Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,063)

Search Parameters:
Keywords = load independent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 5135 KiB  
Article
Strategic Multi-Stage Optimization for Asset Investment in Electricity Distribution Networks Under Load Forecasting Uncertainties
by Clainer Bravin Donadel
Eng 2025, 6(8), 186; https://doi.org/10.3390/eng6080186 - 5 Aug 2025
Abstract
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage [...] Read more.
Electricity distribution systems face increasing challenges due to demand growth, regulatory requirements, and the integration of distributed generation. In this context, distribution companies must make strategic and well-supported investment decisions, particularly in asset reinforcement actions such as reconductoring. This paper presents a multi-stage methodology to optimize reconductoring investments under load forecasting uncertainties. The approach combines a decomposition strategy with Monte Carlo simulation to capture demand variability. By discretizing a lognormal probability density function and selecting the largest loads in the network, the methodology balances computational feasibility with modeling accuracy. The optimization model employs exhaustive search techniques independently for each network branch, ensuring precise and consistent investment decisions. Tests conducted on the IEEE 123-bus feeder consider both operational and regulatory constraints from the Brazilian context. Results show that uncertainty-aware planning leads to a narrow investment range—between USD 55,108 and USD 66,504—highlighting the necessity of reconductoring regardless of demand scenarios. A comparative analysis of representative cases reveals consistent interventions, changes in conductor selection, and schedule adjustments based on load conditions. The proposed methodology enables flexible, cost-effective, and regulation-compliant investment planning, offering valuable insights for utilities seeking to enhance network reliability and performance while managing demand uncertainties. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 9300 KiB  
Article
Decoupling Control for the HVAC Port of Power Electronic Transformer
by Wusong Wen, Tianwen Zhan, Yingchao Zhang and Jintong Nie
Energies 2025, 18(15), 4131; https://doi.org/10.3390/en18154131 - 4 Aug 2025
Abstract
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to [...] Read more.
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to simultaneously realize the functions of active power control, reactive power compensation, and active power filtering. In the outer power control loop, according to the distribution rule of decoupled average active power components in three phases, stability control for the sum of cluster average active power flows is realized by injecting positive-sequence active current, so as to control the average cluster voltage (i.e., the average of all the DC-link capacitor voltages), and by injecting negative-sequence current, the cluster average active power flows can be controlled individually to balance the three cluster voltages (i.e., the average of the DC-link capacitor voltages in each cluster). The negative-sequence reactive power component is considered to realize the reactive power compensation. In the inner current control loop, the fundamental and high-order harmonic components are uniformly controlled in the positive-sequence dq frame using the PI + VPIs (vector proportional integral) controller, and the harmonic filtering function is realized while the fundamental positive-sequence current is adjusted. Experiments performed on the 380 V/50 kVA laboratory HVAC-PET verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

18 pages, 2511 KiB  
Article
Depression, Anxiety, and MSQOL-54 Outcomes in RRMS Patients Receiving Fingolimod or Cladribine: A Cross-Sectional Comparative Study
by Müttalip Özbek, Adalet Arıkanoğlu and Mehmet Ufuk Aluçlu
Medicina 2025, 61(8), 1409; https://doi.org/10.3390/medicina61081409 - 3 Aug 2025
Viewed by 139
Abstract
Background and Objectives: Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder that primarily affects young adults and is frequently accompanied by psychiatric comorbidities such as depression and anxiety, both of which significantly diminish patients’ quality of life (QoL). This study investigated [...] Read more.
Background and Objectives: Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder that primarily affects young adults and is frequently accompanied by psychiatric comorbidities such as depression and anxiety, both of which significantly diminish patients’ quality of life (QoL). This study investigated the effect of two oral disease-modifying therapies (DMTs), fingolimod and cladribine, on mental health and QoL in patients with relapsing-remitting MS (RRMS). The aim of the study was to compare levels of depression, anxiety, and health-related quality of life (HRQoL) in RRMS patients treated with fingolimod or cladribine, and to evaluate their associations with clinical and radiological parameters. Materials and Methods: Eighty RRMS patients aged 18 to 50 years with Expanded Disability Status Scale (EDSS) scores of 3.0 or less, no recent disease relapse, and no history of antidepressant use were enrolled. Forty patients were treated with fingolimod and forty with cladribine. Depression and anxiety were assessed using the Hamilton Depression Rating Scale (HDRS) and the Hamilton Anxiety Rating Scale (HARS). QoL was evaluated using the Multiple Sclerosis QoL-54 (MSQOL-54) instrument. Additional clinical data, including MRI-based lesion burden, EDSS scores, age, disease duration, and occupational status, were collected. Results: No statistically significant differences were observed between the two groups regarding HDRS and HARS scores (p > 0.05). However, patients treated with fingolimod had significantly higher scores in the Energy/Fatigue subdomain (7.55 ± 2.02 vs. 6.56 ± 2.57, p = 0.046) and Composite Mental Health (CMH) score (64.73 ± 15.01 vs. 56.00 ± 18.93, p = 0.029) compared to those treated with cladribine. No significant differences were found in the independent items of the MSQOL-54. A negative correlation was identified between total lesion load and QoL scores. Conclusions: Although fingolimod and cladribine exert comparable effects on depression and anxiety levels, fingolimod may be associated with better mental health outcomes and reduced fatigue in RRMS patients. Furthermore, lesion burden and clinical parameters such as age and EDSS score may independently influence QoL, regardless of the DMT used. Full article
Show Figures

Figure 1

22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 - 2 Aug 2025
Viewed by 143
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

14 pages, 1600 KiB  
Article
Research on Stress–Strain Model of FRP-Confined Concrete Based on Compressive Fracture Energy
by Min Wu, Xinglang Fan and Haimin Qian
Buildings 2025, 15(15), 2716; https://doi.org/10.3390/buildings15152716 - 1 Aug 2025
Viewed by 96
Abstract
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is [...] Read more.
A numerical method is proposed for evaluating the axial stress–strain relationship of FRP-confined concrete. In this method, empirical formulae for the compressive strength and strain at peak stress of confined concrete are obtained by fitting experimental data collected from the literature. It is then assumed that when FRP-confined concrete and actively confined concrete are subjected to the same lateral strain and confining pressure at a specific loading stage, their axial stress–strain relationships are identical at that stage. Based on this assumption, a numerical method for the axial stress–strain relationship of FRP-confined concrete is developed by combining the stress–strain model of actively confined concrete with the axial–lateral strain correlation. Finally, the validity of this numerical method is verified with experimental data with various geometric and material parameters, demonstrating a reasonable agreement between predicted stress–strain curves and measured ones. A parametric analysis is conducted to reveal that the stress–strain curve is independent of the specimen length for strong FRP confinement with small failure strains, while the specimen length exhibits a significant effect on the softening branch for weak FRP confinement. Therefore, for weakly FRP-confined concrete, it is recommended to consider the specimen length effect in evaluating the axial stress–strain relationship. Full article
Show Figures

Figure 1

12 pages, 548 KiB  
Article
The Role of Postural Assessment, Therapeutic Exercise and Foot Orthoses in Haemophilic Arthropathy: A Pilot Study
by Dalila Scaturro, Sofia Tomasello, Vincenzo Caruso, Isabella Picone, Antonio Ammendolia, Alessandro de Sire and Giulia Letizia Mauro
Life 2025, 15(8), 1217; https://doi.org/10.3390/life15081217 - 1 Aug 2025
Viewed by 204
Abstract
Haemophilic arthropathy is caused by repeated joint bleeding episodes, primarily affecting knees, ankles and elbows. Conservative options should be considered prior to surgery, as well as postural evaluation, since any functional overload promotes the development of new bleeding. The aim of this study [...] Read more.
Haemophilic arthropathy is caused by repeated joint bleeding episodes, primarily affecting knees, ankles and elbows. Conservative options should be considered prior to surgery, as well as postural evaluation, since any functional overload promotes the development of new bleeding. The aim of this study is to verify the use of foot orthoses in combination with postural rehabilitation, assessing the incidence of spontaneous haemarthroses and haematomas. In total, 15 patients were enrolled and randomly divided into two groups: 8 in group A, composed of patients who were prescribed foot orthoses and a 20-session rehabilitation program, and 7 in group B, composed of patients who were instructed to use foot orthoses only. All patients were evaluated at baseline (T0), at 3 months (T1—end of the rehabilitation program), and at 12 months (T2), using the following scales: Functional Independence Score in Haemophilia (FISH), Haemophilia Joint Health Score (HJHS) and Numerical Rating Scale (NRS). During the 12 months between the first and the last assessment, no patient in group A developed hemarthroses or hematomas, while one case of hemarthrosis was recorded in group B. The HJHS improved significantly (≤0.05) in group A at both T1 and T2, while in group B it improved significantly only in T2. As for FISH, it showed significant improvements in both groups at T1 and T2. NRS showed a significant reduction only at T2 in both groups (p-value T0–T1 0.3 in group A e 0.8 in group B). No patient reported any adverse effects from the use of orthotic insoles. The combination of postural rehabilitation, the use of foot orthoses and pharmacological prophylaxis could improve functioning and joint status in patients affected by haemophilic arthopathy, delaying or preventing new hemarthroses by improving the distribution of joint loads and the modification of musculoskeletal system’s characteristics. Full article
(This article belongs to the Special Issue Novel Therapeutics for Musculoskeletal Disorders)
Show Figures

Figure 1

15 pages, 1173 KiB  
Article
Examining the Potential Benefits of Affirming Values on Memory for Educational Information
by Karen Arcos, Rebecca Covarrubias and Benjamin C. Storm
Behav. Sci. 2025, 15(8), 1033; https://doi.org/10.3390/bs15081033 - 30 Jul 2025
Viewed by 227
Abstract
First-generation students can experience a cultural mismatch between their values and those that colleges and universities tend to prioritize. This mismatch can increase cognitive load, leaving fewer resources available for learning. Effective and long-lasting learning requires actively processing new information and connecting it [...] Read more.
First-generation students can experience a cultural mismatch between their values and those that colleges and universities tend to prioritize. This mismatch can increase cognitive load, leaving fewer resources available for learning. Effective and long-lasting learning requires actively processing new information and connecting it to existing knowledge—an effort that demands significant cognitive resources. Value affirmation exercises, where students select and reflect upon values that are important to them, have shown promise in reducing cultural mismatch and improving performance on cognitive tasks. However, the impact of these exercises on the learning and recall of new information is less clear. The current study investigated whether a value affirmation exercise, completed before reading an educational passage, would improve memory recall for that passage in a sample of 400 first-generation and continuing-generation young adults, as compared to not affirming. Our results failed to provide evidence that value affirmation exercises impacted recall performance, regardless of whether participants affirmed independent values, interdependent values, or both. Given the importance and implications of this outcome for student learning, we discuss possible explanations for these null findings and suggest future directions in affirmation research. Full article
(This article belongs to the Special Issue Educational Applications of Cognitive Psychology)
Show Figures

Figure 1

13 pages, 1017 KiB  
Article
Elevated Serum TNF-α/IL-1β Levels and Under-Nutrition Predict Early Mortality and Hospital Stay Burden in Pulmonary Tuberculosis
by Ionut-Valentin Stanciu, Ariadna-Petronela Fildan, Adrian Cosmin Ilie, Cristian Oancea, Livia Stanga, Emanuela Tudorache, Felix Bratosin, Ovidiu Rosca, Iulia Bogdan, Doina-Ecaterina Tofolean, Ionela Preotesoiu, Viorica Zamfir and Elena Dantes
J. Clin. Med. 2025, 14(15), 5327; https://doi.org/10.3390/jcm14155327 - 28 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised [...] Read more.
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised with pulmonary TB. We analysed 80 adults with microbiologically confirmed pulmonary TB and 40 respiratory symptom controls; four TB patients (5%) died during hospitalisation, all within 10 days of admission. Methods: A retrospective analytical case–control study was conducted at the Constanța regional TB referral centre (October 2020—October 2023). Patients with smear- or culture-confirmed TB were frequency-matched by sex, 10-year age band, and BMI class to culture-negative respiratory controls at a 2:1 ratio. The patients’ serum interferon-γ (IFN-γ), interleukin-1α (IL-1α), interleukin-1β (IL-1β), and tumour-necrosis-factor-α (TNF-α) were quantified within 24 h of admission; the neutrophil/lymphocyte ratio (NLR) was extracted from full blood counts. Independent predictors of in-hospital mortality were identified by multivariable logistic regression; factors associated with the length of stay (LOS) were modelled with quasi-Poisson regression. Results: The median TNF-α (24.1 pg mL−1 vs. 16.2 pg mL−1; p = 0.009) and IL-1β (5.34 pg mL−1 vs. 3.67 pg mL−1; p = 0.008) were significantly higher in the TB cases than in controls. TNF-α was strongly correlated with IL-1β (ρ = 0.80; p < 0.001), while NLR showed weak concordance with multiplex cytokine patterns. Among the patients with TB, four early deaths (5%) exhibited a tripling of TNF-α (71.4 pg mL−1) and a doubling of NLR (7.8) compared with the survivors. Each 10 pg mL−1 rise in TNF-α independently increased the odds of in-hospital death by 1.8-fold (95% CI 1.1–3.0; p = 0.02). The LOS (median 29 days) was unrelated to the smoking, alcohol, or comorbidity load, but varied across BMI strata: underweight, 27 days; normal weight, 30 days; overweight, 23 days (Kruskal–Wallis p = 0.03). In a multivariable analysis, under-nutrition (BMI < 18.5 kg m−2) prolonged the LOS by 19% (IRR 1.19; 95% CI 1.05–1.34; p = 0.004) independently of the disease severity. Conclusions: A hyper-TNF-α/IL-1β systemic signature correlates with early mortality in Romanian pulmonary TB, while under-nutrition is the dominant modifiable determinant of prolonged hospitalisation. Admission algorithms that pair rapid TNF-α testing with systematic nutritional assessment could enable targeted host-directed therapy trials and optimise bed utilisation in high-burden settings. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

14 pages, 2036 KiB  
Article
Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study
by Marta Ribera-Zabaco, Carlos Laredo, Emma Muñoz-Moreno, Andrea Cabero-Arnold, Irene Rosa-Batlle, Inés Bartolomé-Arenas, Sergio Amaro, Ángel Chamorro and Salvatore Rudilosso
Brain Sci. 2025, 15(8), 804; https://doi.org/10.3390/brainsci15080804 - 28 Jul 2025
Viewed by 202
Abstract
Background: Vascular risk factors (VRFs) are known to influence cerebral small vessel disease (cSVD) burden and progression. However, their specific impact on the presence and distribution of each cSVD imaging marker (white matter hyperintensity [WMH], perivascular spaces [PVSs], lacunes, and cerebral microbleeds [...] Read more.
Background: Vascular risk factors (VRFs) are known to influence cerebral small vessel disease (cSVD) burden and progression. However, their specific impact on the presence and distribution of each cSVD imaging marker (white matter hyperintensity [WMH], perivascular spaces [PVSs], lacunes, and cerebral microbleeds [CMBs]) and their spatial distribution remains unclear. Methods: We conducted a retrospective analysis of 93 patients with lacunar stroke with a standardized investigational magnetic resonance imaging protocol using a 3T scanner. WMH and PVSs were segmented semi-automatically, and lacunes and CMBs were manually segmented. We assessed the univariable associations of four common VRFs (hypertension, hyperlipidemia, diabetes, and smoking) with the load of each cSVD marker. Then, we assessed the independent associations of these VRFs in multivariable regression models adjusted for age and sex. Spatial lesion patterns were explored with regional volumetric comparisons using Pearson’s coefficient analysis, which was adjusted for multiple comparisons, and by visually examining heatmap lesion distributions. Results: Hypertension was the VRF that exhibited stronger associations with the cSVD markers in the univariable analysis. In the multivariable analysis, only lacunes (p = 0.009) and PVSs in the basal ganglia (p = 0.014) and white matter (p = 0.016) were still associated with hypertension. In the regional analysis, hypertension showed a higher WMH load in deep structures and white matter, particularly in the posterior periventricular regions. In patients with hyperlipidemia, WMH was preferentially found in hippocampal regions. Conclusions: Hypertension was confirmed to be the VRF with the most impact on cSVD load, especially for lacunes and PVSs, while the lesion topography was variable for each VRF. These findings shed light on the complexity of cSVD expression in relation to factors detrimental to vascular health. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

26 pages, 4627 KiB  
Article
A Low-Voltage Back-to-Back Converter Interface for Prosumers in a Multifrequency Power Transfer Environment
by Zaid Ali, Hamed Athari and David Raisz
Appl. Sci. 2025, 15(15), 8340; https://doi.org/10.3390/app15158340 - 26 Jul 2025
Viewed by 213
Abstract
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic [...] Read more.
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic power to a three-phase residential inverter supplying a clean 50 Hz load and another mode that uses a DC–DC buck–boost converter to integrate a battery storage unit for single-phase load supply. The system allows independent control of each harmonic component and maintains a clean sinusoidal voltage at the load side through DC-link isolation. The LVDC link functions as a frequency-selective barrier to suppress non-standard harmonic signals on the load side, effectively isolating the multi-frequency power grid from standard-frequency household loads. The proposed solution fills the gap between the multi-frequency power systems and the single-frequency loads because it allows the transfer of total multi-frequency grid power to the traditional household loads with pure fundamental frequency. Experimental results and simulation outcomes demonstrate that the system achieves high efficiency, robust harmonic isolation, and dynamic adaptability when load conditions change. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

40 pages, 6766 KiB  
Review
Advances in Structural Reliability Analysis of Solid Propellant Grain: A Comprehensive Review
by Chenghu Tang, Hongfu Qiang, Tingjing Geng, Xueren Wang and Feng Zhang
Polymers 2025, 17(15), 2039; https://doi.org/10.3390/polym17152039 - 26 Jul 2025
Viewed by 229
Abstract
Solid propellant grain, as a typical polymer, are the thrust generation devices and core load-bearing components of solid rocket motor (SRM) and are also known as SRM grain. They are constantly exposed to extreme service environments such as high temperatures, high pressures, and [...] Read more.
Solid propellant grain, as a typical polymer, are the thrust generation devices and core load-bearing components of solid rocket motor (SRM) and are also known as SRM grain. They are constantly exposed to extreme service environments such as high temperatures, high pressures, and dynamic shocks, and have a relatively high failure rate in the field use of SRM. Its life and reliability are the shortcomings that restrict the improvement of weapons and equipment capability in China at present. This paper summarizes the typical fault types of SRM grain at present, and compares and analyzes the research progress of reliability design and analysis technology, reliability optimization technology, life test technology and reliability evaluation technology of SRM grain at home and abroad; This paper analyzes the deficiencies and reasons in the research and application of SRM grain reliability technology in China, and points out the technical difficulties and challenges faced by the integrated design of performance and reliability of SRM independent innovation design according to the needs of the forward research and development system of SRM. Based on the existing design level and industrial foundation in China, the basic research suggestions that should be carried out to consolidate the design ability of SRM grain in China are given. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

34 pages, 2083 KiB  
Article
EvoDevo: Bioinspired Generative Design via Evolutionary Graph-Based Development
by Farajollah Tahernezhad-Javazm, Andrew Colligan, Imelda Friel, Simon J. Hickinbotham, Paul Goodall, Edgar Buchanan, Mark Price, Trevor Robinson and Andy M. Tyrrell
Algorithms 2025, 18(8), 467; https://doi.org/10.3390/a18080467 - 26 Jul 2025
Viewed by 312
Abstract
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures [...] Read more.
Automated generative design is increasingly used across engineering disciplines to accelerate innovation and reduce costs. Generative design offers the prospect of simplifying manual design tasks by exploring the efficacy of solutions automatically. However, existing generative design frameworks rely heavily on expensive optimisation procedures and often produce customised solutions, lacking reusable generative rules that transfer across different problems. This work presents a bioinspired generative design algorithm utilising the concept of evolutionary development (EvoDevo). This evolves a set of developmental rules that can be applied to different engineering problems to rapidly develop designs without the need to run full optimisation procedures. In this approach, an initial design is decomposed into simple entities called cells, which independently control their local growth over a development cycle. In biology, the growth of cells is governed by a gene regulatory network (GRN), but there is no single widely accepted model for this in artificial systems. The GRN responds to the state of the cell induced by external stimuli in its environment, which, in this application, is the loading regime on a bridge truss structure (but can be generalised to any engineering structure). Two GRN models are investigated: graph neural network (GNN) and graph-based Cartesian genetic programming (CGP) models. Both GRN models are evolved using a novel genetic search algorithm for parameter search, which can be re-used for other design problems. It is revealed that the CGP-based method produces results similar to those obtained using the GNN-based methods while offering more interpretability. In this work, it is shown that this EvoDevo approach is able to produce near-optimal truss structures via growth mechanisms such as moving vertices or changing edge features. The technique can be set up to provide design automation for a range of engineering design tasks. Full article
Show Figures

Figure 1

13 pages, 983 KiB  
Article
Physiological Demands Across Exercise Intensity Domains in Rowing: Implications of Weight Category and Sex Differences
by Manoel Rios, Ricardo Cardoso, Ana Sofia Monteiro, João Paulo Vilas-Boas and Ricardo J. Fernandes
Sports 2025, 13(8), 245; https://doi.org/10.3390/sports13080245 - 25 Jul 2025
Viewed by 210
Abstract
We examined the physiological demands of trained rowers across four exercise intensity domains (considering the effects of weight category and sex). Twenty-four trained rowers (12 lightweight and 12 heavyweight) performed 7 × 3 min incremental bouts on a Concept2 rowing ergometer (30 W [...] Read more.
We examined the physiological demands of trained rowers across four exercise intensity domains (considering the effects of weight category and sex). Twenty-four trained rowers (12 lightweight and 12 heavyweight) performed 7 × 3 min incremental bouts on a Concept2 rowing ergometer (30 W power increases and 60 s rest intervals). Performance, cardiorespiratory and metabolic responses were continuously assessed throughout the experimental protocol to characterize internal load across progressive exercise intensities. Statistical analyses included a repeated measures ANOVA test and independent t-tests (p ≤ 0.05). Heavyweight rowers exhibited greater absolute anaerobic energy production in the severe domain (41.25 ± 10.39 vs. 32.54 ± 5.92 kJ) (p = 0.02), higher peak metabolic power (up to 1.57 ± 0.30 vs. 1.48 ± 0.30 kW) (p = 0.001) and greater total energy expenditure (up to 277.52 ± 51.23 vs. 266.69 ± 51.59 kJ) (p = 0.001) than lightweight rowers, whereas the latter showed comparable relative cardiorespiratory responses to heavyweights. With respect to sex differences, males demonstrated higher oxygen uptake (from ~43–59 vs. ~34–48 mL·kg−1·min−1) (p = 0.001), ventilation (from ~78–146 vs. ~49–99 L·min−1) (p = 0.001), metabolic power (from ~1.1–1.7 vs. ~0.7–1.0 kW) (p = 0.001) and energy expenditure (from ~193–305 vs. ~119–209 kJ) (p = 0.001) across all intensity domains. However, blood lactate levels and anaerobic energy contributions were similar between sexes. These findings demonstrated that domain-based physiological profiling effectively differentiates internal responses among rowers by weight category and sex. Heavyweights showed greater absolute energy output, while lightweights demonstrated higher metabolic efficiency. Males had elevated cardiorespiratory and metabolic values, but relative bioenergetic responses were similar across groups. These findings support individualized training based on physiological profiles. Full article
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 202
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

Back to TopTop