Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = long-wavelength infrared emissivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2332 KiB  
Article
Photophysical Properties and Protein Binding Studies of Piperazine-Substituted Anthracene-BODIPY Dyads for Antimicrobial Photodynamic Therapy
by Stephen O’Sullivan, Leila Tabrizi, Kaja Turzańska, Ian P. Clark, Deirdre Fitzgerald-Hughes and Mary T. Pryce
Molecules 2025, 30(13), 2727; https://doi.org/10.3390/molecules30132727 - 25 Jun 2025
Viewed by 640
Abstract
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial [...] Read more.
This work presents the synthesis, characterisation, photophysical properties, time-resolved spectroscopic behaviour, and biological evaluation of two structurally distinct heavy-atom-free BODIPY-anthracene dyads (BDP-1) and the newly designed 2,6-bis[1-(tert-butyl) 4-(prop-2-yn-1-yl) piperazine-1,4-dicarboxylate] BODIPY-anthracene (BDP-2), incorporating 2,6-alkynyl-piperazine substituents for potential application in antimicrobial photodynamic therapy. BDP-1 exhibits absorption and emission maxima at 507 nm and 516 nm, respectively, with a Stokes shift of 344 cm−1 in dichloromethane (DCM), characteristic of unsubstituted BODIPYs. In contrast, BDP-2 undergoes a red-shift in the absorption maximum to 552 nm (Stokes shift of 633 cm−1), which is attributed to the extended conjugation from the introduction of the alkyne groups. Time-resolved infrared spectroscopy confirmed efficient spin-orbit charge transfer intersystem crossing, and nanosecond transient absorption studies confirmed the formation of a long-lived triplet state for BDP-2 (up to 138 µs in MeCN). A binding constant (Kb) of 9.6 × 104 M−1 was obtained for BDP-2 when titrated with bovine serum albumin (BSA), which is higher than comparable BODIPY derivatives. BDP-2 displayed improved hemocompatibility compared to BDP-1 (<5% haemolysis of human erythrocytes up to 200 μg·mL−1). Antimicrobial activity of BDP-1 and BDP-2 was most potent when irradiated at 370 nm compared to the other wavelengths employed. However, BDP-2 did not retain the potent (6 log) and rapid (within 15 min) eradication of Staphylococcus aureus achieved by BDP-1 under irradiation at 370 nm. These findings demonstrate the rational design of BDP-2 as a biocompatible, and heavy-atom-free BODIPY offering promise for targeted antimicrobial photodynamic therapeutic applications. Full article
(This article belongs to the Special Issue BODIPYs: State of the Art and Future Perspectives)
Show Figures

Graphical abstract

18 pages, 4707 KiB  
Article
Development of Wearable Wireless Multichannel f-NIRS System to Evaluate Activities
by Xiaojie Ma, Tianchao Miao, Fawen Xie, Jieyu Zhang, Lulu Zheng, Xiang Liu and Hangrui Hai
Micromachines 2025, 16(5), 576; https://doi.org/10.3390/mi16050576 - 14 May 2025
Viewed by 619
Abstract
Functional near-infrared spectroscopy is a noninvasive neuroimaging technique that uses optical signals to monitor subtle changes in hemoglobin concentrations within the superficial tissue of the human body. This technology has widespread applications in long-term brain–computer interface monitoring within both traditional medical domains and, [...] Read more.
Functional near-infrared spectroscopy is a noninvasive neuroimaging technique that uses optical signals to monitor subtle changes in hemoglobin concentrations within the superficial tissue of the human body. This technology has widespread applications in long-term brain–computer interface monitoring within both traditional medical domains and, increasingly, domestic settings. The popularity of this approach lies in the fact that new single-channel brain oxygen sensors can be used in a variety of scenarios. Given the diverse sensor structure requirements across applications and numerous approaches to data acquisition, the accurate extraction of comprehensive brain activity information requires a multichannel near-infrared system. This study proposes a novel distributed multichannel near-infrared system that integrates two near-infrared light emissions at differing wavelengths (660 nm, 850 nm) with a photoelectric receiver. This substantially improves the accuracy of regional signal sampling. Through a basic long-time mental arithmetic paradigm, we demonstrate that the accompanying algorithm supports offline analysis and is sufficiently versatile for diverse scenarios relevant to the system’s functionality. Full article
Show Figures

Figure 1

19 pages, 3285 KiB  
Article
Diurnal Variations of Infrared Land Surface Emissivity in the Taklimakan Desert: An Observational Analysis
by Yufen Ma, Kang Zeng, Ailiyaer Aihaiti, Junjian Liu, Zonghui Liu and Ali Mamtimin
Remote Sens. 2025, 17(7), 1276; https://doi.org/10.3390/rs17071276 - 3 Apr 2025
Viewed by 570
Abstract
This study’s field observations of Light Source Efficiency (LSE) in the Taklamakan Desert have unveiled significant daily average variations across different wavelengths, with LSE values ranging from 0.827 at 9.1 μm to a peak of 0.969 at 12.1 μm, and notably, a substantial [...] Read more.
This study’s field observations of Light Source Efficiency (LSE) in the Taklamakan Desert have unveiled significant daily average variations across different wavelengths, with LSE values ranging from 0.827 at 9.1 μm to a peak of 0.969 at 12.1 μm, and notably, a substantial daily variation (DV) of Δε = 0.080 in the 14.3 μm band. These findings underscore the necessity for wavelength-specific analysis in LSE research, which is crucial for enhancing the precision of remote sensing applications and climate models. This study’s high-temporal-resolution FTIR field observations systematically reveal the diurnal dynamics of infrared surface emissivity in the desert for the first time, challenging existing satellite-based inversion products and highlighting the limitations of traditional temperature–emissivity separation algorithms in arid regions. The diurnal fluctuations are governed by three primary mechanisms: the amplification of lattice vibrations in quartz minerals under high daytime temperatures, changes in the surface topography due to thermal expansion and contraction, and nocturnal radiative cooling effects. The lack of a significant correlation between environmental parameters and the emissivity change rate suggests that microclimate factors play a dominant indirect regulatory role. Model comparisons indicate that sinusoidal functions outperform polynomial fits across most wavelengths, especially at 12.1 μm, confirming the significant influence of diurnal forcing. The high sensitivity of the 14.3 μm band makes it an ideal indicator for monitoring desert surface–atmosphere interactions. This study provides three key insights for remote sensing applications: the development of dynamic emissivity correction schemes, the prioritization of the long-wave infrared band for surface temperature inversion in arid regions, and the integration of ground-based observations with geostationary high-spectral data to construct spatiotemporally continuous emissivity models. Future research should focus on multi-angle observation experiments and the exploration of machine learning’s potential in cross-scale emissivity modeling. Full article
Show Figures

Figure 1

18 pages, 15306 KiB  
Review
Emission Wavelength Control via Molecular Structure Design of Dinuclear Pt(II) Complexes: Optimizing Optical Properties for Red- and Near-Infrared Emissions
by Hea Jung Park
Crystals 2025, 15(3), 273; https://doi.org/10.3390/cryst15030273 - 15 Mar 2025
Viewed by 797
Abstract
Phosphorescent Pt(II) complexes have garnered significant attention as key components in luminescence-based systems due to their highly efficient emission properties. A notable characteristic of these complexes is their ability to form excimers through strong molecular stacking in concentrated solutions or solid film states. [...] Read more.
Phosphorescent Pt(II) complexes have garnered significant attention as key components in luminescence-based systems due to their highly efficient emission properties. A notable characteristic of these complexes is their ability to form excimers through strong molecular stacking in concentrated solutions or solid film states. This aggregation-driven emission, primarily arising from metal–metal to ligand charge transfer (MMLCT), is influenced by overlapping d-orbitals oriented perpendicular to the square planar structure of the Pt(II) complexes. Although this property hinders the development of pure blue-emitting Pt(II) complexes, it facilitates the design of materials that emit red- and near-infrared (NIR) light. By employing advanced molecular design techniques, dinuclear Pt(II) complexes have been optimized to significantly enhance red and NIR emissions through the modulation of Pt-Pt interactions and adjustments in ligand electron densities. This review elucidates how the control of Pt-Pt distances and strategic ligand modifications can directly influence the emission spectra toward red and NIR regions. A comparative analysis of recent studies underscores the novelty and effectiveness of double-decker-type dinuclear Pt(II) complexes in achieving efficient emission characteristics in the long-wavelength range. These insights may guide the design of molecular structures for next-generation organometallic phosphorescent materials. Full article
Show Figures

Figure 1

10 pages, 551 KiB  
Article
AS 314: A Massive Dusty Hypergiant or a Low-Mass Post-Asymptotic Giant Branch Object?
by Aigerim Bakhytkyzy, Anatoly S. Miroshnichenko, Valentina G. Klochkova, Vladimir E. Panchuk, Sergey V. Zharikov, Laurent Mahy, Hans Van Winckel, Aldiyar T. Agishev and Serik A. Khokhlov
Galaxies 2025, 13(2), 17; https://doi.org/10.3390/galaxies13020017 - 28 Feb 2025
Viewed by 723
Abstract
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental [...] Read more.
AS 314 (V452 Sct) is a poorly studied early-type emission-line star, which exhibits an infrared excess at wavelengths longer than 10 μm. Its earlier studies have been limited to small amounts of observational data and led to controversial conclusions about its fundamental parameters and evolutionary status. Comparison of high-resolution spectra of AS 314 taken over 20 years ago with those of Luminous Blue Variables and other high-luminosity objects suggested its observed properties can be explained by a strong stellar wind from a distant (D∼10 kpc) massive star, possibly in a binary system. However, a recent assessment of its low-resolution spectrum along with a new distance from a Gaia parallax (∼1.6 kpc) resulted in an alternative hypothesis that AS 314 is a low-mass post-asymptotic giant branch (post-AGB) star. The latter hypothesis ignored the high-resolution data, which gave rise to the former explanation. We collected over 30 mostly high-resolution spectra taken in 1997–2023, supplemented them with results of long-term photometric surveys, compared the spectra and the spectral energy distribution with those of post-AGB objects and B/A supergiants, and concluded that the observed properties AS 314 are more consistent with those of the latter. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

20 pages, 18304 KiB  
Article
Assessment of Radiometric Calibration Consistency of Thermal Emissive Bands Between Terra and Aqua Moderate-Resolution Imaging Spectroradiometers
by Tiejun Chang, Xiaoxiong Xiong, Carlos Perez Diaz, Aisheng Wu and Hanzhi Lin
Remote Sens. 2025, 17(2), 182; https://doi.org/10.3390/rs17020182 - 7 Jan 2025
Viewed by 788
Abstract
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua spacecraft have been in orbit for over 24 and 22 years, respectively, providing continuous observations of the Earth’s surface. Among the instrument’s 36 bands, 16 of them are thermal emissive bands (TEBs) with [...] Read more.
Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua spacecraft have been in orbit for over 24 and 22 years, respectively, providing continuous observations of the Earth’s surface. Among the instrument’s 36 bands, 16 of them are thermal emissive bands (TEBs) with wavelengths that range from 3.75 to 14.24 μm. Routine post-launch calibrations are performed using the sensor’s onboard blackbody and space view port, the moon, and vicarious targets that include the ocean, Dome Concordia (Dome C) in Antarctica, and quasi-deep convective clouds (DCC). The calibration consistency between the satellite measurements from the two instruments is essential in generating a multi-year data record for the long-term monitoring of the Earth’s Level 1B (L1B) data. This paper presents the Terra and Aqua MODIS TEB comparison for the upcoming Collection 7 (C7) L1B products using measurements over Dome C and the ocean, as well as the double difference via simultaneous nadir overpasses with the Infrared Atmospheric Sounding Interferometer (IASI) sensor. The mission-long trending of the Terra and Aqua MODIS TEB is presented, and their cross-comparison is also presented and discussed. Results show that the calibration of the two MODIS sensors and their respective Earth measurements are generally consistent and within their design specifications. Due to the electronic crosstalk contamination, the PV LWIR bands show slightly larger drifts for both MODIS instruments across different Earth measurements. These drifts also have an impact on the Terra-to-Aqua calibration consistency. This thorough assessment serves as a robust record containing a summary of the MODIS calibration performance and the consistency between the two MODIS sensors over Earth view retrievals. Full article
Show Figures

Figure 1

13 pages, 3554 KiB  
Article
The Quenching of Long-Wavelength Fluorescence by the Closed Reaction Center in Photosystem I in Thermostichus vulcanus at 77 K
by Parveen Akhtar, Ivo H. M. van Stokkum and Petar H. Lambrev
Int. J. Mol. Sci. 2024, 25(22), 12430; https://doi.org/10.3390/ijms252212430 - 19 Nov 2024
Cited by 1 | Viewed by 950
Abstract
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer [...] Read more.
Photosystem I in most organisms contains long-wavelength or “Red” chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700+), which has broad absorption in the near-infrared region. This study investigates the excitation dynamics of Red Chls in Photosystem I from the cyanobacterium Thermostichus vulcanus at cryogenic temperatures (77 K) and examines the role of the oxidized RC in modulating their fluorescence kinetics. Using time-resolved fluorescence spectroscopy, the kinetics of Red Chls were recorded for samples with open (neutral P700) and closed (P700+) RCs. We found that emission lifetimes in the range of 710–720 nm remained unaffected by the RC state, while more red-shifted emissions (>730 nm) decayed significantly faster when the RC was closed. A kinetic model describing the quenching by the oxidized RC was constructed based on simultaneous fitting to the recorded fluorescence emission in Photosystem I with open and closed RCs. The analysis resolved multiple Red Chl forms and variable quenching efficiencies correlated with their spectral properties. Only the most red-shifted Chls, with emission beyond 730 nm, are efficiently quenched by P700+, with rate constants of up to 6 ns−1. The modeling results support the notion that structural and energetic disorder in Photosystem I can have a comparable or larger effect on the excitation dynamics than the geometric arrangement of Chls. Full article
(This article belongs to the Special Issue New Insights into Photosystem I (Second Edition))
Show Figures

Figure 1

13 pages, 1345 KiB  
Article
A Thermopile-Based Colorimetric Temperature Measurement Method for Arbitrary Bandwidth
by Qing Ji, Youwei Ma, Guoqing Ding, Kundong Wang and Xin Chen
Appl. Sci. 2024, 14(21), 9822; https://doi.org/10.3390/app14219822 - 27 Oct 2024
Viewed by 1127
Abstract
Colorimetric temperature measurement is an essential technique in radiometric thermometry. Traditional colorimetric methods determine temperature by comparing the ratio of radiative energies within two narrow bands at specific wavelengths, effectively mitigating the effects of the emissivity of the measured object and ambient conditions. [...] Read more.
Colorimetric temperature measurement is an essential technique in radiometric thermometry. Traditional colorimetric methods determine temperature by comparing the ratio of radiative energies within two narrow bands at specific wavelengths, effectively mitigating the effects of the emissivity of the measured object and ambient conditions. However, these methods typically approximate integration using area calculations when calculating radiative energy. This article eliminates this approximation and calculates the radiative energy with accurate integration. Based on the principle of monotonicity, this article demonstrates for the first time that when two narrow-band infrared radiations are selected, as long as their wavelength ranges do not overlap, the ratio of radiative energies within these bands maintains a monotonic relationship with the measured temperature. This allows the temperature to be inferred from the energy ratio. Furthermore, this conclusion is extended to arbitrary widths of bands as long as their wavelength ranges do not overlap. Building on this foundation, a thermopile-based colorimetric temperature measurement method for arbitrary bandwidth is proposed. Simulation experiments validate this method, showing that the energy ratio maintains a monotonic relationship with the measured temperature as long as the infrared radiation wavelength ranges absorbed by the thermopile do not overlap. The simulation results are consistent with the mathematical proof. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

18 pages, 1110 KiB  
Article
Bay Laurel of Northern Morocco: A Comprehensive Analysis of Its Phytochemical Profile, Mineralogical Composition, and Antioxidant Potential
by Amena Mrabet, Bahia Abdelfattah, Fouad El Mansouri, Ayoub Simou and Mohamed Khaddor
Biophysica 2024, 4(2), 238-255; https://doi.org/10.3390/biophysica4020017 - 15 May 2024
Cited by 4 | Viewed by 1950
Abstract
Laurus nobilis, sometimes referred to as laurel, has been used for medicinal and culinary purposes for a very long time. The main subjects of this study are the phytochemical composition, mineralogical profile, and potential antioxidant properties of Laurus nobilis in Tangier, Northern [...] Read more.
Laurus nobilis, sometimes referred to as laurel, has been used for medicinal and culinary purposes for a very long time. The main subjects of this study are the phytochemical composition, mineralogical profile, and potential antioxidant properties of Laurus nobilis in Tangier, Northern Morocco. For phytochemical analysis of methanolic extracts, high-performance liquid chromatography (HPLC-UV-MS) was used, and Fourier transformation infrared spectroscopy (FT-IR) was used to identify each individual component. Minerals were studied by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and wavelength dispersive X-ray fluorescence (WD-XRF). Total tannin, flavonoid, and phenolic amounts were quantified using aqueous and methanolic extracts. The antioxidant properties were assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) assays. Research has revealed a complex array of phytochemicals, including tannins, flavonoids, and phenolic acids. Mineral analysis has revealed the existence of vital components that are beneficial to health. Comparing the methanolic extract to the water extract, it demonstrated higher levels of phenols, flavonoids, and tannins as well as stronger antioxidant activity, indicating greater health benefits. This comprehensive study highlights the importance of Laurus nobilis from Northern Morocco as a reliable botanic resource with potential pharmaceutical, nutritional, and cosmetic uses. Full article
(This article belongs to the Special Issue Biomedical Optics 2.0)
Show Figures

Figure 1

15 pages, 5753 KiB  
Article
Exploring Structural–Photophysical Property Relationships in Mitochondria-Targeted Deep-Red/NIR-Emitting Coumarins
by Eduardo Izquierdo-García, Anna Rovira, Joan Forcadell, Manel Bosch and Vicente Marchán
Int. J. Mol. Sci. 2023, 24(24), 17427; https://doi.org/10.3390/ijms242417427 - 13 Dec 2023
Cited by 4 | Viewed by 1731
Abstract
Organic fluorophores operating in the optical window of biological tissues, namely in the deep-red and near-infrared (NIR) region of the electromagnetic spectrum, offer several advantages for fluorescence bioimaging applications owing to the appealing features of long-wavelength light, such as deep tissue penetration, lack [...] Read more.
Organic fluorophores operating in the optical window of biological tissues, namely in the deep-red and near-infrared (NIR) region of the electromagnetic spectrum, offer several advantages for fluorescence bioimaging applications owing to the appealing features of long-wavelength light, such as deep tissue penetration, lack of toxicity, low scattering, and reduced interference with cellular autofluorescence. Among these, COUPY dyes based on non-conventional coumarin scaffolds display suitable photophysical properties and efficient cellular uptake, with a tendency to accumulate primarily in mitochondria, which renders them suitable probes for bioimaging purposes. In this study, we have explored how the photophysical properties and subcellular localization of COUPY fluorophores can be modulated through the modification of the coumarin backbone. While the introduction of a strong electron-withdrawing group, such as the trifluoromethyl group, at position 4 resulted in an exceptional photostability and a remarkable redshift in the absorption and emission maxima when combined with a julolidine ring replacing the N,N-dialkylaminobenzene moiety, the incorporation of a cyano group at position 3 dramatically reduced the brightness of the resulting fluorophore. Interestingly, confocal microscopy studies in living HeLa cells revealed that the 1,1,7,7-tetramethyl julolidine-containing derivatives accumulated in the mitochondria with much higher specificity. Overall, our results provide valuable insights for the design and optimization of new COUPY dyes operating in the deep-red/NIR region. Full article
(This article belongs to the Special Issue Research Progress of Bioimaging Materials)
Show Figures

Graphical abstract

13 pages, 4908 KiB  
Article
Fabrication of Yttrium Oxide Hollow Films for Efficient Passive Radiative Cooling
by Heegyeom Jeon, Sohyeon Sung, Jeehoon Yu, Hyun Kim, Yong Seok Kim and Youngjae Yoo
Materials 2023, 16(23), 7373; https://doi.org/10.3390/ma16237373 - 27 Nov 2023
Cited by 2 | Viewed by 1628
Abstract
In recent years, many parts of the world have researched the transition to renewable energy, reducing energy consumption and moving away from fossil fuels. Among the studies to reduce energy consumption, passive radiative cooling can reduce the energy used for building cooling, and [...] Read more.
In recent years, many parts of the world have researched the transition to renewable energy, reducing energy consumption and moving away from fossil fuels. Among the studies to reduce energy consumption, passive radiative cooling can reduce the energy used for building cooling, and to improve this, the optical properties of atmospheric window emissivity and solar reflectance must be increased. In this study, hollow yttrium oxide (H-Y2O3) was fabricated using melamine formaldehyde (MF) as a sacrificial template to improve the optical properties of passive radiative cooling. We then used finite-difference time-domain (FDTD) simulations to predict the optical properties of the fabricated particles. This study compares the properties of MF@Y(OH)CO3 and H-Y2O3 particles derived from the same process. H-Y2O3 was found to have a solar reflectance of 70.73% and an atmospheric window emissivity of 86.24%, and the field tests revealed that the temperature of MF@Y(OH)CO3 was relatively low during the daytime. At night, the temperature of the H-Y2O3 film was found to be 2.6 °C lower than the ambient temperature of 28.8 °C. The optical properties and actual cooling capabilities of the particles at each stage of manufacturing the hollow particles were confirmed and the cooling capabilities were quantified. Full article
(This article belongs to the Special Issue Advanced Electronic Devices for Biomedical Applications)
Show Figures

Figure 1

20 pages, 6900 KiB  
Article
Luminescent Properties of (Ca7ZrAl6O18-Ca3Al2O6-CaZrO3):Eu3+ Composite Ceramics and Tracing in the Hydration Process
by Dominika Madej and Andrzej Kruk
Molecules 2023, 28(23), 7799; https://doi.org/10.3390/molecules28237799 - 27 Nov 2023
Cited by 3 | Viewed by 1261
Abstract
In this work, solid-state reaction sintering was used to fabricate Ca7ZrAl6O18-Ca3Al2O6-CaZrO3:Eu3+ ternary composite ceramics and cements. The structural, microstructural, and spectroscopic properties of the ceramics with different Eu [...] Read more.
In this work, solid-state reaction sintering was used to fabricate Ca7ZrAl6O18-Ca3Al2O6-CaZrO3:Eu3+ ternary composite ceramics and cements. The structural, microstructural, and spectroscopic properties of the ceramics with different Eu2O3 content were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), and spectrofluorimetry, respectively. The XRD patterns analyzed with Rietveld refinement confirm the presence of the orthorhombic phase of Ca7ZrAl6O18 and the cubic phase of Ca3Al2O6 in all the samples, indicating that doping of Eu3+ slightly changes the crystalline structure of both aluminate phosphors. EDS analysis revealed that the Eu doping element was strongly concentrated to the two phases, i.e., Ca7ZrAl6O18 and Ca3Al2O6, with the Eu concentrations of 8.45 wt.% and 8.26 wt.%, respectively. The luminescent properties of the ceramics doped with different Eu3+ ion concentrations were investigated by excitation and emission spectroscopy at room temperature. These results were compiled using a laser with an optical parametric oscillator (OPO) system. The obtained spectra indicated changes in the luminescence intensity and shape occurring with phase composition and Eu2O3 concentration. The emission spectra of the ceramics exhibit a strong dependence on the excitation wavelength in the range from 210 to 300 nm, and invariably, five peaks were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu3+. The luminescence spectroscopy was then used to trace the early and long-term hydration behavior of cements. Thus, luminescence spectroscopy may provide a new tool for non-destructive testing of cement-based structures. Full article
Show Figures

Figure 1

17 pages, 5450 KiB  
Review
Near-Infrared-II Fluorophores for In Vivo Multichannel Biosensing
by Feng Ren, Tuanwei Li, Tingfeng Yao, Guangcun Chen, Chunyan Li and Qiangbin Wang
Chemosensors 2023, 11(8), 433; https://doi.org/10.3390/chemosensors11080433 - 4 Aug 2023
Cited by 4 | Viewed by 2516
Abstract
The pathological process involves a range of intrinsic biochemical markers. The detection of multiple biological parameters is imperative for providing precise diagnostic information on diseases. In vivo multichannel fluorescence biosensing facilitates the acquisition of biochemical information at different levels, such as tissue, cellular, [...] Read more.
The pathological process involves a range of intrinsic biochemical markers. The detection of multiple biological parameters is imperative for providing precise diagnostic information on diseases. In vivo multichannel fluorescence biosensing facilitates the acquisition of biochemical information at different levels, such as tissue, cellular, and molecular, with rapid feedback, high sensitivity, and high spatiotemporal resolution. Notably, fluorescence imaging in the near-infrared-II (NIR-II) window (950–1700 nm) promises deeper optical penetration depth and diminished interferential autofluorescence compared with imaging in the visible (400–700 nm) and near-infrared-I (NIR-I, 700–950 nm) regions, making it a promising option for in vivo multichannel biosensing toward clinical practice. Furthermore, the use of advanced NIR-II fluorophores supports the development of biosensing with spectra-domain, lifetime-domain, and fluorescence-lifetime modes. This review summarizes the versatile designs and functions of NIR-II fluorophores for in vivo multichannel biosensing in various scenarios, including biological process monitoring, cellular tracking, and pathological analysis. Additionally, the review briefly discusses desirable traits required for the clinical translation of NIR-II fluorophores such as safety, long-wavelength emission, and clear components. Full article
Show Figures

Figure 1

18 pages, 9469 KiB  
Article
Enhanced Fluorescence Characteristics of SrAl2O4: Eu2+, Dy3+ Phosphor by Co-Doping Gd3+ and Anti-Counterfeiting Application
by Peng Gao, Quanxiao Liu, Jiao Wu, Jun Jing, Wenguan Zhang, Junying Zhang, Tao Jiang, Jigang Wang, Yuansheng Qi and Zhenjun Li
Nanomaterials 2023, 13(14), 2034; https://doi.org/10.3390/nano13142034 - 9 Jul 2023
Cited by 8 | Viewed by 3306
Abstract
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via [...] Read more.
A series of long-afterglow luminescent materials (SrAl2O4: Eu2+ (SAOE), SrAl2O4: Eu2+, Dy3+ (SAOED) and SrAl2O4: Eu2+, Dy3+, Gd3+ (SAOEDG)) was synthesized via the combustion method. Temperature and concentration control experiments were conducted on these materials to determine the optimal reaction temperature and ion doping concentration for each sample. The crystal structure and luminescent properties were analyzed via X-ray diffraction (XRD), photoluminescence (PL), and afterglow attenuation curves. The outcomes demonstrate that the kind of crystal structure and the location of the emission peak were unaffected by the addition of ions. The addition of Eu2+ to the matrix’s lattice caused a broad green emission with a central wavelength of 508 nm, which was attributed to the characteristic 4f65d1 to 4f7 electronic dipole, which allowed the transition of Eu2+ ions. While acting as sensitizers, Dy3+ and Gd3+ could produce holes to create a trap energy level, which served as an electron trap center to catch some of the electrons produced by the excitation of Eu2+ but did not itself emit light. After excitation ceased, this allowed them to gently transition to the ground state to produce long-afterglow luminescence. It was observed that with the addition of sensitizer ions, the luminous intensity of the sample increased, and the afterglow duration lengthened. The elemental structure and valence states of the doped ions were determined with an X-ray photoelectron spectrometer (XPS). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the samples. The results show that the sample was synthesized successfully, and the type and content of ions in the fluorescent powder could be determined. The fluorescence lifetime, quantum yield, bandgap value, afterglow decay time, and coordinate position in the coherent infrared energy (CIE) diagram of the three best sample groups were then analyzed and compared. Combining the prepared phosphor with ink provides a new idea and method for the field of anti-counterfeiting through screen printing. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

34 pages, 18003 KiB  
Article
Polymeric Micelles Formulation of Combretastatin Derivatives with Enhanced Solubility, Cytostatic Activity and Selectivity against Cancer Cells
by Igor D. Zlotnikov, Alexander A. Ezhov, Artem S. Ferberg, Sergey S. Krylov, Marina N. Semenova, Victor V. Semenov and Elena V. Kudryashova
Pharmaceutics 2023, 15(6), 1613; https://doi.org/10.3390/pharmaceutics15061613 - 29 May 2023
Cited by 13 | Viewed by 2565
Abstract
Combretastatin derivatives is a promising class of antitumor agents, tubulin assembly inhibitors. However, due to poor solubility and insufficient selectivity to tumor cells, we believe, their therapeutic potential has not been fully realized yet. This paper describes polymeric micelles based on chitosan (a [...] Read more.
Combretastatin derivatives is a promising class of antitumor agents, tubulin assembly inhibitors. However, due to poor solubility and insufficient selectivity to tumor cells, we believe, their therapeutic potential has not been fully realized yet. This paper describes polymeric micelles based on chitosan (a polycation that causes pH and thermosensitivity of micelles) and fatty acids (stearic, lipoic, oleic and mercaptoundecanoic), which were used as a carrier for a range of combretastatin derivatives and reference organic compounds, demonstrating otherwise impossible delivery to tumor cells, at the same time substantially reduced penetration into normal cells. Polymers containing sulfur atoms in hydrophobic tails form micelles with a zeta potential of about 30 mV, which increases to 40–45 mV when cytostatics are loaded. Polymers with tails of oleic and stearic acids form poorly charged micelles. The use of polymeric 400 nm micelles provides the dissolution of hydrophobic potential drug molecules. Micelles could significantly increase the selectivity of cytostatics against tumors, which has been shown using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, Fourier transform infrared (FTIR) spectroscopy, flow cytometry and fluorescence microscopy. Atomic force microscopy presented the difference between the unloaded micelles and those loaded with the drug: the size of the former was 30 nm on average, while the latter had a “disc-like” shape and a size of about 450 nm. The loading of drugs into the core of micelles was confirmed by UV and fluorescence spectroscopy methods; shifts of absorption and emission maxima into the long-wavelength region by tens of nm was observed. With FTIR spectroscopy, a high interaction efficiency of micelles with the drug on cells was demonstrated, but at the same time, selective absorption was observed: micellar cytostatics penetrate into A549 cancer cells 1.5–2 times better than the simple form of the drugs. Moreover, in normal HEK293T, the penetration of the drug is reduced. The proposed mechanism for reducing the accumulation of drugs in normal cells is the adsorption of micelles on the cell surface and the preservation of cytostatics to penetrate inside the cells. At the same time, in cancer cells, due to the structural features of the micelles, they penetrate inside, merging with the membrane and releasing the drug by pH- and glutathione-sensitive mechanisms. From a methodological point of view, we have proposed a powerful approach to the observation of micelles using a flow cytometer, which, in addition, allows us to quantify the cells that have absorbed/adsorbed cytostatic fluorophore and distinguish between specific and non-specific binding. Thus, we present polymeric micelles as drug delivery systems in tumors using the example of combretastatin derivatives and model fluorophore-cytostatic rhodamine 6G. Full article
(This article belongs to the Special Issue Drug Delivery System with Cell-Penetrating Peptides/Nano-Materials)
Show Figures

Figure 1

Back to TopTop