Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (690)

Search Parameters:
Keywords = long tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2188 KiB  
Article
Research and Simulation Analysis on a Novel U-Tube Type Dual-Chamber Oscillating Water Column Wave Energy Conversion Device
by Shaohui Yang, Haijian Li, Yan Huang, Jianyu Fan, Zhichang Du, Yongqiang Tu, Chenglong Li and Beichen Lin
Energies 2025, 18(15), 4141; https://doi.org/10.3390/en18154141 - 5 Aug 2025
Viewed by 157
Abstract
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine [...] Read more.
With the development of wave energy, a promising renewable resource, oscillating water column (OWC) devices, has been extensively studied for its potential in harnessing this energy. However, traditional OWC devices face challenges such as corrosion and damage from prolonged exposure to harsh marine environments, limiting their long-term viability and efficiency. To address these limitations, this paper proposes a novel U-tube type dual chamber OWC wave energy conversion device integrated within a marine vehicle. The research involves the design of a U-tube dual-chamber OWC device, which utilizes the pitch motion of a marine vehicle to drive the oscillation of water columns within the U-tube, generating reciprocating airflow that drives an air turbine. Numerical simulations using computational fluid dynamics (CFD) were conducted to analyze the effects of various structural dimensions, including device length, width, air chamber height, U-tube channel width, and bottom channel height, on the aerodynamic power output. The simulations considered real sea conditions, focusing on low-frequency waves prevalent in China’s sea areas. Simulation results reveal that increasing the device’s length and width substantially boosts aerodynamic power, while air chamber height and U-tube channel width have minor effects. These findings provide valuable insights into the optimal design of U-tube dual-chamber OWC devices for efficient wave energy conversion, laying the foundation for future physical prototype development and experimental validation. Full article
Show Figures

Figure 1

21 pages, 9010 KiB  
Article
Dual-Branch Deep Learning with Dynamic Stage Detection for CT Tube Life Prediction
by Zhu Chen, Yuedan Liu, Zhibin Qin, Haojie Li, Siyuan Xie, Litian Fan, Qilin Liu and Jin Huang
Sensors 2025, 25(15), 4790; https://doi.org/10.3390/s25154790 - 4 Aug 2025
Viewed by 184
Abstract
CT scanners are essential tools in modern medical imaging. Sudden failures of their X-ray tubes can lead to equipment downtime, affecting healthcare services and patient diagnosis. However, existing prediction methods based on a single model struggle to adapt to the multi-stage variation characteristics [...] Read more.
CT scanners are essential tools in modern medical imaging. Sudden failures of their X-ray tubes can lead to equipment downtime, affecting healthcare services and patient diagnosis. However, existing prediction methods based on a single model struggle to adapt to the multi-stage variation characteristics of tube lifespan and have limited modeling capabilities for temporal features. To address these issues, this paper proposes an intelligent prediction architecture for CT tubes’ remaining useful life based on a dual-branch neural network. This architecture consists of two specialized branches: a residual self-attention BiLSTM (RSA-BiLSTM) and a multi-layer dilation temporal convolutional network (D-TCN). The RSA-BiLSTM branch extracts multi-scale features and also enhances the long-term dependency modeling capability for temporal data. The D-TCN branch captures multi-scale temporal features through multi-layer dilated convolutions, effectively handling non-linear changes in the degradation phase. Furthermore, a dynamic phase detector is applied to integrate the prediction results from both branches. In terms of optimization strategy, a dynamically weighted triplet mixed loss function is designed to adjust the weight ratios of different prediction tasks, effectively solving the problems of sample imbalance and uneven prediction accuracy. Experimental results using leave-one-out cross-validation (LOOCV) on six different CT tube datasets show that the proposed method achieved significant advantages over five comparison models, with an average MSE of 2.92, MAE of 0.46, and R2 of 0.77. The LOOCV strategy ensures robust evaluation by testing each tube dataset independently while training on the remaining five, providing reliable generalization assessment across different CT equipment. Ablation experiments further confirmed that the collaborative design of multiple components is significant for improving the accuracy of X-ray tubes remaining life prediction. Full article
Show Figures

Figure 1

23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 209
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

17 pages, 1699 KiB  
Systematic Review
Balloon Eustachian Tuboplasty: A Systematic Review of Technique, Safety, and Clinical Outcomes in Chronic Obstructive Eustachian Tube Dysfunction
by Katarzyna Gołota, Katarzyna Czerwaty, Karolina Dżaman, Dawid Szczepański, Nils Ludwig and Mirosław J. Szczepański
Healthcare 2025, 13(15), 1832; https://doi.org/10.3390/healthcare13151832 - 27 Jul 2025
Viewed by 470
Abstract
Background/Objectives: Obstructive Eustachian tube dysfunction (OETD) is common in adults and may lead to middle-ear conditions such as atelectasis and cholesteatoma. The ETDQ-7 questionnaire is used to assess symptom severity. Balloon dilation of the Eustachian tube (BDET) is a minimally invasive treatment [...] Read more.
Background/Objectives: Obstructive Eustachian tube dysfunction (OETD) is common in adults and may lead to middle-ear conditions such as atelectasis and cholesteatoma. The ETDQ-7 questionnaire is used to assess symptom severity. Balloon dilation of the Eustachian tube (BDET) is a minimally invasive treatment with variable outcomes. This review evaluates the safety and effectiveness of BDET. Methods: A systematic review was conducted following PRISMA 2020 guidelines. Four databases (PubMed, Scopus, Cochrane, Web of Science) were searched using ETD- and BDET-related terms, with the last search on 11 April 2025. Randomized trials were selected based on predefined criteria, and data were extracted by two independent reviewers. Discrepancies were resolved by consensus. Results: This systematic review included 14 studies on BDET published between 2013 and 2025. BDET improved otoscopic findings, Valsalva maneuver (VM) performance, and tympanometry (TMM), particularly within the first 6 weeks. ETDQ-7 scores generally indicated symptom improvement, though pure tone audiometry (PTA) showed no significant changes. Most procedures were performed under general anesthesia, with some studies showing similar outcomes under local anesthesia. Combining BDET with other interventions produced mixed results. Reported complications were rare. Conclusions: BDET is a safe, low-risk procedure that effectively reduces tympanic membrane retraction and improves VM and TMM results. While it relieves ETD symptoms in many patients, evidence for long-term efficacy and impact on PTA is limited. Full article
Show Figures

Figure 1

31 pages, 9977 KiB  
Article
Novel Deep Learning Framework for Evaporator Tube Leakage Estimation in Supercharged Boiler
by Yulong Xue, Dongliang Li, Yu Song, Shaojun Xia and Jingxing Wu
Energies 2025, 18(15), 3986; https://doi.org/10.3390/en18153986 - 25 Jul 2025
Viewed by 278
Abstract
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from [...] Read more.
The estimation of leakage faults in evaporation tubes of supercharged boilers is crucial for ensuring the safe and stable operation of the central steam system. However, leakage faults of evaporation tubes feature high time dependency, strong coupling among monitoring parameters, and interference from noise. Additionally, the large number of monitoring parameters (approximately 140) poses a challenge for spatiotemporal feature extraction, feature decoupling, and establishing a mapping relationship between high-dimensional monitoring parameters and leakage, rendering the precise quantitative estimation of evaporation tube leakage extremely difficult. To address these issues, this study proposes a novel deep learning framework (LSTM-CNN–attention), combining a Long Short-Term Memory (LSTM) network with a dual-pathway spatial feature extraction structure (ACNN) that includes an attention mechanism(attention) and a 1D convolutional neural network (1D-CNN) parallel pathway. This framework processes temporal embeddings (LSTM-generated) via a dual-branch ACNN—where the 1D-CNN captures local spatial features and the attention models’ global significance—yielding decoupled representations that prevent cross-modal interference. This architecture is implemented in a simulated supercharged boiler, validated with datasets encompassing three operational conditions and 15 statuses in the supercharged boiler. The framework achieves an average diagnostic accuracy (ADA) of over 99%, an average estimation accuracy (AEA) exceeding 90%, and a maximum relative estimation error (MREE) of less than 20%. Even with a signal-to-noise ratio (SNR) of −4 dB, the ADA remains above 90%, while the AEA stays over 80%. This framework establishes a strong correlation between leakage and multifaceted characteristic parameters, moving beyond traditional threshold-based diagnostics to enable the early quantitative assessment of evaporator tube leakage. Full article
Show Figures

Figure 1

9 pages, 207 KiB  
Article
Innovating Quality Control and External Quality Assurance for HIV-1 Recent Infection Testing: Empowering HIV Surveillance in Lao PDR
by Supaporn Suparak, Kanokwan Ngueanchanthong, Petai Unpol, Siriphailin Jomjunyoung, Wipawee Thanyacharern, Sirilada Pimpa Chisholm, Nitis Smanthong, Pojaporn Pinrod, Thitipong Yingyong, Phonepadith Xangsayarath, Sinakhone Xayadeth, Virasack Somoulay, Theerawit Tasaneeyapan, Somboon Nookhai, Archawin Rojanawiwat and Sanny Northbrook
Viruses 2025, 17(7), 1004; https://doi.org/10.3390/v17071004 - 17 Jul 2025
Viewed by 831
Abstract
Quality assurance programs are critical to ensuring the consistency and reliability of point-of-care surveillance test results. In 2022, we launched Laos’ inaugural quality control (QC) and external quality assessment (EQA) program for national HIV recent infection surveillance. Our study aims to implement the [...] Read more.
Quality assurance programs are critical to ensuring the consistency and reliability of point-of-care surveillance test results. In 2022, we launched Laos’ inaugural quality control (QC) and external quality assessment (EQA) program for national HIV recent infection surveillance. Our study aims to implement the first QC and EQA program for national HIV recent infection surveillance in Laos, utilizing non-infectious dried tube specimens (DTS) for quality control testing. This initiative seeks to monitor and assure the quality of HIV infection surveillance. We employed the Asante HIV-1 Rapid Test for Recent Infection (HIV-1 RTRI) point-of-care kit, using plasma specimens from the Thai Red Cross Society to create dried tube specimens (DTS). The DTS panels, including HIV-1 negative, HIV-1 recent, and HIV-1 long-term samples, met ISO 13528:2022 standards to ensure homogeneity and stability. These panels were transported from the Thai National Institute of Health (Thai NIH) to the Laos National Center for Laboratory and Epidemiology (NCLE) and subsequently shipped to 12 remote laboratories at ambient temperature. The laboratory results were electronically transmitted to Thai NIH 15 days after receiving the panel for performance analysis. The concordance results with the sample types were scored, and laboratories that achieved 100% concordance across all sample panels were considered to have satisfactorily met the established standards. Almost all laboratories demonstrated satisfactory results with 100% concordance across all sample panels during all three rounds of QC: 11 out of 12 (92%) in June, 10 out of 12 (83%) in July, and 11 out of 12 (91%) in August. The two rounds of EQA performed in June and August 2022 were satisfied by 8 out of 11 (72%) and 5 out of 10 (50%) laboratories, respectively. QC and EQA monitoring identified errors such as testing protocol mistakes and insufficient DTS panel dissolution, leading to improvements in HIV recency testing quality. Laboratories that reported errors were corrected and implemented further preventive actions. The QC and EQA program for HIV-1 RTRI identified errors in HIV recent infection testing. Implementing a specialized QC and EQA program for DTS marks a significant advancement in improving the accuracy and consistency of HIV recent infection surveillance. Continuous assessment is vital for addressing recurring issues. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
10 pages, 2486 KiB  
Article
Performance of Miniature Carbon Nanotube Field Emission Pressure Sensor for X-Ray Source Applications
by Huizi Zhou, Wenguang Peng, Weijun Huang, Nini Ye and Changkun Dong
Micromachines 2025, 16(7), 817; https://doi.org/10.3390/mi16070817 - 17 Jul 2025
Viewed by 360
Abstract
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon [...] Read more.
There is a lack of an effective approach to measure vacuum conditions inside sealed vacuum electronic devices (VEDs) and other small-space vacuum instruments. In this study, the application performance of an innovative low-pressure gas sensor based on the emission enhancements of multi-walled carbon nanotube (MWCNT) field emitters was investigated, and the in situ vacuum performance of X-ray tubes was studied for the advantages of miniature dimension and having low power consumption, extremely low outgassing, and low thermal disturbance compared to conventional ionization gauges. The MWCNT emitters with high crystallinity presented good pressure sensing performance for nitrogen, hydrogen, and an air mixture in the range of 10−7 to 10−3 Pa. The miniature MWCNT sensor is able to work and remain stable with high-temperature baking, important for VED applications. The sensor monitored the in situ pressures of the sealed X-ray tubes successfully with high-power operations and a long-term storage of over two years. The investigation showed that the vacuum of the sealed X-ray tube is typical at a low 10−4 Pa level, and pre-sealing degassing treatments are able to make the X-ray tube work under high vacuum levels with less outgassing and keep a stable high vacuum for a long period of time. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

26 pages, 3670 KiB  
Article
Video Instance Segmentation Through Hierarchical Offset Compensation and Temporal Memory Update for UAV Aerial Images
by Ying Huang, Yinhui Zhang, Zifen He and Yunnan Deng
Sensors 2025, 25(14), 4274; https://doi.org/10.3390/s25144274 - 9 Jul 2025
Viewed by 285
Abstract
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we [...] Read more.
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we propose a hierarchical offset compensation and temporal memory update method for video instance segmentation (HT-VIS) with a high generalization ability. Firstly, a hierarchical offset compensation (HOC) module in the form of a sequential and parallel connection is designed to perform deformable offset for the same flexible target across frames, which benefits from compensating for spatial motion features at the time sequence. Next, the temporal memory update (TMU) module is developed by employing convolutional long-short-term memory (ConvLSTM) between the current and adjacent frames to establish the temporal dynamic context correlation and update the current frame feature effectively. Finally, extensive experimental results demonstrate the superiority of the proposed HDNet method when applied to the public YouTubeVIS-2019 dataset and a self-built UAV-Seg segmentation dataset. On four typical datasets (i.e., Zoo, Street, Vehicle, and Sport) extracted from YoutubeVIS-2019 according to category characteristics, the proposed HT-VIS outperforms the state-of-the-art CNN-based VIS methods CrossVIS by 3.9%, 2.0%, 0.3%, and 3.8% in average segmentation accuracy, respectively. On the self-built UAV-VIS dataset, our HT-VIS with PHOC surpasses the baseline SipMask by 2.1% and achieves the highest average segmentation accuracy of 37.4% in the CNN-based methods, demonstrating the effectiveness and robustness of our proposed framework. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

21 pages, 4028 KiB  
Article
The Response Characteristics of One Saccharomyces cerevisiae Strain Under Continuous Passage in Artificial Culture Medium
by Tengyu Ma, Hongguang Zhu, Jiajia Yin, Yu Tian, Wenjing Yan and Haixin Sun
J. Fungi 2025, 11(7), 513; https://doi.org/10.3390/jof11070513 - 9 Jul 2025
Viewed by 521
Abstract
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. [...] Read more.
Saccharomyces cerevisiae often undergoes strain degeneration during industrial serial subculturing, though this phenomenon remains understudied. This study first conducted strain screening and biological characterization through TTC (2,3,5-triphenyltetrazolium chloride) colorimetric assays, Durham tube fermentation gas production tests, and WL medium (Wallerstein Laboratory medium) cultivation. Subsequently, the changes in intergenerational biological traits after serial subculturing were investigated. Finally, transcriptomic analysis was employed to examine differential gene expression under high-glucose stress during continuous subculturing. The experimental results demonstrated that: (1) The S. cerevisiae QDSK310-Z-07 (GenBank: PP663884), isolated from farm soil, exhibited robust growth within a temperature range of 24–36 °C, with optimal growth observed at 28 °C. It thrived in a pH range of 4–5.5 and efficiently utilized various carbon and nitrogen sources; (2) After serial subculturing, the strain’s ethanol production capacity and fermentation rate partially declined and then stabilized, while maintaining strong tolerance to high ethanol concentrations and hyperosmotic stress; (3) Transcriptomic analysis revealed significant differential expression of genes related to lipid metabolism, amino acid metabolism, and other pathways under high-glucose stress following continuous subculturing. These findings elucidate the biological trait variations in S. cerevisiae during serial subculturing and provide key metabolic regulation candidate targets for its long-term adaptive evolution under high-glucose stress. Full article
Show Figures

Figure 1

13 pages, 3086 KiB  
Article
Single-Polarization Single-Mode Hollow-Core Anti-Resonant Fiber with Low Loss and Wide Bandwidth
by Yong You, Wei Liu, Shuo Zhang, Jianxiong Wu, Yuanjiang Li, Huimin Shi and Haokun Yang
Photonics 2025, 12(7), 686; https://doi.org/10.3390/photonics12070686 - 7 Jul 2025
Viewed by 431
Abstract
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently [...] Read more.
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently long transmission distance in a wide spectral range. In the paper, a hollow-core anti-resonant fiber (HC-ARF) that can support SPSM beam transmission with an average loss of 15 dB/km in wavelengths beyond 1000 nm is proposed. SPSM guidance is achieved by setting the cladding tubes in the orthogonal direction to have different structures and material properties. Different cladding tube structures break the degeneracy of polarization modes, and different cladding tube materials make the polarization modes experience enough loss difference. In the range of more than 600 nm, the y-polarization loss ≈ 9.3 dB/km, while the x-polarization is > 500 dB/km, and the birefringence is > 1.7 × 10−5. In addition, the SPSM optimization process and bending losses in different directions are also discussed in detail. Full article
(This article belongs to the Special Issue Applications and Development of Optical Fiber Sensors)
Show Figures

Figure 1

22 pages, 5786 KiB  
Review
Narrative and Pictorial Review on State-of-the-Art Endovascular Treatment for Focal Non-Infected Lesions of the Abdominal Aorta: Anatomical Challenges, Technical Solutions, and Clinical Outcomes
by Mario D’Oria, Marta Ascione, Paolo Spath, Gabriele Piffaretti, Enrico Gallitto, Wassim Mansour, Antonino Maria Logiacco, Giovanni Badalamenti, Antonio Cappiello, Giulia Moretti, Luca Di Marzo, Gianluca Faggioli, Mauro Gargiulo and Sandro Lepidi
J. Clin. Med. 2025, 14(13), 4798; https://doi.org/10.3390/jcm14134798 - 7 Jul 2025
Viewed by 495
Abstract
The natural history of focal non-infected lesions of the abdominal aorta (fl-AA) remains unclear and largely depends on their aetiology. These lesions often involve a focal “tear” or partial disruption of the arterial wall. Penetrating aortic ulcers (PAUs) and intramural hematomas (IMHs) are [...] Read more.
The natural history of focal non-infected lesions of the abdominal aorta (fl-AA) remains unclear and largely depends on their aetiology. These lesions often involve a focal “tear” or partial disruption of the arterial wall. Penetrating aortic ulcers (PAUs) and intramural hematomas (IMHs) are examples of focal tears in the aortic wall that can either progress to dilatation (saccular aneurysm) or fail to fully propagate through the medial layers, potentially leading to aortic dissection. These conditions typically exhibit a morphology consistent with eccentric saccular aneurysms. The management of focal non-infected pathologies of the abdominal aorta remains a subject of debate. Unlike fusiform abdominal aortic aneurysms, the inconsistent definitions and limited information regarding the natural history of saccular aneurysms (sa-AAAs) have prevented the establishment of universally accepted practice guidelines for their management. As emphasized in the latest 2024 ESVS guidelines, the focal nature of these diseases makes them ideal candidates for endovascular repair (class of evidence IIa—level C). Moreover, the Society for Vascular Surgery just referred to aneurysm diameter as an indication for treatment suggesting using a smaller diameter compared to fusiform aneurysms. Consequently, the management of saccular aneurysms is likely heterogeneous amongst different centres and different operators. Endovascular repair using tube stent grafts offers benefits like reduced recovery times but carries risks of migration and endoleak due to graft rigidity. These complications can influence long-term success. In this context, the use of endovascular bifurcated grafts may provide a more effective solution for treating these focal aortic pathologies. It is essential to achieve optimal sealing regions through anatomical studies of aortic morphology. Additionally, understanding the anatomical characteristics of focal lesions in challenging necks or para-visceral locations is indeed crucial in device choice. Off-the-shelf devices are favoured for their time and cost efficiency, but new endovascular technologies like fenestrated endovascular aneurysm repair (FEVAR) and custom-made devices enhance treatment success and patient safety. These innovations provide stent grafts in various lengths and diameters, accommodating different aortic anatomies and reducing the risk of type III endoleaks. Although complicated PAUs and focal saccular aneurysms rarely arise in the para-visceral aorta, the consequences of rupture in this segment might be extremely severe. Experience borrowed from complex abdominal and thoracoabdominal aneurysm repair demonstrates that fenestrated and branched devices can be deployed safely when anatomical criteria are respected. Elective patients derive the greatest benefit from a fenestrated graft, while urgent cases can be treated confidently with off-the-shelf multibranch systems, reserving other types of repairs for emergent or bail-out cases. While early outcomes of these interventions are promising, it is crucial to acknowledge that limited aortic coverage can still impede effective symptom relief and lead to complications such as aneurysm expansion or rupture. Therefore, further long-term studies are essential to consolidate the technical results and evaluate the durability of various graft options. Full article
(This article belongs to the Special Issue Clinical Advances in Aortic Disease and Revascularization)
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 487
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

24 pages, 2752 KiB  
Review
Challenges in the Design and Development of Slow-Wave Structure for THz Traveling-Wave Tube: A Tutorial Review
by Patibandla Anilkumar, Shaomeng Wang and Yubin Gong
Electronics 2025, 14(13), 2624; https://doi.org/10.3390/electronics14132624 - 29 Jun 2025
Viewed by 505
Abstract
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range [...] Read more.
As solid-state devices continue to advance, vacuum electron devices maintain critical importance due to their superior high-frequency power handling, long-term reliability, and operational efficiency. Among these, traveling-wave tubes (TWTs) excel in high-power microwave (HPM) applications, offering exceptional bandwidth and gain. However, developing THz-range TWT slow-wave structures (SWSs) presents significant design challenges. This work systematically outlines the SWS design methodology while addressing key obstacles and their solutions. As a demonstration, a staggered double vane (SDV) SWS operating at 1 THz (980–1080 GHz) achieves 650 mW output power, 23.35 dB gain, 0.14% electronic efficiency, and compact 21 mm length. Comparative analysis with deformed quasi-sine waveguide (D-QSWG) SWS confirms the SDV design’s superior performance for THz applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

19 pages, 18598 KiB  
Article
Method and Tools to Collect, Process, and Publish Raw and AI-Enhanced Astronomical Observations on YouTube
by Olivier Parisot
Electronics 2025, 14(13), 2567; https://doi.org/10.3390/electronics14132567 - 25 Jun 2025
Viewed by 817
Abstract
Observational astronomy requires specialized equipment and favourable outdoor conditions, creating barriers to access for many enthusiasts. Streaming platforms can help bridge this gap by offering accessible views of celestial events, fostering broader public engagement and educational opportunities. In this paper, we introduce a [...] Read more.
Observational astronomy requires specialized equipment and favourable outdoor conditions, creating barriers to access for many enthusiasts. Streaming platforms can help bridge this gap by offering accessible views of celestial events, fostering broader public engagement and educational opportunities. In this paper, we introduce a methodology and a set of tools designed to power a YouTube channel that shares authentic recordings of Deep-Sky Objects, the Sun, the Moon, and planets. Each video is accompanied by detailed information on observation conditions and post-processing steps. The content is structured into two complementary formats: raw footage, captured using smart telescopes, and AI-enhanced videos that highlight specific features or phenomena using custom-trained AI models. Furthermore, the YouTube channel and associated AI tools may serve as a dynamic platform for long-term sky observation, supporting the detection of seasonal patterns and transient celestial events. Full article
(This article belongs to the Special Issue Machine Learning Techniques for Image Processing)
Show Figures

Figure 1

24 pages, 4986 KiB  
Article
Research on Multi-Cycle Injection–Production Displacement Characteristics and Factors Influencing Storage Capacity in Oil Reservoir-Based Underground Gas Storage
by Yong Tang, Peng Zheng, Zhitao Tang, Minmao Cheng and Yong Wang
Energies 2025, 18(13), 3330; https://doi.org/10.3390/en18133330 - 25 Jun 2025
Viewed by 862
Abstract
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the [...] Read more.
In order to clarify the feasibility of constructing a gas storage reservoir through synergistic injection and production in the target reservoir, micro-displacement experiments and multi-cycle injection–production experiments were conducted. These experiments investigated the displacement characteristics and the factors affecting storage capacity during the multi-cycle injection–production process for converting the target reservoir into a gas storage facility. Microscopic displacement experiments have shown that the remaining oil is primarily distributed in the dead pores and tiny pores of the core in the form of micro-bead chains and films. The oil displacement efficiency of water flooding followed by gas flooding is 18.61% higher than that of gas flooding alone, indicating that the transition from water flooding to gas flooding can further reduce the liquid saturation and increase the storage capacity space by 2.17%. Single-tube long-core displacement experiments indicate that, during the collaborative construction of a gas storage facility, the overall oil displacement efficiency without a depletion process is approximately 24% higher than that with a depletion process. This suggests that depletion production is detrimental to enhancing oil recovery and expanding the capacity of the gas storage facility. During the cyclic injection–production stage, the crude oil recovery rate increases by 1% to 4%. As the number of cycles increases, the incremental oil displacement efficiency in each stage gradually decreases, and so does the increase in cumulative oil displacement efficiency. Better capacity expansion effects are achieved when gas is produced simultaneously from both ends. Parallel double-tube long-core displacement experiments demonstrate that, when the permeability is the same, the oil displacement efficiencies during the gas flooding stage and the cyclic injection–production stage are essentially identical. When there is a permeability contrast, the oil displacement efficiency of the high-permeability core is 9.56% higher than that of the low-permeability core. The ratio of the oil displacement efficiency between the high-permeability end and the low-permeability end is positively correlated with the permeability contrast; the greater the permeability contrast, the larger the ratio. The research findings can provide a reference for enhancing oil recovery and expanding the capacity of the target reservoir when it is converted into a gas storage facility. Full article
Show Figures

Figure 1

Back to TopTop