Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = lithium/sulfur cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1818 KiB  
Article
Interfacial Layer (“Interlayer”) Addition to Improve Active Material Utilisation in Lithium–Sulfur Batteries: Use of a Phenylsulfonated MWCNT Film
by Luke D. J. Barter, Steven J. Hinder, John F. Watts, Robert C. T. Slade and Carol Crean
Batteries 2025, 11(7), 266; https://doi.org/10.3390/batteries11070266 - 16 Jul 2025
Viewed by 283
Abstract
Films of functionalised multiwalled carbon nanotubes (MWCNTs) were fabricated as interlayers (interfacial layers between the cathode and separator) in a lithium–sulfur battery (LSB). Phenylsulfonate functionalisation of commercial MWCNTs was achieved via diazotisation to attach lithium phenylsulfonate groups and was characterised by IR and [...] Read more.
Films of functionalised multiwalled carbon nanotubes (MWCNTs) were fabricated as interlayers (interfacial layers between the cathode and separator) in a lithium–sulfur battery (LSB). Phenylsulfonate functionalisation of commercial MWCNTs was achieved via diazotisation to attach lithium phenylsulfonate groups and was characterised by IR and XPS spectroscopies. SEM-EDX showed sulfur and oxygen colocations due to the sulfonate groups on the interlayer surface. However, CHNS elemental microstudies showed a low degree of functionalisation. Without an interlayer, the LSB produced stable cycling at a capacity of 600 mA h g−1sulfur at 0.05 C for 40 cycles. Using an unfunctionalised interlayer as a control gave a capacity of 1400 mA h g−1sulfur for the first cycle but rapidly decayed to the same 600 mA h g−1sulfur at the 40th cycle at 0.05 C, suggesting a high degree of polysulfide shuttling. Adding a lithium phenylsulfonated interlayer gave an initial capacity increase to 1100 mA h g−1sulfur that lowered to 800 mA h g−1sulfur at 0.05 C by the 40th cycle, showing an increase in charge storage (33%) relative to the other cells. This performance increase has been attributed to lessened polysulfide shuttling due to repulsion by the phenylsulfonate groups, increased conductivity at the separator-cathode interface and an increase in surface area. Full article
Show Figures

Graphical abstract

16 pages, 4918 KiB  
Article
The Design of the Ni3N/Nb4N5 Heterostructure as Bifunctional Adsorption/Electrocatalytic Materials for Lithium–Sulfur Batteries
by Xialei Li, Wen Shang, Shan Zhang, Chun Xu, Jiabiao Lian and Guochun Li
Nanomaterials 2025, 15(13), 1015; https://doi.org/10.3390/nano15131015 - 1 Jul 2025
Viewed by 305
Abstract
Lithium–sulfur (Li-S) batteries are hindered by the sluggish electrochemical kinetics and poor reversibility of lithium polysulfides (LiPSs), which limits their practical energy density and cycle life. In order to address this issue, a novel Ni3N/Nb4N5 heterostructure was synthesized [...] Read more.
Lithium–sulfur (Li-S) batteries are hindered by the sluggish electrochemical kinetics and poor reversibility of lithium polysulfides (LiPSs), which limits their practical energy density and cycle life. In order to address this issue, a novel Ni3N/Nb4N5 heterostructure was synthesized via electrospinning and nitridation as a functional coating for polypropylene (PP) separators. Adsorption experiments were conducted in order to ascertain the heterostructure’s superior affinity for LiPSs, thereby effectively mitigating their shuttling. Studies of Li2S nucleation demonstrated the catalytic role of the substance in accelerating the deposition kinetics of Li2S. Consequently, Li-S cells that employed the Ni3N/Nb4N5-modified separator were found to achieve significantly enhanced electrochemical performance, with the cells delivering an initial discharge capacity of 1294.4 mAh g−1 at 0.2 C. The results demonstrate that, after 150 cycles, the cells retained a discharge capacity of 796.2 mAh g−1, corresponding to a low capacity decay rate of only 0.25% per cycle. In addition, the rate capability of the cells was found to be improved in comparison to control cells with NiNb2O6-modified or pristine separators. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

18 pages, 2275 KiB  
Article
In Situ Phase Separation Strategy to Construct Zinc Oxide Dots-Modified Vanadium Nitride Flower-like Heterojunctions as an Efficient Sulfur Nanoreactor for Lithium-Sulfur Batteries
by Ningning Chen, Wei Zhou, Minzhe Chen, Ke Yuan, Haofeng Zuo, Aocheng Wang, Dengke Zhao, Nan Wang and Ligui Li
Materials 2025, 18(11), 2639; https://doi.org/10.3390/ma18112639 - 4 Jun 2025
Viewed by 371
Abstract
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower [...] Read more.
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower structure with high specific surface area and pores improves active site exposure and electron/mass transfer. In situ phase separation enriches the Zn-QDs-VN interface, addressing the issues of uneven distribution and interface reduction of Zn-QDs-VN. Further theoretical computations reveal that ZnO-QDs-VN with optimized intermediate spin states can constitute a stable LiS* bond sequence, which can conspicuously facilitate the adsorption and conversion of LiPSs and reduce the battery reaction energy barrier. Therefore, the ZnO-QDs-VN@S cathode shows a high initial specific capacity of 1109.6 mAh g−1 at 1.0 C and long cycle stability (maintaining 984.2 mAh g−1 after 500 cycles). Under high S loading (8.5 mg cm−2) and lean electrolyte conditions (E/S = 6.5 μL mg−1), it also exhibits a high initial area capacity (10.26 mAh cm−2) at 0.2 C. The interfacial synergistic effect accelerates the adsorption and conversion of LiPSs and reduces the energy barriers in cell reactions. The study provides a new method for designing heterojunctions to achieve high-performance LSBs. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Graphical abstract

17 pages, 8607 KiB  
Article
Leaching Behavior of Waste Barrier Material with Sulfuric Acid
by Saiya Li, Yujie Zhao, Junfeng Cheng, Yuting Chen, Weiping Liu and Wei Sun
Minerals 2025, 15(3), 323; https://doi.org/10.3390/min15030323 - 19 Mar 2025
Viewed by 487
Abstract
The comprehensive recycling of aluminum electrolysis cell waste barrier material is urgent. This study focuses on the sulfuric acid leaching of waste barrier material, systematically examining the effects of factors such as reaction temperature, liquid-to-solid ratio, sulfuric acid concentration, and reaction time on [...] Read more.
The comprehensive recycling of aluminum electrolysis cell waste barrier material is urgent. This study focuses on the sulfuric acid leaching of waste barrier material, systematically examining the effects of factors such as reaction temperature, liquid-to-solid ratio, sulfuric acid concentration, and reaction time on the leaching of elements like lithium, aluminum, sodium, and silicon. The experimental results show that under the conditions of 0.9 mol/L sulfuric acid concentration, a liquid-to-solid ratio of 20:1, a reaction temperature of 90 °C, and a reaction time of 1.5 h, the leaching rates were 84.5% for lithium, 85.6% for aluminum, 98.5% for sodium, and 4.8% for silicon. The sulfuric acid leaching process of the waste barrier material follows a shrinking core model and is controlled by internal diffusion. The apparent activation energies for the leaching reactions of lithium, aluminum, and sodium were 4.29 kJ/mol, 8.99 kJ/mol, and 9.11 kJ/mol, respectively. The selective leaching of lithium, sodium, and aluminum from silicon was successfully achieved in the sulfuric acid leaching of the waste barrier material. Full article
Show Figures

Figure 1

17 pages, 10780 KiB  
Article
Interplay Between Composition and Cycling Performance of Pre-Lithiated SiOx-Si-C Composite Anodes for Lithium–Sulfur Full Cells
by Swamickan Sathya, Ramasamy Santhosh Kumar, Sara Garcia-Ballesteros, Federico Bella, Dong Jin Yoo and Arul Manuel Stephan
Materials 2025, 18(5), 1053; https://doi.org/10.3390/ma18051053 - 27 Feb 2025
Cited by 5 | Viewed by 814
Abstract
Although silicon-based anodes have been identified as a potential alternative to conventional graphite anodes, the huge volume change (approximately 300%) that occurs in silicon while cycling still impedes this system from practical applications. In the case of silicon-suboxide (SiOx)-based anode materials, [...] Read more.
Although silicon-based anodes have been identified as a potential alternative to conventional graphite anodes, the huge volume change (approximately 300%) that occurs in silicon while cycling still impedes this system from practical applications. In the case of silicon-suboxide (SiOx)-based anode materials, both Li2O and LiSiO4 are formed during the initial lithiation processes and act as a natural volume buffer matrix to accommodate volume changes and the formation of a stable SEI layer, which improves the cyclability and capacity retention. In this study, a series of SiOx/Si/C-based electrodes composed of different amorphous SiOx, Si, and graphitic carbon contents were prepared. Among the various investigated compositions, the electrode with a ratio of SiOx-Si-C equal to 70:12.5:12.5 was found to be optimal in terms of discharge capacity. This promising electrode was pre-lithiated prior to cycling. Finally, 2032-type lithium–sulfur (Li-S) coin cells composed of a S-C/SiOx-Si-C (pre-lithiated) configuration were assembled and their cycling performances are reported. Full article
Show Figures

Figure 1

19 pages, 26125 KiB  
Article
Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces
by Irene Lau, Adam I. O. Campbell, Debasis Ghosh and Michael A. Pope
Nanomaterials 2025, 15(1), 35; https://doi.org/10.3390/nano15010035 - 29 Dec 2024
Viewed by 1456
Abstract
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO2 lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries—in particular, full [...] Read more.
Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO2 lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries—in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery. We show that sulfur can be deposited by selective nucleation and growth on the LIG cathode fingers in a supersaturated sulfur solution. Melt imbibition then leads to loadings as high as 3.9 mg/cm2 and 75 wt% sulfur. Lithium metal anodes are electrodeposited onto the LIG anode fingers by a silver-seeded, pulse-reverse-pulse method that enables loadings up to 10.5 mAh/cm2 to be deposited without short-circuiting the interdigitated structure. The resulting binder/separator-free flexible battery achieves a capacity of over 1 mAh/cm2 and an energy density of 200 mWh/cm3. Unfortunately, due to the use of near stoichiometric lithium, the cycle-life is sensitive to lithium degradation. While future work will be necessary to make this a practical, flexible battery, the interdigitated structure is well-suited to future operando and ex situ studies of Li-S and related battery chemistries. Full article
Show Figures

Figure 1

16 pages, 5915 KiB  
Article
Hierarchically Porous Carbon Microspheres Coated with MnO2 Nanosheets as the Sulfur Host for High-Loading Lithium–Sulfur Batteries
by Liqin Dai, Zonglin Yi, Lijing Xie, Fangyuan Su, Xiaoqian Guo, Zhenbing Wang, Jiayao Cheng and Chengmeng Chen
Molecules 2024, 29(24), 5881; https://doi.org/10.3390/molecules29245881 - 13 Dec 2024
Viewed by 1028
Abstract
Lithium–sulfur (Li–S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO2 nanosheets onto hierarchical [...] Read more.
Lithium–sulfur (Li–S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO2 nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO2 composite for advanced lithium–sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm−2, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO2 nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect. The thick HPCs/S@MnO2 electrode with 7 mg cm−2 sulfur loading delivers an areal capacity of 4.0 mAh cm−2 at 0.1 C and provides stable cycling stability with a low-capacity decay rate of 0.063 % per cycle after 200 cycles at 0.1 C. Furthermore, a Li–S pouch cell with a capacity of 2.5 A h is fabricated and demonstrates high cycling stability. This work offers a feasible method to build advanced sulfur electrodes with high areal loading and sheds light on their commercial application in high-performance Li–S batteries. Full article
Show Figures

Figure 1

9 pages, 8393 KiB  
Article
High-Energy-Density Lithium–Sulfur Battery Based on a Lithium Polysulfide Catholyte and Carbon Nanofiber Cathode
by Byeonghun Oh, Baeksang Yoon, Suhyeon Ahn, Jumsuk Jang, Duhyun Lim and Inseok Seo
Energies 2024, 17(21), 5258; https://doi.org/10.3390/en17215258 - 22 Oct 2024
Cited by 2 | Viewed by 1201
Abstract
Li–S batteries are promising large-scale energy storage systems but currently suffer from performance issues; a major reason is the dissolution of polysulfides in electrolytes. To this end, we report a high-energy-density Lithium–Sulfur (Li–S) battery that combines a catholyte and a sulfur-free carbon nanofiber [...] Read more.
Li–S batteries are promising large-scale energy storage systems but currently suffer from performance issues; a major reason is the dissolution of polysulfides in electrolytes. To this end, we report a high-energy-density Lithium–Sulfur (Li–S) battery that combines a catholyte and a sulfur-free carbon nanofiber (CNF) cathode. The cathode was synthesized by carbonizing binder-free polyacrylonitrile (PAN) nanofibers, affording a high surface area. In the catholyte, added polysulfides acted as both conductive Li salts and active materials. Investigating the electrochemical performance of this concept in both Swagelok- and pouch-type cells afforded energy densities exceeding 3 mAh cm−2 at a discharge rate of 0.1 C. This combination could also be utilized in high-capacity pouch cells with capacities of up to 250 mAh g−1. Both cell types exhibited good cycle performance. Adding LiNO3 to the electrolyte suppressed the redox shuttle reactions. Moreover, the cathode being binder-free increased the energy density and simplified cathode fabrication. Characterizing the cathode before and after cycling revealed that deposition was reversible, and that cell reactions at least partially formed sulfur as the end product, resulting in high sulfur amounts in the cell. We expect our concept to greatly aid in the development of practically applicable Li–S cells. Full article
(This article belongs to the Special Issue Advances in Secondary Battery)
Show Figures

Figure 1

9 pages, 2012 KiB  
Article
Scalable Ni12P5-Coated Carbon Cloth Cathode for Lithium–Sulfur Batteries
by Artur M. Suzanowicz, Thulitha M. Abeywickrama, Hao Lin, Dana Alramahi, Carlo U. Segre and Braja K. Mandal
Energies 2024, 17(17), 4356; https://doi.org/10.3390/en17174356 - 31 Aug 2024
Viewed by 1450
Abstract
As a better alternative to lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs) stand out because of their multi-electron redox reactions and high theoretical specific capacity (1675 mA h g−1). However, the long-term stability of LSBs and their commercialization are significantly compromised by [...] Read more.
As a better alternative to lithium-ion batteries (LIBs), lithium–sulfur batteries (LSBs) stand out because of their multi-electron redox reactions and high theoretical specific capacity (1675 mA h g−1). However, the long-term stability of LSBs and their commercialization are significantly compromised by the inherently irreversible transition of soluble lithium polysulfides (LiPS) into solid short-chain S species (Li2S2 and Li2S) and the resulting substantial density change in S. To address these issues, we used activated carbon cloth (ACC) coated with Ni12P5 as a porous, conductive, and scalable sulfur host material for LSBs. ACC has the benefit of high electrical conductivity, high surface area, and a three-dimensional (3D) porous architecture, allowing for ion transport channels and void spaces for the volume expansion of S upon lithiation. Ni12P5 accelerates the breakdown of Li2S to increase the efficiency of active materials and trap soluble polysulfides. The highly effective Ni12P5 electrocatalyst supported on ACC drastically reduced the severity of the LiPS shuttle, affected the abundance of adsorption–diffusion–conversion interfaces, and demonstrated outstanding performance. Our cells achieved near theoretical capacity (>1611 mA h g−1) during initial cycling and superior capacity retention (87%) for >250 cycles following stabilization with a 0.05% decay rate per cycle at 0.2 C. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

14 pages, 3115 KiB  
Article
Addition of a Polar, Porous Phase-Inversion-PVDF Membrane to Lithium–Sulfur Cells (LSBs) Already with a Microporous Polypropylene Separator Enhances the Battery Performance
by Irshad Mohammad, Luke D. J. Barter, Carol Crean and Robert C. T. Slade
Batteries 2024, 10(8), 293; https://doi.org/10.3390/batteries10080293 - 21 Aug 2024
Viewed by 2293
Abstract
Lithium–sulfur batteries (LSBs) are widely studied as an alternative to lithium-ion batteries, this emphasis being due to their high theoretical energy density and low cost, and to the high natural abundance of sulfur. Lithium polysulfide shuttling and lithium dendrite growth have limited their [...] Read more.
Lithium–sulfur batteries (LSBs) are widely studied as an alternative to lithium-ion batteries, this emphasis being due to their high theoretical energy density and low cost, and to the high natural abundance of sulfur. Lithium polysulfide shuttling and lithium dendrite growth have limited their commercialization. Porous polyvinylidene fluoride (PVDF) separators have shown improved performance (relative to hydrocarbon separators) in lithium-ion batteries due to faster lithium-ion migration and higher Li+ transference number. A thin polar PVDF membrane has now been fabricated via phase inversion (an immersion-precipitation method) yielding a β (polar) phase concentration of 72%. Preparation from commercial PVDF used dimethylformamide (DMF) solvent at the optimized crystallizing temperature of 70 °C, and pores in the membrane were generated by exchange of DMF with deionized water as non-solvent. The polar PVDF film produced has the advantages of being ultrathin (15 µm), lightweight (1.15 mg cm−2), of high porosity (75%) and high wettability (84%), and it shows enhanced thermal stability relative to polypropylene (PP). The porous, polar PVDF membrane was combined with a commercially available PP membrane to give a hybrid, two-layer, separator combination for LSBs. A synergy was created in the two-layer separator, providing high sulfur utilization and curbing polysulfide shuttling. The electrochemical performance with the hybrid separator (PP–β-PVDF) was evaluated in LSB cells and showed good cyclability and rate capability: those LSB cells showed a stable capacity of 750 mA h g−1 after 100 cycles at 0.1 C, much higher than that for otherwise-identical cells using a commercial PP-only separator (480 mA h g−1). Full article
(This article belongs to the Special Issue Energy-Dense Metal–Sulfur Batteries)
Show Figures

Figure 1

17 pages, 4381 KiB  
Article
An Investigation into Electrolytes and Cathodes for Room-Temperature Sodium–Sulfur Batteries
by Hakeem Ademola Adeoye, Stephen Tennison, John F. Watts and Constantina Lekakou
Batteries 2024, 10(6), 216; https://doi.org/10.3390/batteries10060216 - 20 Jun 2024
Cited by 4 | Viewed by 2368
Abstract
In the pursuit of high energy density batteries beyond lithium, room-temperature (RT) sodium–sulfur (Na-S) batteries are studied, combining sulfur, as a high energy density active cathode material and a sodium anode considered to offer high energy density and very good standard potential. Different [...] Read more.
In the pursuit of high energy density batteries beyond lithium, room-temperature (RT) sodium–sulfur (Na-S) batteries are studied, combining sulfur, as a high energy density active cathode material and a sodium anode considered to offer high energy density and very good standard potential. Different liquid electrolyte systems, including three different salts and two different solvents, are investigated in RT Na-S battery cells, on the basis of the solubility of sulfur and sulfides, specific capacity, and cyclability of the cells at different C-rates. Two alternative cathode host materials are explored: A bimodal pore size distribution activated carbon host AC MSC30 and a highly conductive carbon host of hollow particles with porous particle walls. An Na-S cell with a cathode coating with 44 wt% sulfur in the AC MSC30 host and the electrolyte 1M NaFSI in DOL/DME exhibited a specific capacity of 435 mAh/gS but poor cyclability. An Na-S cell with a cathode coating with 44 wt% sulfur in the host of hollow porous particles and the electrolyte 1M NaTFSI in TEGDME exhibited a specific capacity of 688 mAh/gS. Full article
(This article belongs to the Special Issue High-Performance Materials for Sodium-Ion Batteries)
Show Figures

Figure 1

17 pages, 2690 KiB  
Article
Influence of the Nitrogen Precursor in the Development of N-Functionalities in a Mesoporous Carbon Material and Its Effect on the Li–S Cells’ Electrochemistry
by Carolina Mejía Salazar, Julián Acevedo, Jennifer Laverde and Diana López
Batteries 2024, 10(6), 169; https://doi.org/10.3390/batteries10060169 - 21 May 2024
Cited by 1 | Viewed by 1604
Abstract
Li–S batteries are positioned as a strong alternative for efficient energy storage due to their high theoretical energy density and their theoretical specific capacity (1675 mA h g−1) compared to current Li-ion batteries; however, their commercialization is affected by the rapid [...] Read more.
Li–S batteries are positioned as a strong alternative for efficient energy storage due to their high theoretical energy density and their theoretical specific capacity (1675 mA h g−1) compared to current Li-ion batteries; however, their commercialization is affected by the rapid decay of the specific capacity as a consequence of the different species of lithium polysulfides that are generated during the charge–discharge processes. The use of nitrogen-doped mesoporous carbon materials has been shown to have the ability to confer electronic conductivity to sulfur and retain the lithium polysulfide species. However, there are not enough studies to help understand how the type of nitrogen precursor influences the development of specific nitrogen functionalities to favor the retention of lithium polysulfide species. This work seeks to determine the effect of the use of different nitrogen precursors on the structural changes of the mesoporous carbon materials prepared, and thus evaluate the electrochemical behavior of Li–S cells correlating the type of nitrogen functionality generated when the precursor is variated with the charge/discharge capacity developed during the cell operation. For this study, different carbon materials were prepared by the variation of the nitrogen source (melamine, ethylenediamine, and hexadecylamine) to obtain a N-doped mesoporous carbon with different distributions of nitrogen functionalities in its structure. The use of the primary amine ethylenediamine as a nitrogen precursor in the formation of structured carbon materials favored elemental sulfur infiltration into its pores, resulting in the maximum sulfur content within the pores and interacting with the carbonaceous matrix (78.8 wt.%). The carbon material prepared with this precursor resulted in a higher content of N-pyridinic functionality, which, combined with the high content of N-pyrrolic, resulted in the highest specific discharge capacity at 0.1 C after 100 cycles when compared to cells assembled with materials derived from the use of melamine and hexadecylamine precursors. The cell assembled with the electrode formed from ethylenediamine as a nitrogen precursor presented an initial discharge capacity of 918 mA h g−1 with a Coulombic efficiency of ~83.4% at 0.1 C after 100 cycles. Full article
Show Figures

Graphical abstract

10 pages, 4168 KiB  
Article
Sulfur Encapsulation into Carbon Nanospheres as an Effective Technique to Limit Sulfide Dissolution and Extend the Cycle Life of Lithium–Sulfur Batteries
by Wissam Fawaz, Zhao Wang and Ka Yuen Simon Ng
Energies 2024, 17(9), 2168; https://doi.org/10.3390/en17092168 - 1 May 2024
Viewed by 1409
Abstract
Lithium–sulfur batteries suffer from a reduced cycle life and diminished coulombic efficiency, which is attributed to the polysulfide shuttle effect. We herein present a process for the fabrication of lithium–sulfur battery cathode material via the recrystallization of dissolved sulfur inside self-assembled carbon nanospheres [...] Read more.
Lithium–sulfur batteries suffer from a reduced cycle life and diminished coulombic efficiency, which is attributed to the polysulfide shuttle effect. We herein present a process for the fabrication of lithium–sulfur battery cathode material via the recrystallization of dissolved sulfur inside self-assembled carbon nanospheres synthesized through the carbonization of d-glucose. Trapping sulfur in the carbonaceous matrix lessens the rapid dissolution of polysulfides and minimizes the loss of active sulfur, thus extending the cycling stability of these batteries. The carbon–sulfur composite material was characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Electrochemical analysis of the material and its functionality as an electrode for lithium–sulfur battery systems was evaluated in a coin cell format using impedance spectroscopy and a life cycle study. The as-prepared cathode has shown remarkable electrochemical performance with a specific capacity of 781 mA/g at 0.1 C after 500 charge/discharge cycles and 83.4% capacity retention. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

13 pages, 3366 KiB  
Article
ZIF-67-Derived Flexible Sulfur Cathode with Improved Redox Kinetics for High-Performance Li-S Batteries
by Chen Cheng, Hanyan Wu, Xinyang Chen, Shuiping Cai, Yingkang Tian, Xiaofei Yang and Xuejie Gao
Molecules 2024, 29(8), 1833; https://doi.org/10.3390/molecules29081833 - 17 Apr 2024
Viewed by 1801
Abstract
Lithium–sulfur (Li-S) batteries have received much attention due to their high energy density and low price. In recent years, alleviating the volume expansion and suppressing the shuttle effect during the charge and discharge processes of Li-S batteries have been widely addressed. However, the [...] Read more.
Lithium–sulfur (Li-S) batteries have received much attention due to their high energy density and low price. In recent years, alleviating the volume expansion and suppressing the shuttle effect during the charge and discharge processes of Li-S batteries have been widely addressed. However, the slow conversion kinetics from polysulfide (LiPSs) to Li2S2/Li2S still limits the application of Li-S batteries. Therefore, we designed a ZIF-67 grown on cellulose (named ZIF-67@CL) as an electrocatalyst to improve the interconversion kinetics from LiPSs to Li2S2/Li2S for Li-S batteries. Based on the results of adsorption experiments of LiPSs, ZIF-67@CL and CL hosts were immersed in Li2S4 solution to adsorb LiPSs, and the UV-Vis test was conducted on the supernatant after adsorption. The results showed that the ZIF-67@CL had a stronger adsorption for LiPSs compared with the cellulose (CL). Furthermore, in the Li2S nucleation tests, the fabricated cells were galvanostatically discharged to 2.06 V at 0.112 mA and then potentiostatically discharged at 2.05 V. Based on the results of Li2S nucleation tests, the catalytic effect of ZIF-67 was further verified. As a result, the sulfur cathode used a ZIF-67 catalyst (named S/ZIF-67@CL) and delivered an initial capacity of 1346 mAh g−1 at a current density of 0.2 C. Even at a high current density of 2 C, it exhibited a high-capacity performance of 1087 mAh g−1 on the first cycle and maintained a capacity output of 462 mAh g−1 after 150 cycles, with a Coulombic efficiency of over 99.82%. Full article
(This article belongs to the Special Issue Materials for Emerging Electrochemical Devices)
Show Figures

Figure 1

9 pages, 1790 KiB  
Communication
A Two-Dimensional Heterostructured Covalent Organic Framework/Graphene Composite for Stabilizing Lithium–Sulfur Batteries
by Zhihao Mao, Chong Xu, Mengyuan Li, Peng Song and Bing Ding
Energies 2024, 17(7), 1559; https://doi.org/10.3390/en17071559 - 25 Mar 2024
Cited by 2 | Viewed by 1437
Abstract
The implementation of a functional separator represents a highly encouraging approach to mitigating polysulfide shuttling in lithium–sulfur (Li–S). In this study, a two-dimensional (2D) 1,3,5-triformylphloroglucinol (Tp)-p-phenylenediamine (Pa) covalent organic framework/reduced graphene oxide (rGO) functional layer was introduced to enhance the performance of the [...] Read more.
The implementation of a functional separator represents a highly encouraging approach to mitigating polysulfide shuttling in lithium–sulfur (Li–S). In this study, a two-dimensional (2D) 1,3,5-triformylphloroglucinol (Tp)-p-phenylenediamine (Pa) covalent organic framework/reduced graphene oxide (rGO) functional layer was introduced to enhance the performance of the commercial separator in Li–S batteries. The resulting 2D TpPa@rGO modified separators exhibit significantly improved electronic and ionic conductivity when compared to the unmodified separator, effectively mitigating lithium polysulfide shuttling and enhancing sulfur cathode utilization. It is indicated that a heterostructured composite of a nitrogen-group-containing COF and an electronic conductive addictive is an effective modification to the separator. Consequently, the modified cell demonstrated a minimal degradation rate of only 0.12% per cycle over 350 cycles at 0.5 C. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

Back to TopTop