Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = low power wide-area-network (LPWAN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 509
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

24 pages, 6250 KiB  
Article
A Failure Risk-Aware Multi-Hop Routing Protocol in LPWANs Using Deep Q-Network
by Shaojun Tao, Hongying Tang, Jiang Wang and Baoqing Li
Sensors 2025, 25(14), 4416; https://doi.org/10.3390/s25144416 - 15 Jul 2025
Viewed by 250
Abstract
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced [...] Read more.
Multi-hop routing over low-power wide-area networks (LPWANs) has emerged as a promising technology for extending network coverage. However, existing protocols face high transmission disruption risks due to factors such as dynamic topology driven by stochastic events, dynamic link quality, and coverage holes induced by imbalanced energy consumption. To address this issue, we propose a failure risk-aware deep Q-network-based multi-hop routing (FRDR) protocol, aiming to reduce transmission disruption probability. First, we design a power regulation mechanism (PRM) that works in conjunction with pre-selection rules to optimize end-device node (EN) activations and candidate relay selection. Second, we introduce the concept of routing failure risk value (RFRV) to quantify the potential failure risk posed by each candidate next-hop EN, which correlates with its neighborhood state characteristics (i.e., the number of neighbors, the residual energy level, and link quality). Third, a deep Q-network (DQN)-based routing decision mechanism is proposed, where a multi-objective reward function incorporating RFRV, residual energy, distance to the gateway, and transmission hops is utilized to determine the optimal next-hop. Simulation results demonstrate that FRDR outperforms existing protocols in terms of packet delivery rate and network lifetime while maintaining comparable transmission delay. Full article
(This article belongs to the Special Issue Security, Privacy and Trust in Wireless Sensor Networks)
Show Figures

Figure 1

41 pages, 8353 KiB  
Article
Optimizing LoRaWAN Gateway Placement in Urban Environments: A Hybrid PSO-DE Algorithm Validated via HTZ Simulations
by Kanar Alaa Al-Sammak, Sama Hussein Al-Gburi, Ion Marghescu, Ana-Maria Claudia Drăgulinescu, Cristina Marghescu, Alexandru Martian, Nayef A. M. Alduais and Nawar Alaa Hussein Al-Sammak
Technologies 2025, 13(6), 256; https://doi.org/10.3390/technologies13060256 - 17 Jun 2025
Viewed by 870
Abstract
With rapid advancements in the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) play a crucial role in expanding IoT’s capabilities while using minimal energy. Among the various LPWAN technologies, LoRaWAN (Long-Range Wide-Area Network) is particularly notable for its capacity to enable long-range, [...] Read more.
With rapid advancements in the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) play a crucial role in expanding IoT’s capabilities while using minimal energy. Among the various LPWAN technologies, LoRaWAN (Long-Range Wide-Area Network) is particularly notable for its capacity to enable long-range, low-rate communications with low power needs. This study investigates how to optimize the placement of LoRaWAN gateways by using a combination of Particle Swarm Optimization (PSO) and Differential Evolution (DE). The approach is validated through simulations driven by HTZ to evaluate network performance in urban settings. Centered around the area of the Politehnica University of Bucharest, this research examines how different gateway placements on various floors of a building affect network coverage and packet loss. The experiment employs Adeunis Field Test Devices (FTDs) and Dragino LG308-EC25 gateways, systematically testing two spreading factors, SF7 and SF12, to assess their effectiveness in terms of signal quality and reliability. An innovative optimization algorithm, GateOpt PSODE, is introduced, which combines PSO and DE to optimize gateway placements based on real-time network performance metrics, like the Received Signal Strength Indicator (RSSI), the Signal-to-Noise Ratio (SNR), and packet loss. The findings reveal that strategically positioning gateways, especially on higher floors, significantly improves communication reliability and network efficiency, providing a solid framework for deploying LoRaWAN networks in intricate urban environments. Full article
Show Figures

Figure 1

26 pages, 2415 KiB  
Article
RL-SCAP SigFox: A Reinforcement Learning Based Scalable Communication Protocol for Low-Power Wide-Area IoT Networks
by Raghad Albalawi, Fatma Bouabdallah, Linda Mohaisen and Shireen Saifuddin
Technologies 2025, 13(6), 255; https://doi.org/10.3390/technologies13060255 - 17 Jun 2025
Viewed by 309
Abstract
The Internet of Things (IoT) aims to wirelessly connect billions of physical things to the IT infrastructure. Although there are several radio access technologies available, few of them meet the needs of Internet of Things applications, such as long range, low cost, and [...] Read more.
The Internet of Things (IoT) aims to wirelessly connect billions of physical things to the IT infrastructure. Although there are several radio access technologies available, few of them meet the needs of Internet of Things applications, such as long range, low cost, and low energy consumption. The low data rate of low-power wide-area network (LPWAN) technologies, particularly SigFox, makes them appropriate for Internet of Things applications since the longer the radio link’s useable distance, the lower the data rate. Network reliability is the primary goal of SigFox technology, which aims to deliver data messages successfully through redundancy. This raises concerns about SigFox’s scalability and leads to one of its flaws, namely the high collision rate. In this paper, the goal is to prevent collisions by switching to time division multiple access (TDMA) from SigFox’s Aloha-based medium access protocol, utilizing only orthogonal channels, and eliminating redundancy. Consequently, during a designated time slot, each node transmits a single copy of the data message over a particular orthogonal channel. To achieve this, a multi-agent, off-policy reinforcement learning (RL) Q-Learning technique will be used on top of SigFox. In other words, the objective is to increase SigFox’s scalability through the use of Reinforcement Learning based time slot allocation (RL-SCAP). The findings show that, especially in situations with high node densities or constrained communication slots, the proposed protocol performs better than the basic SCAP (Slot and Channel Allocation Protocol) by obtaining a higher Packet Delivery Ratio (PDR) in average of 60.58%, greater throughput in average of 60.90%, and a notable decrease in collisions up to 79.37%. Full article
Show Figures

Figure 1

29 pages, 4136 KiB  
Article
IoT-NTN with VLEO and LEO Satellite Constellations and LPWAN: A Comparative Study of LoRa, NB-IoT, and Mioty
by Changmin Lee, Taekhyun Kim, Chanhee Jung and Zizung Yoon
Electronics 2025, 14(9), 1798; https://doi.org/10.3390/electronics14091798 - 28 Apr 2025
Viewed by 1021
Abstract
This study investigates the optimization of satellite constellations for Low-Power, Wide-Area Network (LPWAN)-based Internet of Things (IoT) communications in Very Low Earth Orbit (VLEO) at 200 km and 300 km altitudes and Low Earth Orbit (LEO) at 600km using a Genetic Algorithm (GA). [...] Read more.
This study investigates the optimization of satellite constellations for Low-Power, Wide-Area Network (LPWAN)-based Internet of Things (IoT) communications in Very Low Earth Orbit (VLEO) at 200 km and 300 km altitudes and Low Earth Orbit (LEO) at 600km using a Genetic Algorithm (GA). Focusing on three LPWAN technologies—LoRa, Narrowband IoT (NB-IoT), and Mioty—we evaluate their performance in terms of revisit time, data transmission volume, and economic efficiency. Results indicate that a 300 km VLEO constellation with LoRa achieves the shortest average revisit time and requires the fewest satellites, offering notable cost benefits. NB-IoT provides the highest data transmission volume. Mioty demonstrates strong scalability but necessitates a larger satellite count. These findings highlight the potential of VLEO satellites, particularly at 300 km, combined with LPWAN solutions for efficient and scalable IoT Non-Terrestrial Network (IoT-NTN) applications. Future work will explore multi-altitude simulations and hybrid LPWAN integration for further optimization. Full article
(This article belongs to the Special Issue Future Generation Non-Terrestrial Networks)
Show Figures

Figure 1

19 pages, 1062 KiB  
Article
Reinforcement Learning-Based Time-Slotted Protocol: A Reinforcement Learning Approach for Optimizing Long-Range Network Scalability
by Nuha Alhattab, Fatma Bouabdallah, Enas F. Khairullah and Aishah Aseeri
Sensors 2025, 25(8), 2420; https://doi.org/10.3390/s25082420 - 11 Apr 2025
Viewed by 534
Abstract
The Internet of Things (IoT) is revolutionizing communication by connecting everyday objects to the Internet, enabling data exchange and automation. Low-Power Wide-Area networks (LPWANs) provide a wireless communication solution optimized for long-range, low-power IoT devices. LoRa is a prominent LPWAN technology; its ability [...] Read more.
The Internet of Things (IoT) is revolutionizing communication by connecting everyday objects to the Internet, enabling data exchange and automation. Low-Power Wide-Area networks (LPWANs) provide a wireless communication solution optimized for long-range, low-power IoT devices. LoRa is a prominent LPWAN technology; its ability to provide long-range, low-power wireless connectivity makes it ideal for IoT applications that cover large areas or where battery life is critical. Despite its advantages, LoRa uses a random access mode, which makes it susceptible to increased collisions as the network expands. In addition, the scalability of LoRa is affected by the distribution of its transmission parameters. This paper introduces a Reinforcement Learning-based Time-Slotted (RL-TS) LoRa protocol that incorporates a mechanism for distributing transmission parameters. It leverages a reinforcement learning algorithm, enabling nodes to autonomously select their time slots, thereby optimizing the allocation of transmission parameters and TDMA slots. To evaluate the effectiveness of our approach, we conduct simulations to assess the convergence speed of the reinforcement learning algorithm, as well as its impact on throughput and packet delivery ratio (PDR). The results demonstrate significant improvements, with PDR increasing from 0.45–0.85 in LoRa to 0.88–0.97 in RL-TS, and throughput rising from 80–150 packets to 156–172 packets. Additionally, RL-TS achieves 82% reduction in collisions compared to LoRa, highlighting its effectiveness in enhancing network performance. Moreover, a detailed comparison with conventional LoRa and other existing protocols is provided, highlighting the advantages of the proposed method. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

24 pages, 586 KiB  
Article
Performance Evaluation of a Mesh-Topology LoRa Network
by Thomas Gerhardus Durand and Marthinus Johannes Booysen
Sensors 2025, 25(5), 1602; https://doi.org/10.3390/s25051602 - 5 Mar 2025
Viewed by 2205
Abstract
Research into, and the usage of, Low-Power Wide-Area Networks (LPWANs) has increased significantly to support the ever-expanding requirements set by IoT applications. Specifically, the usage of Long-Range Wide-Area Networks (LoRaWANs) has increased, due to the LPWAN’s robust physical layer, Long-Range (LoRa), modulation scheme, [...] Read more.
Research into, and the usage of, Low-Power Wide-Area Networks (LPWANs) has increased significantly to support the ever-expanding requirements set by IoT applications. Specifically, the usage of Long-Range Wide-Area Networks (LoRaWANs) has increased, due to the LPWAN’s robust physical layer, Long-Range (LoRa), modulation scheme, which enables scalable, low-power consumption, long-range communication to IoT devices. The LoRaWAN Medium Access Control (MAC) protocol is currently limited to only support single-hop communication. This limits the coverage of a single gateway and increases the power consumption of devices which are located at the edge of a gateway’s coverage range. There is currently no standardised and commercialised multi-hop LoRa-based network, and the field is experiencing ongoing research. In this work, we propose a complementary network to LoRaWAN, which integrates mesh networking. An ns-3 simulation model has been developed, and the proposed LoRaMesh network is simulated for a varying number of scenarios. This research focuses on the design decisions needed to design a LoRa-based mesh network which maintains the low-power consumption advantages that LoRaWAN offers while ensuring that data packets are routed successfully to the gateway. The results highlighted a significant increase in the packet delivery ratio in nodes located far from a centralised gateway in a dense network. Nodes located further than 5.8 km from a gateway’s packet delivery ratio were increased from an average of 40.2% to 73.78%. The findings in this article validate the concept of a mesh-type LPWAN network based on the LoRa physical layer and highlight the potential for future optimisation. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

30 pages, 3278 KiB  
Article
Centralized MPPT Control Architecture for Photovoltaic Systems Using LoRa Technology
by Pablo Fernández-Bustamante, Eneko Artetxe, Isidro Calvo and Oscar Barambones
Appl. Sci. 2025, 15(5), 2456; https://doi.org/10.3390/app15052456 - 25 Feb 2025
Viewed by 646
Abstract
Maximum power point tracking (MPPT) algorithms are necessary to optimize the power generation in solar photovoltaic (PV) power plants. Typically, MPPT control systems depend on the wired connections among sensors, processing nodes, and DC–DC power converters. However, Low-Power Wide-Area Networks (LPWANs) allow for [...] Read more.
Maximum power point tracking (MPPT) algorithms are necessary to optimize the power generation in solar photovoltaic (PV) power plants. Typically, MPPT control systems depend on the wired connections among sensors, processing nodes, and DC–DC power converters. However, Low-Power Wide-Area Networks (LPWANs) allow for centralizing the execution of MPPT algorithms wirelessly, achieving more flexibility and reducing costs. In particular, LoRa/LoRaWAN is a low-cost/low-consumption technology with an excellent immunity to interference, which is able to operate over tens of kilometers. This article presents a centralized MPPT control architecture for PV systems based on the LoRa/LoRaWAN technology. This technology provides long-range/low-cost wireless connectivity with PV plants located far away. The presented approach allows for executing in parallel, on a central computing node, different MPPT algorithms for distinct PV subsystems. A proof-of-concept prototype was implemented to experimentally validate the architecture. It involved a rooftop PV system and a DC–DC converter connected to a computer, which executes the MPPT algorithms, by means of a point-to-point LoRa network. For validation purpose, two MPPT control techniques were implemented: Perturb and Observe (P&O) and Sliding Mode Control (SMC). However, the presented approach allows for the implementation of more sophisticated MPPT algorithms for optimizing energy production. The obtained results prove the validity of the concept and suggest that the proposed low-cost approach can be extrapolated to be used with LoRaWAN networks. Full article
(This article belongs to the Special Issue Energy and Power Systems: Control and Management)
Show Figures

Figure 1

17 pages, 5166 KiB  
Article
Implementing a Wide-Area Network and Low Power Solution Using Long-Range Wide-Area Network Technology
by Floarea Pitu and Nicoleta Cristina Gaitan
Technologies 2025, 13(1), 36; https://doi.org/10.3390/technologies13010036 - 16 Jan 2025
Viewed by 2244
Abstract
In recent decades, technology has undergone significant transformations, aimed at optimizing and enhancing the quality of human life. A prime example of this progress is the Internet of Things (IoT) technology. Today, the IoT is widely applied across diverse sectors, including logistics, communications, [...] Read more.
In recent decades, technology has undergone significant transformations, aimed at optimizing and enhancing the quality of human life. A prime example of this progress is the Internet of Things (IoT) technology. Today, the IoT is widely applied across diverse sectors, including logistics, communications, agriculture, education, and infrastructure, demonstrating its versatility and profound relevance in various domains. Agriculture has historically been a fundamental sector for meeting humanity’s basic needs, and it is indispensable for survival and development. A critical factor in this regard is climatic and meteorological conditions directly influencing agricultural productivity. Therefore, real-time monitoring and analysis of these variables becomes imperative for optimizing production and reducing vulnerability to climate change. This paper presents the development and implementation of a low-power wide-area network (LPWAN) solution using LoRaWAN (long-range wide-area network) technology, designed for real-time environmental monitoring in agricultural applications. The system consists of energy-efficient end nodes and a custom-configured gateway, designed to optimize data transmission and power consumption. The end nodes integrate advanced sensors for temperature, humidity, and pressure, ensuring accurate data collection. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

8 pages, 8100 KiB  
Proceeding Paper
Athlete Tracking at a Marathon Event with LoRa: A Performance Evaluation with Mobile Gateways
by Dominik Hochreiter
Eng. Proc. 2024, 82(1), 97; https://doi.org/10.3390/ecsa-11-20523 - 26 Nov 2024
Viewed by 697
Abstract
The accurate and continuous location monitoring of athletes helps in meeting health and safety requirements and supporting the infotainment needs of large marathon events with thousands of participants. Currently, the tracking of individuals and groups of athletes at mass sports events is only [...] Read more.
The accurate and continuous location monitoring of athletes helps in meeting health and safety requirements and supporting the infotainment needs of large marathon events with thousands of participants. Currently, the tracking of individuals and groups of athletes at mass sports events is only possible to a limited extent, due to the weight, size, and cost constraints of the necessary devices. At marathon events, the usual infrastructure for timekeeping is Radio Frequency Identification (RFID) technology, which allows only precise tracking at huge intervals, with heuristic and interpolative algorithms to estimate runner positions in between the measuring points. Setting up RFID tracking stations on site is also material- and labor-intensive. We instead propose a continuous, real-time tracking solution, relying on Long-Range Wide-Area Network (LoRaWAN) GPS trackers. Due to the large geographical area and urban space in which marathon events take place, the positioning of static gateways cannot provide complete and continuous coverage. This research article presents an implementation with multiple LoRa trackers and mobile LoRa gateways installed on vehicle escorts to assess coverage quality. The tracking data collected by a receiving LoRaWAN Network Server (LNS) are stored in a database. Three experiments were conducted at three different official running events: a 10 km race, a half marathon, and a marathon. The backdrop for the 42.195 km event was the official Vienna City Marathon 2024 with more than 35,000 participants. The experimental results under these realistic conditions show the reception quality of this approach; e.g., during the marathon, the received packets from LoRa gateways were at an average distance of about 136 m (σ 157 m) from the tracker with a median update rate of 31 s across all trackers, using DR3/SF9. At greater distances, the quality decreased, although some outliers were received up to a distance of two kilometers. A possible prospect is that the low-power wide-area network (LPWAN) may repeat the history of RFID by entering the mass sports market from the industry domain. Full article
Show Figures

Figure 1

25 pages, 20254 KiB  
Article
IoT-Enhanced Decision Support System for Real-Time Greenhouse Microclimate Monitoring and Control
by Dragoș-Ioan Săcăleanu, Mihai-Gabriel Matache, Ștefan-George Roșu, Bogdan-Cristian Florea, Irina-Petra Manciu and Lucian-Andrei Perișoară
Technologies 2024, 12(11), 230; https://doi.org/10.3390/technologies12110230 - 14 Nov 2024
Cited by 5 | Viewed by 3690
Abstract
Greenhouses have taken on a fundamental role in agriculture. The Internet of Things (IoT) is a key concept used in greenhouse-based precision agriculture (PA) to enhance vegetable quality and quantity while improving resource efficiency. Integrating wireless sensor networks (WSNs) into greenhouses to monitor [...] Read more.
Greenhouses have taken on a fundamental role in agriculture. The Internet of Things (IoT) is a key concept used in greenhouse-based precision agriculture (PA) to enhance vegetable quality and quantity while improving resource efficiency. Integrating wireless sensor networks (WSNs) into greenhouses to monitor environmental parameters represents a critical first step in developing a complete IoT solution. For further optimization of the results, including actuator nodes to control the microclimate is necessary. The greenhouse must also be remotely monitored and controlled via an internet-based platform. This paper proposes an IoT-based architecture as a decision support system for farmers. A web platform has been developed to acquire data from custom-developed wireless sensor nodes and send commands to custom-developed wireless actuator nodes in a greenhouse environment. The wireless sensor and actuator nodes (WSANs) utilize LoRaWAN, one of the most prominent Low-Power Wide-Area Network (LPWAN) technologies, known for its long data transmission range. A real-time end-to-end deployment of a remotely managed WSAN was conducted. The power consumption of the wireless sensor nodes and the recharge efficiency of installed solar panels were analyzed under worst-case scenarios with continuously active nodes and minimal intervals between data transmissions. Datasets were acquired from multiple sensor nodes over a month, demonstrating the system’s functionality and feasibility. Full article
(This article belongs to the Special Issue Advanced Autonomous Systems and Artificial Intelligence Stage)
Show Figures

Figure 1

18 pages, 4569 KiB  
Article
ICT Innovation to Promote Sustainable Development Goals: Implementation of Smart Water Pipeline Monitoring System Based on Narrowband Internet of Things
by Yuh-Ming Cheng, Mong-Fong Horng and Chih-Chao Chung
Sustainability 2024, 16(22), 9683; https://doi.org/10.3390/su16229683 - 6 Nov 2024
Cited by 2 | Viewed by 1661
Abstract
This study proposes a low-cost, automatic, wide-area real-time water pipeline monitoring model based on Narrowband Internet of Things (NB-IoT) technology, aiming to solve the challenges faced in the context of global water pipeline management. This model focuses on real-time monitoring of pipeline operations [...] Read more.
This study proposes a low-cost, automatic, wide-area real-time water pipeline monitoring model based on Narrowband Internet of Things (NB-IoT) technology, aiming to solve the challenges faced in the context of global water pipeline management. This model focuses on real-time monitoring of pipeline operations to reduce water waste and improve management efficiency, directly contributing to the achievement of the sustainable development goals (SDGs). Water resource management faces several significant global challenges, including water scarcity, inefficient resource utilization, and infrastructure degradation. Traditional water pipeline monitoring systems are often manual, time-consuming, and unable to detect leaks or failures in real time, leading to significant water loss and financial costs. In response to these issues, NB-IoT technology offers a promising solution with its advantages of low power consumption, long-range communication, and cost-effectiveness. The development of an NB-IoT-based smart water pipeline monitoring system is therefore essential for enhancing the efficiency and sustainability of water resource management. Through enabling real-time monitoring and data collection, this system can address critical issues in global water management, reducing waste and supporting the sustainable development goals (SDGs). This model utilizes Low-Power Wide-Area Network (LPWAN) technology, combined with an LTE mobile network and ARM Cortex-M4 microcontroller, to achieve long-distance multi-sensor data collection and monitoring. The research results show that NB-IoT technology can effectively improve water resource management efficiency, reduce water waste, and is of great significance for the digital transformation of infrastructure and the development of smart cities. This technical solution not only supports “Goal 6: Clean Drinking Water and Sanitation” in the United Nations’ sustainable development goals (SDGs) but also promotes the realization of low-cost teaching aids related to engineering education-related information and communication technologies (ICTs). This study demonstrates the key role of ICTs in promoting sustainable development and provides a concrete practical example for smart water resource management. Full article
Show Figures

Figure 1

33 pages, 20655 KiB  
Article
An Adaptive Data Rate Algorithm for Power-Constrained End Devices in Long Range Networks
by Honggang Wang, Baorui Zhao, Xiaolei Liu, Ruoyu Pan, Shengli Pang and Jiwei Song
Mathematics 2024, 12(21), 3371; https://doi.org/10.3390/math12213371 - 28 Oct 2024
Cited by 1 | Viewed by 1400
Abstract
LoRa (long range) is a communication technology that employs chirp spread spectrum modulation. Among various low-power wide area network (LPWAN) technologies, LoRa offers unique advantages, including low power consumption, long transmission distance, strong anti-interference capability, and high network capacity. Addressing the issue of [...] Read more.
LoRa (long range) is a communication technology that employs chirp spread spectrum modulation. Among various low-power wide area network (LPWAN) technologies, LoRa offers unique advantages, including low power consumption, long transmission distance, strong anti-interference capability, and high network capacity. Addressing the issue of power-constrained end devices in IoT application scenarios, this paper proposes an adaptive data rate (ADR) algorithm for LoRa networks designed for power-constrained end devices (EDs). The algorithm evaluates the uplink communication link state between the EDs and the gateway (GW) by using a combined weighting method to comprehensively assess the signal-to-noise ratio (SNR), received signal strength indication (RSSI), and packet reception rate (PRR), and calculates a list of transmission power and data rates that ensure stable and reliable communication between the EDs and the GW. By using ED power consumption models, network throughput models, and ED latency models to evaluate network performance, the Zebra optimization algorithm is employed to find the optimal data rate for each ED under power-constrained conditions while maximizing network performance. Test results show that, in a single ED scenario, the average PRR achieved by the proposed ADR algorithm for power-constrained EDs in LoRa networks is 14% higher than that of the standard LoRaWAN ADR algorithm. In a multi-ED link scenario (50 end devices), the proposed method reduces the average power consumption of EDs by 10% compared to LoRaWAN ADR, achieves a network throughput of 6683 bps, and an average latency of 2.10 s, demonstrating superior performance overall. The proposed method shows unique advantages in LoRa networks with power-constrained EDs and a large number of EDs, as it not only reduces the average power consumption of the EDs but also optimizes network throughput and average latency. Full article
Show Figures

Figure 1

18 pages, 5855 KiB  
Article
Scalability Analysis of LoRa and Sigfox in Congested Environment and Calculation of Optimum Number of Nodes
by Mandeep Malik, Ashwin Kothari and Rashmi Pandhare
Sensors 2024, 24(20), 6673; https://doi.org/10.3390/s24206673 - 17 Oct 2024
Cited by 4 | Viewed by 1973
Abstract
Low-power wide area network (LPWAN) technologies as part of IoT are gaining a lot of attention as they provide affordable communication over large areas. LoRa and Sigfox as part of LPWAN have emerged as highly effective and promising non-3GPP unlicensed band IoT technologies [...] Read more.
Low-power wide area network (LPWAN) technologies as part of IoT are gaining a lot of attention as they provide affordable communication over large areas. LoRa and Sigfox as part of LPWAN have emerged as highly effective and promising non-3GPP unlicensed band IoT technologies while challenging the supremacy of cellular technologies for machine-to-machine-(M2M)-based use cases. This paper presents the design goals of LoRa and Sigfox while throwing light on their suitability in congested environments. A practical traffic generator of both LoRa and Sigfox is introduced and further interpolated for understanding simultaneous operation of 100 to 10,000 such nodes in close vicinity while establishing deep understanding on effects of collision, re-transmissions, and link behaviour. Previous work in this field have overlooked simultaneous deployment, collision issues, effects of re-transmission, and propagation profile while arriving at a number of successful receptions. This work uses packet error rate (PER) and delivery ratio, which are correct metrics to calculate successful transmissions. The obtained results show that a maximum of 100 LoRa and 200 Sigfox nodes can be deployed in a fixed transmission use case over an area of up to 1 km. As part of the future scope, solutions have been suggested to increase the effectiveness of LoRa and Sigfox networks. Full article
Show Figures

Figure 1

25 pages, 16110 KiB  
Article
Optimizing Routing Protocol Design for Long-Range Distributed Multi-Hop Networks
by Shengli Pang, Jing Lu, Ruoyu Pan, Honggang Wang, Xute Wang, Zhifan Ye and Jingyi Feng
Electronics 2024, 13(19), 3957; https://doi.org/10.3390/electronics13193957 - 8 Oct 2024
Cited by 1 | Viewed by 1594
Abstract
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost [...] Read more.
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost and efficient network deployment solutions to support various monitoring tasks. Distributed networks offer high stability, reliability, and economic feasibility. Among various Low-Power Wide-Area Network (LPWAN) technologies, Long Range (LoRa) has emerged as the preferred choice due to its openness and flexibility. However, traditional LoRa networks face challenges such as limited coverage range and poor scalability, emphasizing the need for research into distributed routing strategies tailored for LoRa networks. This paper proposes the Optimizing Link-State Routing Based on Load Balancing (LB-OLSR) protocol as an ideal approach for constructing LoRa distributed multi-hop networks. The protocol considers the selection of Multipoint Relay (MPR) nodes to reduce unnecessary network overhead. In addition, route planning integrates factors such as business communication latency, link reliability, node occupancy rate, and node load rate to construct an optimization model and optimize the route establishment decision criteria through a load-balancing approach. The simulation results demonstrate that the improved routing protocol exhibits superior performance in node load balancing, average node load duration, and average business latency. Full article
Show Figures

Figure 1

Back to TopTop