mid and late lactation to test for milk solids content and MUN. From the 200 cows, urine for urinary N concentration (UN), blood for plasma urea N, total antioxidants (TAS), and glutathione peroxidase (GPx) were collected from the 20 extremes (the lowest 10 and highest 10 MUN concentrations). Milk urea N was greater in cows selected as high-MUN cows (16.2 vs. 14.32 ± 0.23 mg/dL) and greater during late lactation (16.9 vs. 13.0 ± 0.19 mg/dL). Milk solids and fat content were 38% and 20% greater in cows selected as low-MUN cows than in high-MUN cows during mid lactation (p < 0.001). Low-MUN cows had lower UN than high-MUN cows during mid lactation (0.64 vs. 0.88 ± 0.11%). The N concentration in the plasma (p = 0.01) and Tas (p = 0.06) were greater during late lactation. There was a positive relationship between the MUN concentration phenotype used for selection and the MUN concentration for the trial period and MUN concentration and UN concentration during mid and late lactation (p < 0.001). Our results suggest that A1PF cows within a commercial herd can be phenotyped and selected for low-MUN, which may be potentially a viable strategy to reduce N losses to the environment and create healthier systems. Following genetic tracking, those cows can be bred to further promote low-MUN A1PF herds. Full article
Show Figures

Figure 1

18 pages, 12515 KiB  
Article
The Dissolution Behavior of Pyrite and Chalcopyrite During Low-Temperature Pressure Oxidation: Chalcopyrite Influence on Pyrite Oxidation
by Kirill Karimov, Maksim Tretiak, Denis Rogozhnikov and Oleg Dizer
Materials 2024, 17(20), 5132; https://doi.org/10.3390/ma17205132 - 21 Oct 2024
Cited by 4 | Viewed by 1362
Abstract
The research of this paper was carried out on the low-temperature (100 ± 2 °C) pressure (0.2–0.8 MPa) leaching of pyrite, chalcopyrite and their mixture. According to experiments on chalcopyrite dissolution, increasing the oxygen pressure from 0.2 up to 0.8 MPa had a [...] Read more.
The research of this paper was carried out on the low-temperature (100 ± 2 °C) pressure (0.2–0.8 MPa) leaching of pyrite, chalcopyrite and their mixture. According to experiments on chalcopyrite dissolution, increasing the oxygen pressure from 0.2 up to 0.8 MPa had a slight effect on chalcopyrite dissolution. Oxygen pressure and initial sulfuric acid concentration in the range of 10–50 g/L had the greatest positive effect on the pyrite oxidation. The SEM and EDX mappings indicate the chalcopyrite and pyrite surfaces to be passivated by elemental sulfur. The oxidation degree of pyrite in its mixture with chalcopyrite increased significantly from 54.5 up to 80.3% in 0–240 min. The reaction time is relative to the dissolution of the individual mineral, while the dissolution of chalcopyrite remained virtually unchanged. The addition of Cu (II) and Fe (III) ions does not influence pyrite dissolution when chalcopyrite is added in a leaching process, which can be explained by the formation of an electrochemical link between the minerals. The positive effect of chalcopyrite addition is associated with a decreased formation of elemental sulfur on the surface of pyrite. The described method can be used for the hydrometallurgical processing of copper raw materials with increased pyrite content, as well as for the pretreatment of copper concentrates with gold-rich pyrite concentrates to increase the recovery of gold and silver. Full article
Show Figures

Figure 1

20 pages, 15447 KiB  
Article
Investigation of the Innovative Combined Reuse of Phosphate Mine Waste Rock and Phosphate Washing Sludge to Produce Eco-Friendly Bricks
by Omar Inabi, Abdessamad Khalil, Abir Zouine, Rachid Hakkou, Mostafa Benzaazoua and Yassine Taha
Buildings 2024, 14(9), 2600; https://doi.org/10.3390/buildings14092600 - 23 Aug 2024
Cited by 5 | Viewed by 1952
Abstract
Phosphate mining generates substantial quantities of waste rock during the extraction of sedimentary ores, leading to significant environmental concerns as these wastes accumulate around mining sites. The industry is under increasing pressure to adopt more sustainable practices, necessitating considerable financial investments in remediation [...] Read more.
Phosphate mining generates substantial quantities of waste rock during the extraction of sedimentary ores, leading to significant environmental concerns as these wastes accumulate around mining sites. The industry is under increasing pressure to adopt more sustainable practices, necessitating considerable financial investments in remediation and technological advancements. Addressing these challenges requires a holistic strategy that balances social responsibility, environmental preservation, and economic viability. This study proposes an innovative, cost-effective, and environmentally friendly method to manufacture compressed stabilized earth bricks by combining the valorization of phosphate waste rock (PWR) and phosphate washing sludge (PWS). These bricks offer numerous advantages, including low embodied energy, robust mechanical performance, and excellent insulation and thermal properties. Initially, a Toxicity Characteristic Leaching Procedure (TCLP) test and radiometric surface contamination measurement, carried out on raw materials (PWR and PWS), showed that the results were below the permissible limits. Then, the chemical, mineralogical, and geotechnical properties of the raw materials were characterized. Subsequently, various mixtures were formulated in the laboratory using PWR and PWS, with and without cement as a stabilizer. Optimal formulations were identified and scaled up for pilot production of solid bricks with dimensions of 250 × 125 × 75 mm3. The resulting bricks exhibited thermal conductivity and water absorption coefficients that satisfied standard requirements. This method not only addresses the environmental issues associated with phosphate mining waste but also provides a sustainable solution for building materials production. Full article
(This article belongs to the Collection Sustainable and Green Construction Materials)
Show Figures

Figure 1

19 pages, 4665 KiB  
Review
A Review of Catalyst Integration in Hydrothermal Gasification
by Emmanuel Galiwango, James Butler and Samira Lotfi
Fuels 2024, 5(3), 375-393; https://doi.org/10.3390/fuels5030022 - 23 Aug 2024
Cited by 2 | Viewed by 1785
Abstract
Industrial scale-up of hydrothermal supercritical water gasification process requires catalytic integration to reduce the high operational temperatures and pressures to enhance controlled chemical reaction pathways, product yields, and overall process economics. There is greater literature disparity in consensus on what is the best [...] Read more.
Industrial scale-up of hydrothermal supercritical water gasification process requires catalytic integration to reduce the high operational temperatures and pressures to enhance controlled chemical reaction pathways, product yields, and overall process economics. There is greater literature disparity in consensus on what is the best catalyst and reactor design for hydrothermal gasification. This arises from the limited research on catalysis in continuous flow hydrothermal systems and rudimentary lab-scale experimentation on simple biomasses. This review summarizes the literature status of catalytic hydrothermal processing, especially for continuous gasification and in situ catalyst handling. The rationale for using low and high temperatures during catalytic hydrothermal processing is highlighted. The role of homogeneous and heterogeneous catalysts in hydrothermal gasification is presented. In addition, the rationale behind certain designs and component selection for catalytic investigations in continuous hydrothermal conversion is highlighted. Furthermore, the effect of different classes of catalysts on the reactor and reactions are elaborated. Overall, design and infrastructural challenges such as plugging, corrosion, agglomeration of the catalysts, catalyst metal leaching, and practical assessment of catalyst integration towards enhancement of process economics still present open questions. Therefore, strategies for catalytic configuration in continuous hydrothermal process must be evaluated on a system-by-system basis depending on the feedstock and experimental goals. Full article
Show Figures

Figure 1

17 pages, 4298 KiB  
Article
Effect of Solid Ratio and Particle Size on Dissolution of Heat-Activated Lizardite at Elevated Pressures and Moderate Temperatures
by Ammar Abu Fara, Mark R. Rayson, Geoff F. Brent, Timothy K. Oliver, Michael Stockenhuber and Eric M. Kennedy
Minerals 2024, 14(8), 831; https://doi.org/10.3390/min14080831 - 16 Aug 2024
Viewed by 1176
Abstract
This study investigates the effect of the particle size and solid-to-liquid ratio on the dissolution rate of magnesium (Mg) and silicon (Si) in heat-activated lizardite. The investigation was conducted under specific conditions: without the presence of sodium bicarbonate (NaHCO3), at a [...] Read more.
This study investigates the effect of the particle size and solid-to-liquid ratio on the dissolution rate of magnesium (Mg) and silicon (Si) in heat-activated lizardite. The investigation was conducted under specific conditions: without the presence of sodium bicarbonate (NaHCO3), at a moderate temperature (40 °C), and under elevated CO2 pressure (100 bar). The aim was to isolate the dissolution reactions and enhance comprehension of the factors constraining the overall yields in the Albany Research Center (ARC) mineral carbonation process. Our study disclosed two distinct dissolution regimes: an initial stage with a rapid initial rate of Mg extraction, resulting in the fraction of Mg extracted ranging from 30 to 65% during the first 20 min of the experiment, following which the dissolution rate decreases dramatically. The initial rapid dissolution stage is primarily driven by the low pH of the supernatant solution, resulting from CO2 dissolution, leading to a higher concentration of protons that extract Mg2+ cations. However, as the heat-activated lizardite dissolution progresses, the pH increases due to the high level of leached Mg2+, and a diffusion barrier forms due to the precipitation of amorphous silica. This phenomenon ultimately slows down the mineral’s dissolution rate during the latter stages of particle dissolution. Full article
(This article belongs to the Special Issue Mineralogy, Chemistry, Weathering and Application of Serpentinite)
Show Figures

Figure 1

19 pages, 12914 KiB  
Article
Preparation of High-Purity Quartz Sand by Vein Quartz Purification and Characteristics: A Case Study of Pakistan Vein Quartz
by Mei Xia, Xiaoyong Yang and Zhenhui Hou
Minerals 2024, 14(7), 727; https://doi.org/10.3390/min14070727 - 19 Jul 2024
Cited by 11 | Viewed by 4530
Abstract
This study focuses on the purification and evaluation of the high-purity quartz (HPQ) potential of vein quartz ore from Pakistan. Vein quartz is grayish-white and translucent, with its mineral composition mainly comprising quartz crystal. Processed quartz sand is obtained from quartz raw ore [...] Read more.
This study focuses on the purification and evaluation of the high-purity quartz (HPQ) potential of vein quartz ore from Pakistan. Vein quartz is grayish-white and translucent, with its mineral composition mainly comprising quartz crystal. Processed quartz sand is obtained from quartz raw ore through purifying technologies, including crushing, ultrasonic desliming, flotation, high-temperature calcination, water quenching, hot pressure acid leaching, and chlorination roasting. The microscopic characteristics show that the vein quartz raw ore has a medium-coarse granular metacrystalline structure, high quartz content, with only a small quantity of fine-grained K-feldspar. The inclusions primarily consist of large-sized primary inclusions and secondary fluid inclusions developed along the micro-fractures, and the content of inclusions in most areas of the crystal is very low or even nonexistent. The quartz ore with such inclusion characteristics is considered a relatively good raw material for quartz. Component analysis shows that the main impurity elements in the quartz ore are Al, K, Ca, Na, Ti, Fe, and Li, with a total impurity element content of 128.86 µg·g−1. After purification, only lattice impurity elements Al, Ti, and Li remain in the processed quartz sand, resulting in a total impurity element content of 24.23 µg·g−1, an impurity removal rate of 81.20%, and the purity of SiO2 reaching 99.998 wt.%. It is suggested that when the quartz raw ore contains high content of lattice impurity elements, such as Al, Li, and Ti, it is difficult to remove them by the current purification method. In industrial production, considering the economic cost, if quartz sand still contains high content of lattice impurity elements Al, Ti, and Li after flotation, it cannot be used as a raw material for high-end HPQ. Full article
(This article belongs to the Special Issue Physicochemical Properties and Purification of Quartz Minerals)
Show Figures

Figure 1

16 pages, 6283 KiB  
Article
Base-Free Oxidation of HMF to FDCA over Ru/Cu-Co-O·MgO under Aqueous Conditions
by Shuang Zhang, Guoning Chu, Sai Wang, Ji Ma and Chengqian Wang
Molecules 2024, 29(13), 3213; https://doi.org/10.3390/molecules29133213 - 6 Jul 2024
Cited by 7 | Viewed by 2116
Abstract
The copper–cobalt metal oxide composite magnesium oxide catalyst loaded with Ru has achieved the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to the bio-based polyester monomer 2,5-furandicarboxylic acid (FDCA) under base-free conditions. Several Ru/Cu-Co-O·MgO catalysts were prepared, with Cu-Co-O being a combination of CuO and [...] Read more.
The copper–cobalt metal oxide composite magnesium oxide catalyst loaded with Ru has achieved the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to the bio-based polyester monomer 2,5-furandicarboxylic acid (FDCA) under base-free conditions. Several Ru/Cu-Co-O·MgO catalysts were prepared, with Cu-Co-O being a combination of CuO and Co3O4. The catalyst’s activity was boosted by the synergistic interaction between copper and cobalt, as well as an optimal copper-to-cobalt molar ratio. Optimal catalytic activity was observed in the Ru4/Cu1-Co1-O·MgO catalyst, loaded with 4 wt% Ru when copper-to-cobalt molar ratio of 1:1 and magnesium oxide compounding amount of 6 mmol were employed. The inclusion of MgO and the load of Ru not only expanded the specific surface area of the catalyst but also heightened its basicity. Additionally, the presence of loaded Ru improved the catalyst’s reducibility at low temperatures. In aqueous solution under oxygen pressure, the conversion rate of HMF achieved 100%, and the yield of FDCA was 86.1%. After five reaction cycles, examining the catalyst and solution revealed that Ru nanoparticles resisted leaching or oxidation, and MgO exhibited only slight dissolution. The green separation of the product was achieved using semi-preparative liquid chromatography, selectively collecting the FDCA-containing solution by exploiting variations in interactions between solutes and the stationary/mobile phases. The subsequent steps involved rotary evaporation and drying, resulting in FDCA powder with a purity exceeding 99%. Notably, this approach eliminated the need to introduce concentrated hydrochloric acid into the system for FDCA separation, providing a novel method for synthesising powdered FDCA. Full article
Show Figures

Figure 1

Back to TopTop