Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,369)

Search Parameters:
Keywords = local map

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8900 KB  
Article
Pre-Dog-Leg: A Feature Optimization Method for Visual Inertial SLAM Based on Adaptive Preconditions
by Junyang Zhao, Shenhua Lv, Huixin Zhu, Yaru Li, Han Yu, Yutie Wang and Kefan Zhang
Sensors 2025, 25(19), 6161; https://doi.org/10.3390/s25196161 (registering DOI) - 4 Oct 2025
Abstract
To address the ill-posedness of the Hessian matrix in monocular visual-inertial SLAM (Simultaneous Localization and Mapping) caused by unobservable depth of feature points, which leads to convergence difficulties and reduced robustness, this paper proposes a Pre-Dog-Leg feature optimization method based on an adaptive [...] Read more.
To address the ill-posedness of the Hessian matrix in monocular visual-inertial SLAM (Simultaneous Localization and Mapping) caused by unobservable depth of feature points, which leads to convergence difficulties and reduced robustness, this paper proposes a Pre-Dog-Leg feature optimization method based on an adaptive preconditioner. First, we propose a multi-candidate initialization method with robust characteristics. This method effectively circumvents erroneous depth initialization by introducing multiple depth assumptions and geometric consistency constraints. Second, we address the pathology of the Hessian matrix of the feature points by constructing a hybrid SPAI-Jacobi adaptive preconditioner. This preconditioner is capable of identifying matrix pathology and dynamically enabling preconditioning as a strategy. Finally, we construct a hybrid adaptive preconditioner for the traditional Dog-Leg numerical optimization method. To address the issue of degraded convergence performance when solving pathological problems, we map the pathological optimization problem from the original parameter space to a well-conditioned preconditioned space. The optimization equivalence is maintained by variable recovery. The experiments on the EuRoC dataset show that the method reduces the number of Hessian matrix conditionals by a factor of 7.9, effectively suppresses outliers, and significantly improves the overall convergence time. From the analysis of trajectory error, the absolute trajectory error is reduced by up to 16.48% relative to RVIO2 on the MH_01 sequence, 20.83% relative to VINS-mono on the MH_02 sequence, and up to 14.73% relative to VINS-mono and 34.0% relative to OpenVINS on the highly dynamic MH_05 sequence, indicating that the algorithm achieves higher localization accuracy and stronger system robustness. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

20 pages, 7348 KB  
Article
A Sketch-Based Cross-Modal Retrieval Model for Building Localization Without Satellite Signals
by Haihua Du, Jiawei Fan, Yitao Huang, Longyang Lin and Jiuchao Qian
Electronics 2025, 14(19), 3936; https://doi.org/10.3390/electronics14193936 (registering DOI) - 4 Oct 2025
Abstract
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene [...] Read more.
In existing non-satellite navigation systems, visual localization is widely adopted for its high precision. However, in scenarios with highly similar building structures, traditional visual localization methods that rely on direct coordinate prediction often suffer from decreased accuracy or even failure. Moreover, as scene complexity increases, their robustness tends to decline. To address these challenges, this paper proposes a Sketch Line Information Consistency Generation (SLIC) model for indirect building localization. Instead of regressing geographic coordinates, the model retrieves candidate building images that correspond to hand-drawn sketches, and these retrieved results serve as proxies for localization in satellite-denied environments. Within the model, the Line-Attention Block and Relation Block are designed to extract fine-grained line features and structural correlations, thereby improving retrieval accuracy. Experiments on multiple architectural datasets demonstrate that the proposed approach achieves high precision and robustness, with mAP@2 values ranging from 0.87 to 1.00, providing a practical alternative to conventional coordinate-based localization methods. Full article
(This article belongs to the Special Issue Recent Advances in Autonomous Localization and Navigation System)
15 pages, 2159 KB  
Article
Benchmarking Lightweight YOLO Object Detectors for Real-Time Hygiene Compliance Monitoring
by Leen Alashrafi, Raghad Badawood, Hana Almagrabi, Mayda Alrige, Fatemah Alharbi and Omaima Almatrafi
Sensors 2025, 25(19), 6140; https://doi.org/10.3390/s25196140 (registering DOI) - 4 Oct 2025
Abstract
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three [...] Read more.
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three lightweight object detection models—YOLOv8n, YOLOv10n, and YOLOv12n—for automated PPE compliance monitoring using a large curated dataset of over 31,000 annotated images. The dataset spans seven classes representing both compliant and non-compliant conditions: glove, no_glove, mask, no_mask, incorrect_mask, hairnet, and no_hairnet. All evaluations were conducted using both detection accuracy metrics (mAP@50, mAP@50–95, precision, recall) and deployment-relevant efficiency metrics (inference speed, model size, GFLOPs). Among the three models, YOLOv10n achieved the highest mAP@50 (85.7%) while maintaining competitive efficiency, indicating strong suitability for resource-constrained IoT-integrated deployments. YOLOv8n provided the highest localization accuracy at stricter thresholds (mAP@50–95), while YOLOv12n favored ultra-lightweight operation at the cost of reduced accuracy. The results provide practical guidance for selecting nano-scale detection models in real-time hygiene compliance systems and contribute a reproducible, deployment-aware evaluation framework for computer vision in hygiene-critical settings. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

46 pages, 3080 KB  
Review
Machine Learning for Structural Health Monitoring of Aerospace Structures: A Review
by Gennaro Scarselli and Francesco Nicassio
Sensors 2025, 25(19), 6136; https://doi.org/10.3390/s25196136 (registering DOI) - 4 Oct 2025
Abstract
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, [...] Read more.
Structural health monitoring (SHM) plays a critical role in ensuring the safety and performance of aerospace structures throughout their lifecycle. As aircraft and spacecraft systems grow in complexity, the integration of machine learning (ML) into SHM frameworks is revolutionizing how damage is detected, localized, and predicted. This review presents a comprehensive examination of recent advances in ML-based SHM methods tailored to aerospace applications. It covers supervised, unsupervised, deep, and hybrid learning techniques, highlighting their capabilities in processing high-dimensional sensor data, managing uncertainty, and enabling real-time diagnostics. Particular focus is given to the challenges of data scarcity, operational variability, and interpretability in safety-critical environments. The review also explores emerging directions such as digital twins, transfer learning, and federated learning. By mapping current strengths and limitations, this paper provides a roadmap for future research and outlines the key enablers needed to bring ML-based SHM from laboratory development to widespread aerospace deployment. Full article
(This article belongs to the Special Issue Feature Review Papers in Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 3332 KB  
Article
YOLOv11-XRBS: Enhanced Identification of Small and Low-Detail Explosives in X-Ray Backscatter Images
by Baolu Yang, Zhe Yang, Xin Wang, Baozhong Mu, Jie Xu and Hong Li
Sensors 2025, 25(19), 6130; https://doi.org/10.3390/s25196130 - 3 Oct 2025
Abstract
Identifying concealed explosives in X-ray backscatter (XRBS) imagery remains a critical challenge, primarily due to low image contrasts, cluttered backgrounds, small object sizes, and limited structural details. To address these limitations, we propose YOLOv11-XRBS, an enhanced detection framework tailored to the characteristics of [...] Read more.
Identifying concealed explosives in X-ray backscatter (XRBS) imagery remains a critical challenge, primarily due to low image contrasts, cluttered backgrounds, small object sizes, and limited structural details. To address these limitations, we propose YOLOv11-XRBS, an enhanced detection framework tailored to the characteristics of XRBS images. A dedicated dataset (SBCXray) comprising over 10,000 annotated images of simulated explosive scenarios under varied concealment conditions was constructed to support training and evaluation. The proposed framework introduces three targeted improvements: (1) adaptive architectural refinement to enhance multi-scale feature representation and suppress background interference, (2) a Size-Aware Focal Loss (SaFL) strategy to improve the detection of small and weak-feature objects, and (3) a recomposed loss function with scale-adaptive weighting to achieve more accurate bounding box localization. The experiments demonstrated that YOLOv11-XRBS achieves better performance compared to both existing YOLO variants and classical detection models such as Faster R-CNN, SSD512, RetinaNet, DETR, and VGGNet, achieving a mean average precision (mAP) of 94.8%. These results confirm the robustness and practicality of the proposed framework, highlighting its potential deployment in XRBS-based security inspection systems. Full article
(This article belongs to the Special Issue Advanced Spectroscopy-Based Sensors and Spectral Analysis Technology)
Show Figures

Figure 1

37 pages, 10966 KB  
Article
Contextual Real-Time Optimization on FPGA by Dynamic Selection of Chaotic Maps and Adaptive Metaheuristics
by Rabab Ouchker, Hamza Tahiri, Ismail Mchichou, Mohamed Amine Tahiri, Hicham Amakdouf and Mhamed Sayyouri
Appl. Sci. 2025, 15(19), 10695; https://doi.org/10.3390/app151910695 - 3 Oct 2025
Abstract
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in [...] Read more.
In dynamic and information-rich contexts, systems must be capable of making instantaneous, context-aware decisions. Such scenarios require optimization methods that are both fast and flexible. This paper introduces an innovative hardware-based intelligent optimization framework, deployed on FPGAs, designed to support autonomous decisions in real-time systems. In contrast to conventional methods based on a single chaotic map, our scheme brings together six separate chaotic generators in simultaneous operation, orchestrated by an adaptive voting system based on past results. The system, in conjunction with the Secretary Bird Optimization Algorithm (SBOA), constantly adjusts its optimization approach according to the changing profile of the objective function. This delivers first-rate, timely solutions with improved convergence, resistance to local minima, and a high degree of adaptability to a variety of decision-making contexts. Simulations carried out on reference standards and engineering problems have demonstrated the scalability, responsiveness, and efficiency of the proposed model. These characteristics make it particularly suitable for use in embedded intelligence applications in sectors such as intelligent production, robotics, and IoT-based infrastructures. The suggested solution was tested using post-synthesis simulations on Vivado 2022.2 and experimented on three concrete engineering challenges: welded beam design, pressure equipment design, and tension/compression spring refinement. In each situation, the adaptive selection process dynamically determined the most suitable chaotic map, such as the logistics map for the Welded Beam Design Problem (WBDP) and the Tent map for the Pressure Vessel Design Problem (PVDP). This led to ideal results that exceed both conventional static methods and recent references in the literature. The post-synthesis results on the Nexys 4 DDR (Artix-7 XC7A100T, Digilent Inc., Pullman, WA, USA) show that the initial Q16.16 implementation exceeded the device resources (128% LUTs and 100% DSPs), whereas the optimized Q4.8 representation achieved feasible deployment with 80% LUT utilization, 72% DSP usage, and 3% FF occupancy. This adjustment reduced resource consumption by more than 25% while maintaining sufficient computational accuracy. Full article
20 pages, 74841 KB  
Article
Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors
by Seola Yang, Daeik Jang, Jonghyeok Kim and Haemin Jeon
Sensors 2025, 25(19), 6121; https://doi.org/10.3390/s25196121 - 3 Oct 2025
Abstract
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF [...] Read more.
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF motorized manipulator providing linear and rotational motions, with a stereo vision sensor mounted on the end effector, was deployed. In combination with a manual rotation plate, this configuration enhances accessibility and expands the field of view for crack monitoring. Another stereo vision sensor, mounted at the front of the robot, was used to acquire point cloud data of the surrounding environment, enabling tasks such as SLAM (simultaneous localization and mapping), path planning and following, and obstacle avoidance. Cracks are detected and segmented using the deep learning algorithms YOLO (You Only Look Once) v6-s and SFNet (Semantic Flow Network), respectively. To enhance the performance of crack segmentation, synthetic image generation and preprocessing techniques, including cropping and scaling, were applied. The dimensions of cracks are calculated using point clouds filtered with the median absolute deviation method. To validate the performance of the proposed crack-monitoring and mapping method with the robot system, indoor experimental tests were performed. The experimental results confirmed that, in cases of divided imaging, the crack propagation direction was predicted, enabling robotic manipulation and division-point calculation. Subsequently, total crack length and width were calculated by combining reconstructed 3D point clouds from multiple frames, with a maximum relative error of 1%. Full article
Show Figures

Figure 1

22 pages, 16284 KB  
Article
C5LS: An Enhanced YOLOv8-Based Model for Detecting Densely Distributed Small Insulators in Complex Railway Environments
by Xiaoai Zhou, Meng Xu and Peifen Pan
Appl. Sci. 2025, 15(19), 10694; https://doi.org/10.3390/app151910694 - 3 Oct 2025
Abstract
The complex environment along railway lines, characterized by low imaging quality, strong background interference, and densely distributed small objects, causes existing detection models to suffer from low accuracy in practical applications. To tackle these challenges, this study aims to develop a robust and [...] Read more.
The complex environment along railway lines, characterized by low imaging quality, strong background interference, and densely distributed small objects, causes existing detection models to suffer from low accuracy in practical applications. To tackle these challenges, this study aims to develop a robust and lightweight insulator detection model specifically optimized for these challenging railway scenarios. To this end, we release a dedicated comprehensive dataset named complexRailway that covers typical railway scenarios to address the limitations of existing insulator datasets, such as the lack of small-scale objects in high-interference backgrounds. On this basis, we present CutP5-LargeKernelAttention-SIoU (C5LS), an improved YOLOv8 variant with three key improvements: (1) optimized YOLOv8’s detection head by removing the P5 branch to improve feature extraction for small- and medium-sized targets while reducing computational redundancy, (2) integrating a lightweight Large Separable Kernel Attention (LSKA) module to expand the receptive field and improve contextual modeling, (3) and replacing CIoU with SIoU loss to refine localization accuracy and accelerate convergence. Experimental results demonstrate that it reaches 94.7% in mAP@0.5 and 65.5% in mAP@0.5–0.95, outperforming the baseline model by 1.9% and 3.5%, respectively. With an inference speed of 104 FPS and a model size of 13.9 MB, the model balances high precision and lightweight deployment. By providing stable and accurate insulator detection, C5LS not only offers reliable spatial positioning basis for subsequent defect identification but also builds an efficient and feasible intelligent monitoring solution for these failure-prone insulators, thereby effectively enhancing the operational safety and maintenance efficiency of the railway power system. Full article
Show Figures

Figure 1

27 pages, 3475 KB  
Article
Pillar-Bin: A 3D Object Detection Algorithm for Communication-Denied UGVs
by Cunfeng Kang, Yukun Liu, Junfeng Chen and Siqi Tang
Drones 2025, 9(10), 686; https://doi.org/10.3390/drones9100686 - 3 Oct 2025
Abstract
Addressing the challenge of acquiring high-precision leader Unmanned Ground Vehicle (UGV) pose information in real time for communication-denied leader–follower formations, this study proposed Pillar-Bin, a 3D object detection algorithm based on the PointPillars framework. Pillar-Bin introduced an Interval Discretization Strategy (Bin) within the [...] Read more.
Addressing the challenge of acquiring high-precision leader Unmanned Ground Vehicle (UGV) pose information in real time for communication-denied leader–follower formations, this study proposed Pillar-Bin, a 3D object detection algorithm based on the PointPillars framework. Pillar-Bin introduced an Interval Discretization Strategy (Bin) within the detection head, mapping critical target parameters (dimensions, center, heading angle) to predefined intervals for joint classification-residual regression optimization. This effectively suppresses environmental noise and enhances localization accuracy. Simulation results on the KITTI dataset demonstrate that the Pillar-Bin algorithm significantly outperforms PointPillars in detection accuracy. In the 3D detection mode, the mean Average Precision (mAP) increased by 2.95%, while in the bird’s eye view (BEV) detection mode, mAP was improved by 0.94%. With a processing rate of 48 frames per second (FPS), the proposed algorithm effectively enhanced detection accuracy while maintaining the high real-time performance of the baseline method. To evaluate Pillar-Bin’s real-vehicle performance, a leader UGV pose extraction scheme was designed. Real-vehicle experiments show absolute X/Y positioning errors below 5 cm and heading angle errors under 5° in Cartesian coordinates, with the pose extraction processing speed reaching 46 FPS. The proposed Pillar-Bin algorithm and its pose extraction scheme provide efficient and accurate leader pose information for formation control, demonstrating practical engineering utility. Full article
32 pages, 4829 KB  
Article
Dynamic Energy-Aware Anchor Optimization for Contact-Based Indoor Localization in MANETs
by Manuel Jesús-Azabal, Meichun Zheng and Vasco N. G. J. Soares
Information 2025, 16(10), 855; https://doi.org/10.3390/info16100855 - 3 Oct 2025
Abstract
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous [...] Read more.
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical. Full article
14 pages, 524 KB  
Article
Mapping Community Priorities for Local Medical Centers: An Importance-Performance Analysis Study of Residents’ Perceptions in Large Cities, Non-Large Cities, and Rural Areas in South Korea
by Hana Jeong, Jaehee Seo and Eunyoung Chung
Healthcare 2025, 13(19), 2513; https://doi.org/10.3390/healthcare13192513 - 3 Oct 2025
Abstract
Background: Policymakers in Korea are calling for Local Medical Centers (LMCs) to address regional healthcare disparities by expanding their roles beyond safety-net functions yet often overlook local community perspectives. Methods: Face-to-face survey data collected in 2022 from 2057 adults residing in Chungcheongnam-do were [...] Read more.
Background: Policymakers in Korea are calling for Local Medical Centers (LMCs) to address regional healthcare disparities by expanding their roles beyond safety-net functions yet often overlook local community perspectives. Methods: Face-to-face survey data collected in 2022 from 2057 adults residing in Chungcheongnam-do were analyzed in this study, using Importance–Performance Analysis to assess how residents of large cities, non-large cities, and rural areas prioritize nine LMC functions. Results: While all valued public health policy and infectious disease control amid COVID-19, notable regional variations appeared: non-large city residents prioritized unmet healthcare needs and operational efficiency, rural respondents emphasized post-discharge care coordination due to aging and chronic disease, and large city residents focused on safety-net roles. Staff training and medical innovation ranked lowest across regions. Conclusions: The results highlight the inadequacy of one-size-fits-all policies and the importance of regionally tailored, resident-informed strategies for equitable public health in Korea. Full article
Show Figures

Figure 1

14 pages, 2913 KB  
Article
Mapping 18F-FDG Positron Emission Tomography Uptake in the Aortic Wall and Thrombus: Validation and Reproducibility
by Mireia Bragulat-Arévalo, Marta Ferrer-Cornet, Lydia Dux-Santoy, Ruper Oliveró-Soldevila, Marvin Garcia-Reyes, Gisela Teixidó-Turà, Juan Garrido-Oliver, Laura Galian-Gay, Pere Lopez-Gutierrez, Alba Catalá-Santarrufina, José Ramón García-Garzón, Noemi Martinez-Esquerda, Javier Solsona, Ignacio Ferreira-González, Sergi Bellmunt-Montoya, Jose Rodriguez-Palomares and Andrea Guala
Appl. Sci. 2025, 15(19), 10685; https://doi.org/10.3390/app151910685 - 3 Oct 2025
Abstract
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) could be useful to assess inflammation of the aortic wall, a potential early indicator of aneurysm formation. Nonetheless, its current clinical assessment presents several limitations. The study aimed to develop and validate an innovative technique to obtain [...] Read more.
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) could be useful to assess inflammation of the aortic wall, a potential early indicator of aneurysm formation. Nonetheless, its current clinical assessment presents several limitations. The study aimed to develop and validate an innovative technique to obtain thoraco-abdominal aortic wall PET uptake maps. PET/magnetic resonance (MR) was acquired in 82 patients with aortic aneurysms. The thoraco-abdominal aorta was segmented and expanded inward and outward (by 1 to 5 mm) and discretized into 80 standardized wall patches. Standard uptake values (SUV) were calculated for each patch and the thrombus. For inter-observer reproducibility, a second blinded observer analyzed 26 random patients. Validation against manual expert measurements was performed. The feasibility of the patch-wise PET analysis was 98.4%. Inter-observer Dice scores were 0.89 for lumen and 0.82 for thrombus segmentations. SUV mapping presented excellent reproducibility, modestly improving with wall thickness (ICC 0.950 to 0.966), while its agreement with expert measurements improved with thinner walls (ICC 0.848 to 0.755). An optimal balance between reproducibility and accuracy was obtained at 6 mm wall thickness. Reproducible and accurate thoraco-abdominal aortic wall 18F-FDG uptake maps can be obtained from PET/MR, potentially facilitating the exploration of local factors associated with vascular inflammation. Full article
Show Figures

Figure 1

26 pages, 1400 KB  
Review
Bioelectrical Impedance Analysis in Professional and Semi-Professional Football: A Scoping Review
by Íñigo M. Pérez-Castillo, Alberto Valiño-Marques, José López-Chicharro, Felipe Segura-Ortiz, Ricardo Rueda and Hakim Bouzamondo
Sports 2025, 13(10), 348; https://doi.org/10.3390/sports13100348 - 3 Oct 2025
Abstract
Background: Bioelectrical impedance analysis (BIA) is a widely used field technique for assessing body composition in football. However, its reliance on population-specific regression equations limits its accuracy. Objective: This scoping review aimed to map the scientific literature on BIA applications in professional and [...] Read more.
Background: Bioelectrical impedance analysis (BIA) is a widely used field technique for assessing body composition in football. However, its reliance on population-specific regression equations limits its accuracy. Objective: This scoping review aimed to map the scientific literature on BIA applications in professional and semi-professional football, highlighting uses, limitations, and research opportunities. Methods: A comprehensive search was conducted in the scientific databases PubMed, EMBASE, Web of Science, and SPORTDiscus. Identified studies involved the use of BIA in professional and semi-professional football players (≥16 years) in the context of routine training and competition. Results: From 14,624 records, 39 studies met the inclusion criteria and were included. Three main applications were identified: (1) quantitative body composition assessment, (2) qualitative/semi-quantitative analysis (e.g., bioelectrical impedance vector analysis (BIVA)), and (3) muscle health and injury monitoring. Seven specific research areas emerged, including hydration monitoring, cross-method validation of body composition analyses, development of predictive models, sport phenotype identification, tracking training adaptations, performance/load assessment via phase angle, and localized BIA for injury diagnosis and recovery. Conclusions: While quantitative BIA estimates may lack individual-level precision, raw parameter analyses may offer valuable insights into hydration, cellular integrity, and muscle injury status, yet further research is needed to fully realize these applications. Full article
(This article belongs to the Special Issue Body Composition Assessment for Sports Performance and Athlete Health)
Show Figures

Figure 1

19 pages, 5861 KB  
Article
Topological Signal Processing from Stereo Visual SLAM
by Eleonora Di Salvo, Tommaso Latino, Maria Sanzone, Alessia Trozzo and Stefania Colonnese
Sensors 2025, 25(19), 6103; https://doi.org/10.3390/s25196103 - 3 Oct 2025
Abstract
Topological signal processing is emerging alongside Graph Signal Processing (GSP) in various applications, incorporating higher-order connectivity structures—such as faces—in addition to nodes and edges, for enriched connectivity modeling. Rich point clouds acquired by multi-camera systems in Visual Simultaneous Localization and Mapping (V-SLAM) are [...] Read more.
Topological signal processing is emerging alongside Graph Signal Processing (GSP) in various applications, incorporating higher-order connectivity structures—such as faces—in addition to nodes and edges, for enriched connectivity modeling. Rich point clouds acquired by multi-camera systems in Visual Simultaneous Localization and Mapping (V-SLAM) are typically processed using graph-based methods. In this work, we introduce a topological signal processing (TSP) framework that integrates texture information extracted from V-SLAM; we refer to this framework as TSP-SLAM. We show how TSP-SLAM enables the extension of graph-based point cloud processing to more advanced topological signal processing techniques. We demonstrate, on real stereo data, that TSP-SLAM enables a richer point cloud representation by associating signals not only with vertices but also with edges and faces of the mesh computed from the point cloud. Numerical results show that TSP-SLAM supports the design of topological filtering algorithms by exploiting the mapping between the 3D mesh faces, edges and vertices and their 2D image projections. These findings confirm the potential of TSP-SLAM for topological signal processing of point cloud data acquired in challenging V-SLAM environments. Full article
(This article belongs to the Special Issue Stereo Vision Sensing and Image Processing)
Show Figures

Figure 1

21 pages, 2222 KB  
Article
Machine Learning-Driven Security and Privacy Analysis of a Dummy-ABAC Model for Cloud Computing
by Baby Marina, Irfana Memon, Fizza Abbas Alvi, Ubaidullah Rajput and Mairaj Nabi
Computers 2025, 14(10), 420; https://doi.org/10.3390/computers14100420 - 2 Oct 2025
Abstract
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. [...] Read more.
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. To address this shortcoming, we present a novel privacy-preserving Dummy-ABAC model that obfuscates real attributes with dummy attributes before transmission to the cloud server. In the proposed model, only dummy attributes are stored in the cloud database, whereas real attributes and mapping tokens are stored in a local machine database. Only dummy attributes are used for the access request evaluation in the cloud, and real data are retrieved in the post-decision mechanism using secure tokens. The security of the proposed model was assessed using a simulated threat scenario, including attribute inference, policy injection, and reverse mapping attacks. Experimental evaluation using machine learning classifiers (“DecisionTree” DT, “RandomForest” RF), demonstrated that inference accuracy dropped from ~0.65 on real attributes to ~0.25 on dummy attributes confirming improved resistance to inference attacks. Furthermore, the model rejects malformed and unauthorized policies. Performance analysis of dummy generation, token generation, encoding, and nearest-neighbor search, demonstrated minimal latency in both local and cloud environments. Overall, the proposed model ensures an efficient, secure, and privacy-preserving access control in cloud environments. Full article
Show Figures

Figure 1

Back to TopTop