Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,495)

Search Parameters:
Keywords = low cost design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 (registering DOI) - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 (registering DOI) - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
9 pages, 781 KiB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

11 pages, 5939 KiB  
Article
Low-Cost Phased Array with Enhanced Gain at the Largest Deflection Angle
by Haotian Wen, Hansheng Su, Yan Wen, Xin Ma and Deshuang Zhao
Electronics 2025, 14(15), 3111; https://doi.org/10.3390/electronics14153111 - 5 Aug 2025
Abstract
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) [...] Read more.
This paper presents a low-cost 1-bit phased array operating at 17 GHz (Ku band) with an enhanced scanning gain at the largest deflection angle to extend the beam coverage for ground target detection. The phased array is designed using 16 (2 × 8) radiation-phase reconfigurable dipoles and a fixed-phase feeding network, achieving 1-bit beam steering via a direct current (DC) bias voltage of ±5 V. Measurement results demonstrate a peak gain of 9.2 dBi at a deflection angle of ±37°, with a 3 dB beamwidth of 94° across the scanning plane. Compared with conventional phased array radars with equivalent peak gains, the proposed design achieves a 16% increase in the detection range at the largest deflection angle. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

23 pages, 5826 KiB  
Article
Re-Habiting the Rooftops in Ciutat Vella (Barcelona): Co-Designed Low-Cost Solutions for a Social, Technical and Environmental Improvement
by Marta Domènech-Rodríguez, Oriol París-Viviana and Còssima Cornadó
Urban Sci. 2025, 9(8), 304; https://doi.org/10.3390/urbansci9080304 - 4 Aug 2025
Abstract
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this [...] Read more.
This research addresses urban inequality by focusing on the rehabilitation of communal rooftops in Ciutat Vella, Barcelona, the city’s historic district, where residential vulnerability is concentrated in a particularly dense heritage urban environment with a shortage of outdoor spaces. Using participatory methodologies, this research develops low-cost, removable, and recyclable prototypes aimed at improving social interaction, technical performance, and environmental conditions. The focus is on vulnerable populations, particularly the elderly. The approach integrates a bottom–up process and scalable solutions presented as a Toolkit of micro-projects. These micro-projects are designed to improve issues related to health, safety, durability, accessibility, energy savings, and acoustics. In addition, several possible material solutions for micro-projects are examined in terms of sustainability and cost. These plug-in interventions are designed for adaptability and replication throughout similar urban contexts and can significantly improve the quality of life for people, especially the elderly, in dense historic environments. Full article
Show Figures

Figure 1

17 pages, 29159 KiB  
Article
REW-YOLO: A Lightweight Box Detection Method for Logistics
by Guirong Wang, Shuanglong Li, Xiaojing Zhu, Yuhuai Wang, Jianfang Huang, Yitao Zhong and Zhipeng Wu
Modelling 2025, 6(3), 76; https://doi.org/10.3390/modelling6030076 (registering DOI) - 4 Aug 2025
Abstract
Inventory counting of logistics boxes in complex scenarios has always been a core task in intelligent logistics systems. To solve the problems of a high leakage rate and low computational efficiency caused by stacking, occlusion, and rotation in box detection against complex backgrounds [...] Read more.
Inventory counting of logistics boxes in complex scenarios has always been a core task in intelligent logistics systems. To solve the problems of a high leakage rate and low computational efficiency caused by stacking, occlusion, and rotation in box detection against complex backgrounds in logistics environments, this paper proposes a lightweight, rotated object detection model: REW-YOLO (RepViT-Block YOLO with Efficient Local Attention and Wise-IoU). By integrating structural reparameterization techniques, the C2f-RVB module was designed to reduce computational redundancy in traditional convolutions. Additionally, the ELA-HSFPN multi-scale feature fusion network was constructed to enhance edge feature extraction for occluded boxes and improve detection accuracy in densely packed scenarios. A rotation angle regression branch and a dynamic Wise-IoU loss function were introduced to further refine localization and balance sample quality. Experimental results on the self-constructed BOX-data dataset demonstrate that the REW-YOLO achieves 90.2% mAP50 and 130.8 FPS, with a parameter count of only 2.18 M, surpassing YOLOv8n by 2.9% in accuracy while reducing computational cost by 28%. These improvements provide an efficient solution for automated box detection in logistics applications. Full article
Show Figures

Figure 1

26 pages, 486 KiB  
Article
Towards Characterizing the Download Cost of Cache-Aided Private Updating
by Bryttany Stark, Ahmed Arafa and Karim Banawan
Entropy 2025, 27(8), 828; https://doi.org/10.3390/e27080828 (registering DOI) - 4 Aug 2025
Abstract
We consider the problem of privately updating a message out of K messages from N replicated and non-colluding databases where a user has an outdated version of the message W^θ of length L bits that differ from the current version [...] Read more.
We consider the problem of privately updating a message out of K messages from N replicated and non-colluding databases where a user has an outdated version of the message W^θ of length L bits that differ from the current version Wθ in at most f bits. The user also has a cache containing coded combinations of the K messages (with a pre-specified structure), which are unknown to the N databases (unknown prefetching). The cache Z contains linear combinations from all K messages in the databases with r=lL being the caching ratio. The user needs to retrieve Wθ correctly using a private information retrieval (PIR) scheme without leaking information about the message index θ to any individual database. Our objective is to jointly design the prefetching (i.e., the structure of said linear combinations) and the PIR strategies to achieve the least download cost. We propose a novel achievable scheme based on syndrome decoding where the cached linear combinations in Z are designed to be bits pertaining to the syndrome of Wθ according to a specific linear block code. We derive a general lower bound on the optimal download cost for 0r1, in addition to achievable upper bounds. The upper and lower bounds match for the cases when r is exceptionally low or high, or when K=3 messages for arbitrary r. Such bounds are derived by developing novel cache-aided arbitrary message length PIR schemes. Our results show a significant reduction in the download cost if f<L2 when compared with downloading Wθ directly using typical cached-aided PIR approaches. Full article
(This article belongs to the Special Issue Information-Theoretic Security and Privacy)
Show Figures

Figure 1

37 pages, 3005 KiB  
Review
Printed Sensors for Environmental Monitoring: Advancements, Challenges, and Future Directions
by Amal M. Al-Amri
Chemosensors 2025, 13(8), 285; https://doi.org/10.3390/chemosensors13080285 - 4 Aug 2025
Abstract
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors [...] Read more.
Environmental monitoring plays a key role in understanding and mitigating the effects of climate change, pollution, and resource mismanagement. The growth of printed sensor technologies offers an innovative approach to addressing these challenges due to their low cost, flexibility, and scalability. Printed sensors enable the real-time monitoring of air, water, soil, and climate, providing significant data for data-driven decision-making technologies and policy development to improve the quality of the environment. The development of new materials, such as graphene, conductive polymers, and biodegradable substrates, has significantly enhanced the environmental applications of printed sensors by improving sensitivity, enabling flexible designs, and supporting eco-friendly and disposable solutions. The development of inkjet, screen, and roll-to-roll printing technologies has also contributed to the achievement of mass production without sacrificing quality or performance. This review presents the current progress in printed sensors for environmental applications, with a focus on technological advances, challenges, applications, and future directions. Moreover, the paper also discusses the challenges that still exist due to several issues, e.g., sensitivity, stability, power supply, and environmental sustainability. Printed sensors have the potential to revolutionize ecological monitoring, as evidenced by recent innovations such as Internet of Things (IoT) integration, self-powered designs, and AI-enhanced data analytics. By addressing these issues, printed sensors can develop a better understanding of environmental systems and help promote the UN sustainable development goals. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

28 pages, 41726 KiB  
Article
Robust Unsupervised Feature Selection Algorithm Based on Fuzzy Anchor Graph
by Zhouqing Yan, Ziping Ma, Jinlin Ma and Huirong Li
Entropy 2025, 27(8), 827; https://doi.org/10.3390/e27080827 (registering DOI) - 4 Aug 2025
Abstract
Unsupervised feature selection aims to characterize the cluster structure of original features and select the optimal subset without label guidance. However, existing methods overlook fuzzy information in the data, failing to model cluster structures between data effectively, and rely on squared error for [...] Read more.
Unsupervised feature selection aims to characterize the cluster structure of original features and select the optimal subset without label guidance. However, existing methods overlook fuzzy information in the data, failing to model cluster structures between data effectively, and rely on squared error for data reconstruction, exacerbating noise impact. Therefore, a robust unsupervised feature selection algorithm based on fuzzy anchor graphs (FWFGFS) is proposed. To address the inaccuracies in neighbor assignments, a fuzzy anchor graph learning mechanism is designed. This mechanism models the association between nodes and clusters using fuzzy membership distributions, effectively capturing potential fuzzy neighborhood relationships between nodes and avoiding rigid assignments to specific clusters. This soft cluster assignment mechanism improves clustering accuracy and the robustness of the graph structure while maintaining low computational costs. Additionally, to mitigate the interference of noise in the feature selection process, an adaptive fuzzy weighting mechanism is presented. This mechanism assigns different weights to features based on their contribution to the error, thereby reducing errors caused by redundant features and noise. Orthogonal tri-factorization is applied to the low-dimensional representation matrix. This guarantees that each center represents only one class of features, resulting in more independent cluster centers. Experimental results on 12 public datasets show that FWFGFS improves the average clustering accuracy by 5.68% to 13.79% compared with the state-of-the-art methods. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

24 pages, 3139 KiB  
Review
Social, Economic and Ecological Drivers of Tuberculosis Disparities in Bangladesh: Implications for Health Equity and Sustainable Development Policy
by Ishaan Rahman and Chris Willott
Challenges 2025, 16(3), 37; https://doi.org/10.3390/challe16030037 - 4 Aug 2025
Abstract
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to [...] Read more.
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to TB burden. The first literature search identified 28 articles focused on SES-TB relationships in Bangladesh. A second search through snowballing and conceptual mapping yielded 55 more papers of diverse source types and disciplines. Low-SES groups face elevated TB risk due to smoking, biomass fuel use, malnutrition, limited education, stigma, financial barriers, and hazardous housing or workplaces. These factors delay care-seeking, worsen outcomes, and fuel transmission, especially among women. High-SES groups more often face comorbidities like diabetes, which increase TB risk. Broader contextual drivers include urbanisation, weak labour protections, cultural norms, and poor governance. Recommendations include housing and labour reform, gender parity in education, and integrating private providers into TB programmes. These align with the WHO End TB Strategy, UN SDGs and Planetary Health Quadruple Aims, which expand the traditional Triple Aim for health system design by integrating environmental sustainability alongside improved patient outcomes, population health, and cost efficiency. Future research should explore trust in frontline workers, reasons for consulting informal carers, links between makeshift housing and TB, and integrating ecological determinants into existing frameworks. Full article
(This article belongs to the Section Human Health and Well-Being)
Show Figures

Graphical abstract

45 pages, 1506 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 58
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

Back to TopTop