Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = long-chain n − 3 polyunsaturated fatty acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2993 KiB  
Article
Mixtures of Algal Oil and Terrestrial Oils in Diets of Tiger Puffer (Takifugu rubripes)
by Lu Zhang, Haoxuan Li, Ziling Song, Qingyan Gao, Chenchen Bian, Qiang Ma, Yuliang Wei, Mengqing Liang and Houguo Xu
Animals 2025, 15(9), 1187; https://doi.org/10.3390/ani15091187 - 22 Apr 2025
Viewed by 660
Abstract
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this [...] Read more.
The n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) have a key role in maintaining fish growth and health. However, fish oil (FO), the main source of n-3 LC-PUFAs, is in relative shortage due to the rapid development of the aquaculture industry. In this study, we investigated the efficacy of replacing fish oil with mixtures of algal oil (AO) from Schizochytrium sp. and terrestrially sourced oils (animal oil poultry oil (PO) or vegetable oil rapeseed oil (RO)) in the diets of juvenile tiger puffer (average initial body weight 23.8 ± 1.51 g). An 8-week feeding trial was conducted using three experimental diets: a control diet containing 6% added FO (control FO-C) and two diets with 3% AO + 3% PO or RO (groups AO+PO and AO+RO, respectively), replacing FO. Each diet was fed to triplicate tanks with 25 fish in each tank. The weight gain, feed conversion ratio, body composition, and serum biochemical parameters were not significantly different among the three groups, except that the AO+PO group had a significantly lower muscle lipid content than the other two groups. The AO-added diets significantly increased the DHA content in whole fish, muscle, and liver samples but significantly reduced the EPA content. The oil mixture treatments significantly increased the contents of monounsaturated fatty acid (MUFA) but significantly decreased the contents of saturated fatty acids (SFAs) in the liver and whole fish samples. However, the MUFA and SFA contents in the muscle samples were not significantly different among the dietary groups. The diets with oil mixtures did not affect the hepatic histology but tended to result in the atrophy of intestinal villi. The treatment diets downregulated the hepatic gene expression of proinflammatory cytokines (il-1β and tnf-α) and the fibrosis marker gene, acta2. However, the AO+PO diet inhibited the intestinal gene expression of the tight junction protein, claudin 18. In the muscle, the treatment diets upregulated the expression of genes related to cell differentiation and apoptosis (myod, myog, myf6, myf5, bcl-2, and bax). In conclusion, Schizochytrium sp. oil in combination with terrestrial oils (poultry oil or rapeseed oil) can be an effective alternative to fish oil in the diets of tiger puffer, but the mixing strategy may be better modified in consideration of intestinal health. Full article
(This article belongs to the Special Issue Novel Feeds Affect Fish Growth Performance and Immunity)
Show Figures

Figure 1

10 pages, 624 KiB  
Communication
The Long-Term Effect of Kidney Transplantation on the Serum Fatty Acid Profile
by Maciej Śledziński, Justyna Gołębiewska and Adriana Mika
Nutrients 2024, 16(19), 3319; https://doi.org/10.3390/nu16193319 - 30 Sep 2024
Viewed by 1300
Abstract
Background: Epidemiologic evidence has demonstrated the prevalence of metabolic disorders and increased cardiovascular risk related to lipid metabolism disorders in kidney transplant recipients. Therefore, it is of great importance to understand lipid alterations and to look for ways to reduce cardiovascular risk in [...] Read more.
Background: Epidemiologic evidence has demonstrated the prevalence of metabolic disorders and increased cardiovascular risk related to lipid metabolism disorders in kidney transplant recipients. Therefore, it is of great importance to understand lipid alterations and to look for ways to reduce cardiovascular risk in this patient group. Methods: Our study included 25 patients with chronic kidney disease undergoing kidney transplantation (KTx). Three blood samples were taken from each patient: before KTx, 3 months after KTx and 6–12 months after KTx. A series of biochemical blood tests and a detailed analysis of the serum fatty acid profile were performed. Results: In our previous study, the effects of kidney transplantation on serum fatty acid (FA) profile 3 months after the procedure were investigated. The current study shows the longer-term (6–12 months) effects of the procedure on the serum FA profile. We found that although n-3 polyunsaturated FA levels started to decrease 3 months after surgery, they normalized over a longer period of time (6–12 months). Furthermore, we observed a strong decrease in ultra-long-chain FAs and an increase in odd-chain FAs over a longer time after kidney transplantation. All of the above FAs may have an important impact on human health, including inflammation, cardiovascular risk or cancer risk. Conclusions: The changes in serum FA profiles after kidney transplantation are a dynamic process and that more detailed studies could provide an accurate indication for supplementation with some FAs or diet modification. Full article
(This article belongs to the Special Issue Nutritional Derangements and Sarcopenia in Chronic Kidney Disease)
Show Figures

Figure 1

18 pages, 4618 KiB  
Article
Dietary LPC-Bound n-3 LCPUFA Protects against Neonatal Brain Injury in Mice but Does Not Enhance Stem Cell Therapy
by Eva C. Hermans, Carlon C. E. van Gerven, Line Johnsen, Jørn E. Tungen, Cora H. Nijboer and Caroline G. M. de Theije
Nutrients 2024, 16(14), 2252; https://doi.org/10.3390/nu16142252 - 12 Jul 2024
Cited by 1 | Viewed by 2391
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal [...] Read more.
Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound n-3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied. This study investigates the efficacy of oral LPC-n-3 LCPUFAs from Lysoveta following neonatal HI in mice and explores potential additive effects in combination with MSC therapy. HI was induced in 9-day-old C57BL/6 mice and Lysoveta was orally supplemented for 7 subsequent days, with or without intranasal MSCs at 3 days post-HI. At 21–28 days post-HI, functional outcome was determined using cylinder rearing, novel object recognition, and open field tasks, followed by the assessment of gray (MAP2) and white (MBP) matter injury. Oral Lysoveta diminished gray and white matter injury but did not ameliorate functional deficits following HI. Lysoveta did not further enhance the therapeutic potential of MSC therapy. In vitro, Lysoveta protected SH-SY5Y neurons against oxidative stress. In conclusion, short-term oral administration of Lysoveta LPC-n-3 LCPUFAs provides neuroprotection against neonatal HI by mitigating oxidative stress injury but does not augment the efficacy of MSC therapy. Full article
Show Figures

Figure 1

2 pages, 138 KiB  
Abstract
The Effect of Higenamine Supplementation on the Fatty Acid Profiles of Serum Phospholipids
by Jelena Rasic Ozegovic, Marija Takic, Nevena Ivanovic, Danijela Ristic-Medic, Milica Vukasinovic Vesic and Brizita Djordjevic
Proceedings 2023, 91(1), 213; https://doi.org/10.3390/proceedings2023091213 - 4 Feb 2024
Viewed by 813
Abstract
Background and objectives: Higenamine is an alkaloid found in different plant species like Aconitum japonica, Nandina domestica, Gnetum parvifolium, and Asarum heterotropoides. According to the available data in the literature, its dietary intake leads to an enhancement of lipolysis. The objective of this [...] Read more.
Background and objectives: Higenamine is an alkaloid found in different plant species like Aconitum japonica, Nandina domestica, Gnetum parvifolium, and Asarum heterotropoides. According to the available data in the literature, its dietary intake leads to an enhancement of lipolysis. The objective of this study was to explore whether the ingestion of a one-component higenamine supplement (75 mg/day) for three weeks would introduce some changes in the fatty acid (FA) profiles of serum phospholipids of female recreational athletes. Methods: A total of 12 female recreational athletes were included in a double-blind study, with six participants in both groups—a higenamine treatment group and placebo group. Serum phospholipids were isolated via one-dimensional thin-layer chromatography. Fatty acid methyl ester samples from the phospholipids were analyzed by a gas–liquid chromatography method. Desaturase and elongase activities were calculated from product/precursor FA ratios. Results: In the group that was undergoing higenamine treatment, a statistically significant increase in the levels of linolenic acid, a total n − 6 polyunsaturated FAs (PUFAs), and an n − 6/n − 3 FA ratio were observed. But saturated palmitic acid and monounsaturated palmitoleic and oleic acid, as well as consequent total saturated FAs and monounsaturated FA acids decreased in serum phospholipids. Also, after 3 weeks of higenamine supplementation, arachidonic n − 6 acid and docosapentaenoic n − 3 acids levels were significantly decreased, and estimated delta-5 desaturase activity (arachidonic/dihomo-gamma-linolenic acid ratio) was decreased too. In the placebo group, a significant change was increased levels of oleic acid compared to baseline levels. Conclusion: According to the results obtained for the FA status of serum phospholipids, treatment with higenamine was followed by a modulation of serum phospholipid FA profiles. Furthermore, this could influence the desaturation/elongation metabolic pathway of endogenous FA metabolisms, leading to a decrease in delta-5 desaturase activity and consequently lower levels of long-chain PUFAs. For further discussion, it is necessary to assess the dietary intake of study participants. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
11 pages, 906 KiB  
Systematic Review
The Effect of Long Chain n-3 Fatty Acid Supplementation on Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis
by Maha Timraz, Ahmad Binmahfoz, Terry J. Quinn, Emilie Combet and Stuart R. Gray
Nutrients 2023, 15(16), 3579; https://doi.org/10.3390/nu15163579 - 14 Aug 2023
Cited by 5 | Viewed by 3059
Abstract
The main objective of the current study was to perform a systematic literature review with the purpose of exploring the impact of long-chain n-3 polyunsaturated fatty acid (LCn-3 PUFA) relative to control oil supplementation on muscle strength, with secondary outcomes [...] Read more.
The main objective of the current study was to perform a systematic literature review with the purpose of exploring the impact of long-chain n-3 polyunsaturated fatty acid (LCn-3 PUFA) relative to control oil supplementation on muscle strength, with secondary outcomes of muscle mass and physical function in older individuals under conditions of habitual physical activity/exercise. The review protocol was registered with PROSPERO (CRD42021267011) and followed the guidelines outlined in the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement. The search for relevant studies was performed utilizing databases such as PubMed, EMBASE, CINAHL, Scopus, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL) up to June 2023. Randomized controlled trials (RCTs) in older adults comparing the effects of LCn-3 PUFA with a control oil supplement on muscle strength were included. Five studies involving a total of 488 participants (348 females and 140 males) were identified that met the specified inclusion criteria and were included. Upon analyzing the collective data from these studies, it was observed that supplementation with LCn-3 PUFA did not have a significant impact on grip strength (standardized mean difference (SMD) 0.61, 95% confidence interval [−0.05, 1.27]; p = 0.07) in comparison to the control group. However, there was a considerable level of heterogeneity among the studies (I2 = 90%; p < 0.001). As secondary outcomes were only measured in a few studies, with significant heterogeneity in methods, meta-analyses of muscle mass and functional abilities were not performed. Papers with measures of knee extensor muscle mass as an outcome (n = 3) found increases with LCn-3 PUFA supplementation, but studies measuring whole body lean/muscle mass (n = 2) and functional abilities (n = 4) reported mixed results. With a limited number of studies, our data indicate that LCn-3 PUFA supplementation has no effect on muscle strength or functional abilities in older adults but may increase muscle mass, although, with only a few studies and considerable heterogeneity, further work is needed to confirm these findings. Full article
Show Figures

Figure 1

34 pages, 1403 KiB  
Review
Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review
by Gianluca Rizzo, Luciana Baroni and Mauro Lombardo
Int. J. Environ. Res. Public Health 2023, 20(3), 1683; https://doi.org/10.3390/ijerph20031683 - 17 Jan 2023
Cited by 49 | Viewed by 7245
Abstract
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited [...] Read more.
(1) Background: Polyunsaturated fatty acids (PUFAs) are known for their ability to protect against numerous metabolic disorders. The consumption of oily fish is the main source of PUFAs in human nutrition and is commonly used for supplement production. However, seafood is an overexploited source that cannot be guaranteed to cover the global demands. Furthermore, it is not consumed by everyone for ecological, economic, ethical, geographical and taste reasons. The growing demand for natural dietary sources of PUFAs suggests that current nutritional sources are insufficient to meet global needs, and less and less will be. Therefore, it is crucial to find sustainable sources that are acceptable to all, meeting the world population’s needs. (2) Scope: This review aims to evaluate the recent evidence about alternative plant sources of essential fatty acids, focusing on long-chain omega-3 (n-3) PUFAs. (3) Method: A structured search was performed on the PubMed search engine to select available human data from interventional studies using omega-3 fatty acids of non-animal origin. (4) Results: Several promising sources have emerged from the literature, such as algae, microorganisms, plants rich in stearidonic acid and GM plants. However, the costs, acceptance and adequate formulation deserve further investigation. Full article
Show Figures

Graphical abstract

22 pages, 1752 KiB  
Article
Effects of Hay, Baleage, and Soybean Hulls Waste Used as Supplemental Feeds on the Nutritional Profile of Grass-Finished Beef
by Lucas Krusinski, Isabella C. F. Maciel, Selin Sergin, Vijayashree Jambunathan, Esha Garg, Andrea J. Garmyn, Sukhdeep Singh, Chad A. Bitler, Jason E. Rowntree and Jenifer I. Fenton
Foods 2022, 11(23), 3856; https://doi.org/10.3390/foods11233856 - 29 Nov 2022
Cited by 5 | Viewed by 3973
Abstract
Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional [...] Read more.
Grass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH), and (4) baleage+soybean hulls in feedlot (BLG-SH). Feed samples were analyzed for their nutritional value, and beef samples underwent analysis for fatty acids (FAs), vitamin E, minerals, lipid oxidation, and shear force. FAs were measured by GC-MS, vitamin E was analyzed chromatographically, minerals were analyzed by ICP-MS, and lipid oxidation was measured via a thiobarbituric acid reactive substances (TBARS) assay. G-SH beef had the highest n-6:n-3 ratio (p < 0.001), while BLG-SH beef contained less vitamin E (p < 0.001) and higher TBARS values (p < 0.001) compared to the other groups. G-HAY beef contained more long-chain n-3 polyunsaturated FAs compared to the other groups (p < 0.001). In conclusion, G-HAY beef had the most beneficial nutritional profile, while soybean hulls increased the n-6:n-3 ratio of beef. Full article
Show Figures

Graphical abstract

8 pages, 661 KiB  
Brief Report
Krill Oil Supplementation Does Not Change Waist Circumference and Sagittal Abdominal Diameter in Overweight Women: A Pilot Balanced, Double-Blind, and Placebo-Controlled Clinical Trial
by Patrícia C. B. Lobo, Letícia N. Roriz, Jéssika M. Siqueira, Bruna M. Giglio, Ana C. B. Marini, Flávia C. Corgosinho, Raquel M. Schincaglia and Gustavo D. Pimentel
Int. J. Environ. Res. Public Health 2022, 19(20), 13574; https://doi.org/10.3390/ijerph192013574 - 20 Oct 2022
Cited by 2 | Viewed by 2457
Abstract
An excess of body fat is one of the biggest public health concerns in the world, due to its relationship with the emergence of other health problems. Evidence suggests that supplementation with long-chain polyunsaturated fatty acids (omega-3) promotes increased lipolysis and the reduction [...] Read more.
An excess of body fat is one of the biggest public health concerns in the world, due to its relationship with the emergence of other health problems. Evidence suggests that supplementation with long-chain polyunsaturated fatty acids (omega-3) promotes increased lipolysis and the reduction of body mass. Likewise, this clinical trial aimed to evaluate the effects of supplementation with krill oil on waist circumference and sagittal abdominal diameter in overweight women. This pilot, balanced, double-blind, and placebo-controlled study was carried out with 26 women between 20 and 59 years old, with a body mass index >25 kg/m2. The participants were divided into the control (CG) (n = 15, 3 g/daily of mineral oil) and krill oil (GK) (n = 16, 3 g/daily of krill oil) groups, and received the supplementation for eight weeks. Food intake variables were obtained using a 24 h food recall. Anthropometric measurements (body mass, body mass index, waist circumference, and sagittal abdominal diameter) and handgrip strength were obtained. After the intervention, no changes were found for the anthropometric and handgrip strength variables (p > 0.05). Regarding food intake, differences were found for carbohydrate (p = 0.040) and polyunsaturated (p = 0.006) fatty acids, with a reduction in the control group and an increase in krill oil. In conclusion, supplementation with krill oil did not reduce the waist circumference and sagittal abdominal diameter. Therefore, more long-term studies with a larger sample size are necessary to evaluate the possible benefits of krill oil supplementation in overweight women. Full article
(This article belongs to the Section Women's Health)
Show Figures

Figure 1

17 pages, 2823 KiB  
Article
Maternal Pyrroloquinoline Quinone Supplementation Improves Offspring Liver Bioactive Lipid Profiles throughout the Lifespan and Protects against the Development of Adult NAFLD
by Ashok Mandala, Evgenia Dobrinskikh, Rachel C. Janssen, Oliver Fiehn, Angelo D’Alessandro, Jacob E. Friedman and Karen R. Jonscher
Int. J. Mol. Sci. 2022, 23(11), 6043; https://doi.org/10.3390/ijms23116043 - 27 May 2022
Cited by 9 | Viewed by 4038
Abstract
Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal [...] Read more.
Maternal obesity and consumption of a high-fat diet significantly elevate risk for pediatric nonalcoholic fatty liver disease (NAFLD), affecting 10% of children in the US. Almost half of these children are diagnosed with nonalcoholic steatohepatitis (NASH), a leading etiology for liver transplant. Animal models show that signs of liver injury and perturbed lipid metabolism associated with NAFLD begin in utero; however, safe dietary therapeutics to blunt developmental programming of NAFLD are unavailable. Using a mouse model of maternal Western-style diet (WD), we previously showed that pyrroloquinoline quinone (PQQ), a potent dietary antioxidant, protected offspring of WD-fed dams from development of NAFLD and NASH. Here, we used untargeted mass spectrometry-based lipidomics to delineate lipotoxic effects of WD on offspring liver and identify lipid targets of PQQ. PQQ exposure during pregnancy altered hepatic lipid profiles of WD-exposed offspring, upregulating peroxisome proliferator-activated receptor (PPAR) α signaling and mitochondrial fatty acid oxidation to markedly attenuate triglyceride accumulation beginning in utero. Surprisingly, the abundance of very long-chain ceramides, important in promoting gut barrier and hepatic function, was significantly elevated in PQQ-treated offspring. PQQ exposure reduced the hepatic phosphatidylcholine/phosphatidylethanolamine (PC/PE) ratio in WD-fed offspring and improved glucose tolerance. Notably, levels of protective n − 3 polyunsaturated fatty acids (PUFAs) were elevated in offspring exposed to PQQ, beginning in utero, and the increase in n − 3 PUFAs persisted into adulthood. Our findings suggest that PQQ supplementation during gestation and lactation augments pathways involved in the biosynthesis of long-chain fatty acids and plays a unique role in modifying specific bioactive lipid species critical for protection against NAFLD risk in later life. Full article
Show Figures

Figure 1

15 pages, 2079 KiB  
Article
Explaining Unsaturated Fatty Acids (UFAs), Especially Polyunsaturated Fatty Acid (PUFA) Content in Subcutaneous Fat of Yaks of Different Sex by Differential Proteome Analysis
by Lin Xiong, Jie Pei, Xiaoyun Wu, Pengjia Bao, Xian Guo and Ping Yan
Genes 2022, 13(5), 790; https://doi.org/10.3390/genes13050790 - 28 Apr 2022
Cited by 11 | Viewed by 3641
Abstract
Residents on the Tibetan Plateau intake a lot of yak subcutaneous fat by diet. Modern healthy diet ideas demand higher unsaturated fatty acids (UFAs), especially polyunsaturated fatty acid (PUFA) content in meat. Here, the gas chromatography (GC) and tandem mass tag (TMT) proteomic [...] Read more.
Residents on the Tibetan Plateau intake a lot of yak subcutaneous fat by diet. Modern healthy diet ideas demand higher unsaturated fatty acids (UFAs), especially polyunsaturated fatty acid (PUFA) content in meat. Here, the gas chromatography (GC) and tandem mass tag (TMT) proteomic approaches were applied to explore the relationship between the proteomic differences and UFA and PUFA content in the subcutaneous fat of yaks with different sex. Compared with male yaks (MYs), the absolute contents of UFAs, monounsaturated fatty acids (MUFAs) and PUFAs in the subcutaneous fat of female yaks (FYs) were all higher (p < 0.01); the relative content of MUFAs and PUFAs in MY subcutaneous fat was higher, and the value of PUFAs/SFAs was above 0.4, so the MY subcutaneous fat is more healthy for consumers. Further studies showed the transcriptional regulation by peroxisome proliferator-activated receptor delta (PPARD) played a key role in the regulation of UFAs, especially PUFA content in yaks of different sex. In FY subcutaneous fat, the higher abundance of the downstream effector proteins in PPAR signal, including acyl-CoA desaturase (SCD), elongation of very-long-chain fatty acids protein 6 (ELOVL6), lipoprotein lipase (LPL), fatty acid-binding protein (FABP1), very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 (HACD3), long-chain fatty acid CoA ligase 5 (ACSL5) and acyl-CoA-binding protein 2 (ACBP2), promoted the UFAs’ transport and synthesis. The final result was the higher absolute content of c9-C14:1, c9-C18:1, c9,c12-C18:2n-6, c9, c12, c15-C18:3n-3, c5, c8, c11, c14, c17-C20:5n-3, c4, c7, c10, c13, -c16, c19-C22:6n-3, UFAs, MUFAs and PUFAs in FY subcutaneous fat. Further, LPL, FABP1, HACD3, ACSL1 and ACBP2 were the potential biomarkers for PUFA contents in yak subcutaneous fat. This study provides new insights into the molecular mechanisms associated with UFA contents in yak subcutaneous fat. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

18 pages, 1679 KiB  
Article
Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease
by Carsten Esselun, Fabian Dieter, Nadine Sus, Jan Frank and Gunter P. Eckert
Nutrients 2022, 14(9), 1694; https://doi.org/10.3390/nu14091694 - 19 Apr 2022
Cited by 19 | Viewed by 9087
Abstract
(1) Background: Mitochondria are the cells’ main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer’s disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean [...] Read more.
(1) Background: Mitochondria are the cells’ main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer’s disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aβ) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aβ1–40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aβ1–40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD. Full article
(This article belongs to the Special Issue Function and Nutritional Value of Oils)
Show Figures

Figure 1

10 pages, 845 KiB  
Article
The Impact of Kidney Transplantation on the Serum Fatty Acid Profile in Patients with End-Stage Kidney Disease
by Maciej Śledziński, Aleksandra Hliwa, Justyna Gołębiewska and Adriana Mika
Nutrients 2022, 14(4), 772; https://doi.org/10.3390/nu14040772 - 12 Feb 2022
Cited by 1 | Viewed by 2257
Abstract
Epidemiological data indicate that metabolic disturbances and increased cardiovascular risk in renal transplant patients are a significant and common problem. Therefore, it is important to search for new solutions and, at the same time, counteract the negative effects of currently used therapies. In [...] Read more.
Epidemiological data indicate that metabolic disturbances and increased cardiovascular risk in renal transplant patients are a significant and common problem. Therefore, it is important to search for new solutions and, at the same time, counteract the negative effects of currently used therapies. In this study, we examined the effect of kidney transplantation on the serum levels of fatty acids (FAs) in order to assess the role of these compounds in the health of transplant patients. The FA profile was analyzed by gas chromatography-mass spectrometry in the serum of 35 kidney transplant recipients, just before transplantation and 3 months later. The content of total n-3 polyunsaturated FAs (PUFAs) decreased after transplantation (3.06 ± 0.13% vs. 2.66 ± 0.14%; p < 0.05). The total amount of ultra-long-chain FAs containing 26 and more carbon atoms was significantly reduced (0.08 ± 0.009% vs. 0.05 ± 0.007%; p < 0.05). The desaturation index (18:1/18:0) increased after transplantation (3.92 ± 0.11% vs. 4.36 ± 0.18%; p < 0.05). The study showed a significant reduction in n-3 PUFAs in renal transplant recipients 3 months after transplantation, which may contribute to increased cardiovascular risk in this patient population. Full article
(This article belongs to the Special Issue Eating Habits, Nutrition and Chronic Kidney Disease)
Show Figures

Figure 1

18 pages, 4019 KiB  
Article
Adipose Tissue Dysfunctions in Response to an Obesogenic Diet Are Reduced in Mice after Transgenerational Supplementation with Omega 3 Fatty Acids
by Alexandre Pinel, Jean-Paul Rigaudière, Béatrice Morio and Frédéric Capel
Metabolites 2021, 11(12), 838; https://doi.org/10.3390/metabo11120838 - 4 Dec 2021
Cited by 9 | Viewed by 3106
Abstract
Obesity is characterized by profound alterations in adipose tissue (AT) biology, leading to whole body metabolic disturbances such as insulin resistance and cardiovascular diseases. These alterations are related to the development of a local inflammation, fibrosis, hypertrophy of adipocytes, and dysregulation in energy [...] Read more.
Obesity is characterized by profound alterations in adipose tissue (AT) biology, leading to whole body metabolic disturbances such as insulin resistance and cardiovascular diseases. These alterations are related to the development of a local inflammation, fibrosis, hypertrophy of adipocytes, and dysregulation in energy homeostasis, notably in visceral adipose tissue (VAT). Omega 3 (n-3) fatty acids (FA) have been described to possess beneficial effects against obesity-related disorders, including in the AT; however, the long-term effect across generations remains unknown. The current study was conducted to identify if supplementation with n-3 polyunsaturated FA (PUFA) for three generations could protect from the consequences of an obesogenic diet in VAT. Young mice from the third generation of a lineage receiving a daily supplementation (1% of the diet) with fish oil rich in eicosapentaenoic acid (EPA) or an isocaloric amount of sunflower oil, were fed a high-fat, high-sugar content diet for 4 months. We explore the transcriptomic adaptations in each lineage using DNA microarray in VAT and bioinformatic exploration of biological regulations using online databases. Transgenerational intake of EPA led to a reduced activation of inflammatory processes, perturbation in metabolic homeostasis, cholesterol metabolism, and mitochondrial functions in response to the obesogenic diet as compared to control mice from a control lineage. This suggests that the continuous intake of long chain n-3 PUFA could be preventive in situations of oversupply of energy-dense, nutrient-poor foods. Full article
(This article belongs to the Special Issue Diet, Metabolites and Adipose Tissue Metabolism)
Show Figures

Graphical abstract

19 pages, 1191 KiB  
Article
Nutritional Enhancement of Health Beneficial Omega-3 Long-Chain Polyunsaturated Fatty Acids in the Muscle, Liver, Kidney, and Heart of Tattykeel Australian White MARGRA Lambs Fed Pellets Fortified with Omega-3 Oil in a Feedlot System
by Shedrach Benjamin Pewan, John Roger Otto, Robert Tumwesigye Kinobe, Oyelola Abdulwasiu Adegboye and Aduli Enoch Othniel Malau-Aduli
Biology 2021, 10(9), 912; https://doi.org/10.3390/biology10090912 - 14 Sep 2021
Cited by 12 | Viewed by 4474
Abstract
The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without [...] Read more.
The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without omega-3 oil fortified pellets. The hypothesis tested was that fortifying feedlot pellets with omega-3 oil will enhance the human health beneficial n-3 LC-PUFA composition of edible lamb muscle tissue and organs. Seventy-five Tattykeel Australian White lambs exclusive to the MARGRA brand, with an average body weight of 30 kg at six months of age, were randomly assigned to the following three dietary treatments of 25 lambs each, and lot-fed as a cohort for 47 days in a completely randomized experimental design: (1) Control grain pellets without oil plus hay; (2) Omega-3 oil fortified grain pellets plus hay; and (3) Commercial whole grain pellets plus hay. All lambs had ad libitum access to the basal hay diet and water. Post-slaughter fatty acid composition of the Longissimus thoracis et lumborum muscle, liver, kidney, and heart were determined using thee gas chromatography–mass spectrophotometry technique. Results indicated significant variations (p < 0.05) in fatty acid profiles between tissues and organs. Omega-3 oil fortified pellets significantly (p < 0.05) increased ≥C20 n-3 LC-PUFA (C20:5n-3 eicosapentaenoate, EPA + C22:5n3 docosapentaenoate, DPA + C22:6n3 docosahexanoate DHA); C18:3n-3 alpha-linolenate, ALA; C18:2 conjugated linoleic acid, CLA; total monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA contents; and reduced the ratio of omega-6 to omega-3 fatty acids in all lamb organs and tissues without impacting shelf-life. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality. Full article
Show Figures

Figure 1

23 pages, 2720 KiB  
Review
Locally-Procured Fish Is Essential in School Feeding Programmes in Sub-Saharan Africa
by Molly B. Ahern, Shakuntala Haraksingh Thilsted, Marian Kjellevold, Ragnhild Overå, Jogeir Toppe, Michele Doura, Edna Kalaluka, Bendula Wismen, Melisa Vargas and Nicole Franz
Foods 2021, 10(9), 2080; https://doi.org/10.3390/foods10092080 - 2 Sep 2021
Cited by 19 | Viewed by 8186
Abstract
Fish make an important contribution to micronutrient intake, long-chained polyunsaturated omega-3 fatty acids (n-3 LC-PUFAS), and animal protein, as well as ensuring food and nutrition security and livelihoods for fishing communities. Micronutrient deficiencies are persistent in sub-Saharan Africa (SSA), contributing to public health [...] Read more.
Fish make an important contribution to micronutrient intake, long-chained polyunsaturated omega-3 fatty acids (n-3 LC-PUFAS), and animal protein, as well as ensuring food and nutrition security and livelihoods for fishing communities. Micronutrient deficiencies are persistent in sub-Saharan Africa (SSA), contributing to public health issues not only in the first 1000 days but throughout adolescence and into adulthood. School feeding programs (SFPs) and home-grown school feeding programs (HGSF), which source foods from local producers, particularly fisherfolk, offer an entry point for encouraging healthy diets and delivering essential macro- and micronutrients to schoolchildren, which are important for the continued cognitive development of children and adolescents and can contribute to the realization of sustainable development goals (SDGs) 1, 2, 3, 5, and 14. The importance of HGSF for poverty alleviation (SDG1) and zero hunger (SDG 2) have been recognized by the United Nations Hunger Task Force and the African Union Development Agency–New Partnership for African Development (AUDA-NEPAD), which formulated a strategy for HGSF to improve nutrition for the growing youth population across Africa. A scoping review was conducted to understand the lessons learned from SFPs, which included fish and fish products from small-scale producers, identifying the challenges and best practices for the inclusion of fish, opportunities for improvements across the supply chain, and gaps in nutritional requirements for schoolchildren which could be improved through the inclusion of fish. Challenges to the inclusion fish in SFPs include food safety, supply and access to raw materials, organizational capacity, and cost, while good practices include the engagement of various stakeholders in creating and testing fish products, and repurposing fisheries by-products or using underutilized species to ensure cost-effective solutions. This study builds evidence of the inclusion of nutritious fish and fish products in SFPs, highlighting the need to replicate and scale good practices to ensure sustainable, community-centred, and demand-driven solutions for alleviating poverty, malnutrition, and contributing to greater health and wellbeing in adolescence. Full article
Show Figures

Figure 1

Back to TopTop