Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Instruments
2.2. Experimental Procedure
2.2.1. Preparation of DESs
2.2.2. Pressurization
2.2.3. Pre-Experimentation
2.2.4. Dissolution of Cathode Materials
2.2.5. Performance Testing
2.3. Characterization Analysis
2.3.1. FTIR-ATR
2.3.2. TG
2.3.3. ICP-OES
2.3.4. SEM
3. Results and Discussion
3.1. FTIR-ATR Analysis of DESs
3.2. Effect of Reaction Time on the Morphology of DESs
3.3. Effect of Reaction Time on Conductivity of DESs
3.4. Effect of Reaction Time on Thermal Stability of DESs
3.5. Effect of Pressure on the Leaching Efficiency of Spent LIB Cathode Materials in DES
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DESs | deep eutectic solvents |
LIBs | lithium-ion batteries |
NCM | LiNixCoyMnzO2 |
MA | malonic acid |
ChCl | choline chloride |
LCO | LiCoO2 |
LFP | LiFePO4 |
References
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V.J.C.C. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 9, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Kudłak, B.A.E.; Owczarek, K.; Namieśnik, J.E.S.; Research, P. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—A review. Environ. Sci. Pollut. Res. 2015, 22, 11975–11992. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Gou, S.; Zhang, L.; Wang, Z. Esterification of cellulose using carboxylic acid-based deep eutectic solvents to produce high-yield cellulose nanofibers. Carbohydr. Polym. 2021, 251, 117018. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, M.; Li, Z.; Liu, H.; Xiong, C.; Zen, X.; Sun, Y.; Hu, L.; Liu, S.; Lei, T.J.C. Green Processing of Lignocellulosic Biomass and Its Derivatives in Deep Eutectic Solvents. ChemSusChem 2017, 10, 2696–2706. [Google Scholar] [CrossRef]
- Pateli, I.M.; Jenkin, G.; Hartley, J.M.; Abbott, A.J.G.C. Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents. Green Chem. 2020, 22, 8360–8368. [Google Scholar] [CrossRef]
- Wu, J.; Liang, Q.; Yu, X.; Lü, Q.; Ma, L.; Qin, X.; Chen, G.; Li, B. Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Adv. Funct. Mater. 2021, 31, 2011102. [Google Scholar] [CrossRef]
- Zürner, P.; Frisch, G. Leaching and Selective Extraction of Indium and Tin from Zinc Flue Dust Using an Oxalic Acid-Based Deep Eutectic Solvent. ACS Sustain. Chem. Eng. 2019, 7, 5300–5308. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2000, 273, 551–567. [Google Scholar] [CrossRef]
- Haq, H.U.; Bibi, R.; Arain, M.B.; Safi, F.; Ullah, S.; Castro-Muñoz, R.; Boczkaj, G. Deep eutectic solvent (DES) with silver nanoparticles (Ag-NPs) based assay for analysis of lead (II) in edible oils. Food Chem. 2022, 379, 132085. [Google Scholar] [CrossRef]
- Lee, J.-S. Deep eutectic solvents as versatile media for the synthesis of noble metal nanomaterials. Nanotechnol. Rev. 2017, 6, 271–278. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Feng, H.; Shen, J. Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. J. Mater. Chem. 2011, 21, 8137–8145. [Google Scholar] [CrossRef]
- Tran, M.K.; Rodrigues, M.T.F.; Kato, K.; Babu, G.; Ajayan, P.M.J.N.E. Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat. Energy 2019, 4, 339–345. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Lu, Z.; Xu, Z. A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries. Green Chem. 2020, 22, 4473–4482. [Google Scholar] [CrossRef]
- Wang, K.; Hu, T.; Shi, P.; Min, Y.; Wu, J.; Xu, Q. Efficient Recovery of Value Metals from Spent Lithium-Ion Batteries by Combining Deep Eutectic Solvents and Coextraction. ACS Sustain. Chem. Eng. 2021, 10, 1149–1159. [Google Scholar] [CrossRef]
- Chang, X.; Fan, M.; Gu, C.; He, W.; Meng, Q.; Wan, L.; Guo, Y. Selective Extraction of Transition Metals from Spent LiNixCoyMn1−x−yO2 Cathode via Regulation of Coordination Environment. Angew. Chem. 2022, 134, 202202558. [Google Scholar] [CrossRef]
- Tang, S.; Yang, Z.; Zhang, M.; Guo, M. A simple green method for in-situ selective extraction of Li from spent LiFePO4 batteries by synergistic effect of deep-eutectic solvent and ozone. Environ. Res. 2023, 239, 117393. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; McKenzie, K.J.; Obi, S.U. Solubility of metal oxides in deep eutectic solvents based on choline chloride. J. Chem. Eng. Data 2006, 51, 1280–1282. [Google Scholar] [CrossRef]
- Pateli, I.M.; Thompson, D.; Alabdullah, S.S.M.; Abbott, A.P.; Jenkin, G.R.T.; Hartley, J.M. The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents. Green Chem. 2020, 22, 5476–5486. [Google Scholar] [CrossRef]
- Lu, B.; Du, R.; Wang, G.; Wang, Y.; Dong, S.; Zhou, D.; Wang, S.; Li, C. High-efficiency leaching of valuable metals from waste Li-ion batteries using deep eutectic solvents. Environ. Res. 2022, 212, 113286. [Google Scholar] [CrossRef]
- Bin, Y.; Smelter, S.D. Application of Pressurized Hydrometallurgical Technology in Zinc Smelting. Adv. Mater. Sci. 2021, 5, 7–9. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, S.; Liu, Q.; Chen, L.; Xian, Y.; Wang, Y. Ultrasonic pretreatment for enhancing flotation separation of elemental sulfur and silver-bearing lead minerals from an oxidative pressure leaching residue of zinc sulfide. Miner. Eng. 2024, 205, 108495. [Google Scholar] [CrossRef]
- He, S.; Liao, C.; Wang, X.; Wang, J. Pressure Sulfuric Acid Leaching of Manganese-Rich Slag with Pyrite as Additive. Min. Met. Explor. 2020, 37, 433–442. [Google Scholar] [CrossRef]
- Saida, S.; Kumar, B.; Roy, G.G.; Chakravarty, S.; Kundu, T.K. Synthesis of TiO2 from the Low-Grade Ilmenite Using the Mechanical Activation and Reductive Pressure Leaching in Low-Concentration H2SO4. Min. Met. Explor. 2023, 40, 1345–1355. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Zhou, P.; Wu, D.; Wu, C. An Overview of Flashing Phenomena in Pressure Hydrometallurgy. Processes 2023, 11, 2322. [Google Scholar] [CrossRef]
- Stopić, S.R.; Friedrich, B.G. Pressure hydrometallurgy: A new chance to non-polluting processes. Vojn. Glas. 2011, 59, 29–44. [Google Scholar] [CrossRef]
- Peng, X.; Shi, L.; Qu, T.; Yang, Z.; Lin, L.; Xie, G.; Xu, B. Kinetics of Ni and Co Recovery via Oxygen-Enriched Pressure Leaching from Waste Lithium-Ion Batteries. Separations 2023, 10, 64. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Yu, J.; Zhang, Q.; Zhang, Y.; Valix, M.; Tsang, D.C. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Glob. Chall. 2023, 7, 2200237. [Google Scholar] [CrossRef]
- Martín, M.I.; García-Díaz, I.; Rodríguez, M.L.; Gutiérrez, M.C.; del Monte, F.; López, F.A. Synthesis and Properties of Hydrophilic and Hydrophobic Deep Eutectic Solvents via Heating-Stirring and Ultrasound. Molecules 2024, 29, 3089. [Google Scholar] [CrossRef]
- Badawi, H.M.; Förner, W. Analysis of the infrared and Raman spectra of phenylacetic acid and mandelic (2-hydroxy-2-phenylacetic) acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 1162–1167. [Google Scholar] [CrossRef]
- Altamash, T.; Atilhan, M.; Aliyan, A.; Ullah, R.; Nasser, M.; Aparicio, S. Technology, A Detailed Experimental Study on Rheological, Thermodynamic and Gas Solubility Properties of Phenylacetic Acid Based Deep Eutectic Solvents. Chem. Eng. Technol. 2016, 40, 778–790. [Google Scholar] [CrossRef]
- Ghatee, M.H.; Zare, M.; Moosavi, F.; Zolghadr, A.R. Temperature-Dependent Density and Viscosity of the Ionic Liquids 1-Alkyl-3-methylimidazolium Iodides: Experiment and Molecular Dynamics Simulation. J. Chem. Eng. Data 2010, 55, 3084–3088. [Google Scholar] [CrossRef]
- Perkins, S.L.; Painter, P.; Colina, C.M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652–3662. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, R.; Han, H.; Wu, K.; Wang, B.; Liu, Y.; Zhu, Y.; Lu, H.; Liang, B. Preparation strategy and stability of deep eutectic solvents: A case study based on choline chloride-carboxylic acid. J. Clean. Prod. 2022, 345, 131028. [Google Scholar] [CrossRef]
- Yang, F.; Zheng, Q.; Tan, H.; Wang, X. Insight into the role of hydrogen bond donor in deep eutectic solvents. J. Mol. Liq. 2024, 399, 124332. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, J.; Zhang, X.; Liang, Y.; Cheng, X.; Zhu, X. High pressure-induced glass transition and stability of choline chloride/malonic acidic deep eutectic solvents with different molar ratios. J. Mol. Liq. 2022, 364, 120055. [Google Scholar] [CrossRef]
- Bruinhorst, A.v.D.; Kollau, L.J.B.M.; Kroon, M.C.; Meuldijk, J.; Tuinier, R.; Esteves, A.C.C. A centrifuge method to determine the solid–liquid phase behavior of eutectic mixtures. J. Chem. Phys. 2018, 149, 224505. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Database of deep eutectic solvents and their physical properties: A review. J. Mol. Liq. 2023, 384, 121899. [Google Scholar] [CrossRef]
- Hobza, P.; Špirko, V.; Selzle, H.L.; Schlag, E.W. Anti-Hydrogen Bond in the Benzene Dimer and Other Carbon Proton Donor Complexes. J. Phys. Chem. A 1998, 102, 2501–2504. [Google Scholar] [CrossRef]
- Martín, M.; García-Díaz, I.; López, F. Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Miner. Eng. 2023, 203, 108306. [Google Scholar] [CrossRef]
- Shishov, A.; Makoś-Chełstowska, P.; Bulatov, A.; Andruch, V. Condensed matter, materials, surfaces, interfaces, biophysical, Deep Eutectic Solvents or Eutectic Mixtures? Characterization of Tetrabutylammonium Bromide and Nonanoic Acid Mixtures. J. Phys. Chem. B 2022, 126, 3889–3896. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Rogers, R.D. Ionic Liquids: New Forms of Active Pharmaceutical Ingredients with Unique, Tunable Properties. Chem. Rev. 2023, 123, 11894–11953. [Google Scholar] [CrossRef] [PubMed]
- Fronduti, M.; Del Giacco, T.; Rossi, E.; Tiecco, M.; Germani, R. Insights into the structural features of deep eutectic solvents: The eutectic point as an unicum in their physical properties and the surface tension as a method for its determination. J. Mol. Liq. 2023, 379, 121679. [Google Scholar] [CrossRef]
- Cruz-Castañeda, J.; Negrón-Mendoza, A.; Frías, D.; Colín-García, M.; Heredia, A.; Ramos-Bernal, S.; Villafañe-Barajas, S. Chemical evolution studies: The radiolysis and thermal decomposition of malonic acid. J. Radioanal. Nucl. Chem. 2015, 304, 219–225. [Google Scholar] [CrossRef]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Chen, W.; Xue, Z.; Wang, J.; Jiang, J.; Zhao, X.; Mu, T. Investigation on the thermal stability of deep eutectic solvents. Acta Phys. Chim. Sin. 2018, 34, 904–911. [Google Scholar] [CrossRef]
- Zhu, A.; Bian, X.; Han, W.; Cao, D.; Wen, Y.; Zhu, K.; Wang, S. The application of deep eutectic solvents in lithium-ion battery recycling: A comprehensive review. Resour. Conserv. Recycl. 2023, 188, 106690. [Google Scholar] [CrossRef]
Cathode | DES | Condition | Leaching Efficiency (%) | Ref. | |||
---|---|---|---|---|---|---|---|
Li | Ni | Co | Mn | ||||
LCO | ChCl/Urea | 180 °C, 12 h, 1 g/50 g | 95 | - | 98 | - | [13] |
NCM | ChCl/EG | 180 °C, 24 h, 1 g/80 mL | 92 | 95 | 93 | 95 | [14] |
NCM | ChCl/H2C2O4 | 120 °C, 10 h, 1 g/20 mL | - | <1 | >97 | >97 | [15] |
LFP | ChCl/EG | 40 °C, 6 h, 50 g/L, O3 | 92.2 | - | - | - | [16] |
Element | Ni | Li | Mn | Co | Fe | Al |
---|---|---|---|---|---|---|
Content | 49.56 | 6.68 | 5.6 | 6.2 | 0.02 | 1.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, D.; Bao, Y.; Jiang, L.; Li, Y.; Chen, C. Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy. Metals 2025, 15, 350. https://doi.org/10.3390/met15040350
Ju D, Bao Y, Jiang L, Li Y, Chen C. Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy. Metals. 2025; 15(4):350. https://doi.org/10.3390/met15040350
Chicago/Turabian StyleJu, Dianchun, Yunjie Bao, Leyan Jiang, Yingying Li, and Chunyu Chen. 2025. "Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy" Metals 15, no. 4: 350. https://doi.org/10.3390/met15040350
APA StyleJu, D., Bao, Y., Jiang, L., Li, Y., & Chen, C. (2025). Physicochemical Properties of a Pressurized Deep Eutectic Solvent and Its Application in Extraction Metallurgy. Metals, 15(4), 350. https://doi.org/10.3390/met15040350