Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = liquefaction susceptibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6443 KiB  
Article
The Effects of the Choice of Liquefaction Criteria on Liquefaction in Soils with Plastic Fines
by Carmine Polito
J 2025, 8(3), 27; https://doi.org/10.3390/j8030027 - 1 Aug 2025
Viewed by 101
Abstract
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation [...] Read more.
Cyclic triaxial tests are widely used in laboratory studies to assess the liquefaction susceptibility of soils. Although standardized procedures exist for conducting these tests, there is no universally accepted criterion for defining liquefaction. The choice of a liquefaction criterion significantly influences the interpretation of test results and subsequent engineering analyses. This study evaluates the impact of different liquefaction criteria by analyzing 42 cyclic triaxial tests performed on soil mixtures containing plastic fines. Both stress-based and strain-based liquefaction criteria were applied to assess their influence on test outcomes. The analyses focused on two key parameters: the number of loading cycles required to initiate liquefaction and the normalized dissipated energy per unit volume needed for liquefaction to occur. Results indicate that for soils susceptible to liquefaction failures, these parameters remain relatively consistent across different failure criteria. However, for soils prone to cyclic mobility failures, the number of loading cycles and the dissipated energy required for liquefaction vary significantly depending on the selected failure criterion. These findings highlight the importance of carefully selecting a liquefaction criterion, as it directly affects the assessment of soil behavior under cyclic loading. A better understanding of these variations can improve the accuracy of liquefaction susceptibility evaluations and inform geotechnical design and hazard mitigation strategies. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

31 pages, 5844 KiB  
Article
Cyclic Triaxial Testing: A Primer
by Carmine Polito
J 2025, 8(3), 25; https://doi.org/10.3390/j8030025 - 7 Jul 2025
Viewed by 362
Abstract
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. [...] Read more.
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. Topics covered include the differences in the stress paths for the soil in the field and in the lab, the differences in the actual stresses applied in the lab and the field, the differences between stress-controlled and strain-controlled tests, and the effects of other aspects of the testing methodology. The development of adjustment factors for converting the laboratory test results to the field is also briefly discussed. The second purpose of the paper is to serve as a guide to interpreting cyclic triaxial test results. The topics covered will include an examination of the two main liquefaction modes and the impact that the failure criteria selected have on the analysis, the differences between stress-controlled and strain-controlled test results, energy dissipation, and pore pressure generation. The author has run more than 1500 cyclic triaxial tests over the course of his career. He has found that, while the test is fairly straightforward to perform, it requires a much deeper understanding of the test mechanics and data interpretation in order to maximize the information gained from performing the test. This paper is intended as a guide, helping engineers to gain further insights into the test and its results. It has a target audience encompassing both those who are running their first tests and those who are looking to increase their understanding of the tests they have performed. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

20 pages, 2594 KiB  
Article
Plasticity, Flow Liquefaction, and Cyclic Mobility in Liquefiable Soils with Low to Moderate Plasticity
by Carmine P. Polito and James R. Martin
CivilEng 2025, 6(2), 31; https://doi.org/10.3390/civileng6020031 - 12 Jun 2025
Cited by 1 | Viewed by 1048
Abstract
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study [...] Read more.
Over the past several decades, extensive research has advanced the understanding of liquefaction in clean sands and sand–silt mixtures under seismic loading. However, the influence of plastic (i.e., clayey) fines on the liquefaction behavior of sandy soils remains less well understood. This study investigates how the quantity and plasticity of fines affect both the susceptibility to liquefaction and the resulting failure mode. A series of stress-controlled cyclic triaxial tests were conducted on sand specimens containing varying proportions of non-plastic silt, kaolinite, and bentonite. Specimens were prepared at a constant relative density with fines content ranging from 0% to 37%. Two liquefaction modes were examined: flow liquefaction, characterized by sudden and large strains under undrained conditions, and cyclic mobility, which involves gradual strain accumulation without complete strength loss. The results revealed a clear relationship between soil plasticity and liquefaction mode. Specimens containing non-plastic fines or fines with a liquid limit (LL) below 20% and a plasticity index (PI) of 0 exhibited flow liquefaction. In contrast, specimens with LL > 20% and PI ≥ 7% consistently displayed cyclic mobility behavior. These findings help reconcile the apparent contradiction between laboratory studies, which often show increased liquefaction susceptibility with plastic fines, and field observations, where clayey soils frequently appear non-liquefiable. The study emphasizes the critical role of plasticity in determining liquefaction type, providing essential insight for seismic risk assessments and design practices involving fine-containing sandy soils. Full article
Show Figures

Graphical abstract

17 pages, 9153 KiB  
Article
The Effect of Failure Criteria on Liquefaction and Pore Pressure Prediction in Non-Plastic Soils
by Carmine P. Polito
Geotechnics 2025, 5(2), 27; https://doi.org/10.3390/geotechnics5020027 - 23 Apr 2025
Cited by 1 | Viewed by 592
Abstract
Since the 1960s, cyclic triaxial tests have been utilized to assess the liquefaction susceptibility of cohesionless soils. While standardized procedures exist for conducting cyclic triaxial tests, there remains no universally accepted criterion for defining liquefaction in a laboratory test. The selection of a [...] Read more.
Since the 1960s, cyclic triaxial tests have been utilized to assess the liquefaction susceptibility of cohesionless soils. While standardized procedures exist for conducting cyclic triaxial tests, there remains no universally accepted criterion for defining liquefaction in a laboratory test. The selection of a liquefaction criterion significantly impacts the interpretation of the test results and subsequent analyses. To quantify these effects, more than 250 cyclic triaxial tests were evaluated using both stress-based and strain-based liquefaction criteria. The analyses performed focused on two aspects of the liquefaction behavior: the number of cycles of loading required to initiate liquefaction and the amount of normalized dissipated energy per unit volume that must be absorbed into the specimen in order for it to liquefy. The findings indicate that for soils susceptible to flow liquefaction failures, the number of loading cycles required to induce liquefaction decreases. They also show that the amount of energy dissipation required to trigger liquefaction remains largely consistent across different failure criteria. However, for soils prone to cyclic mobility failures, both the number of loading cycles and the amount of dissipated energy required to cause liquefaction were found to vary significantly depending on the failure criterion applied. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

16 pages, 13302 KiB  
Article
Machine Learning-Based Partition Method for Cyclic Development Mode of Submarine Soil Martials from Offshore Wind Farms
by Ben He, Mingbao Lin, Zhishuai Zhang, Bo Han and Xinran Yu
J. Mar. Sci. Eng. 2025, 13(3), 533; https://doi.org/10.3390/jmse13030533 - 10 Mar 2025
Viewed by 686
Abstract
Offshore wind turbines are subjected to long-term cyclic loads, and the seabed materials surrounding the foundation are susceptible to failure, which affects the safe construction and normal operation of offshore wind turbines. The existing studies of the cyclic mechanical properties of submarine soils [...] Read more.
Offshore wind turbines are subjected to long-term cyclic loads, and the seabed materials surrounding the foundation are susceptible to failure, which affects the safe construction and normal operation of offshore wind turbines. The existing studies of the cyclic mechanical properties of submarine soils focus on the accumulation strain and liquefaction, and few targeted studies are conducted on the hysteresis loop under cyclic loads. Therefore, 78 representative submarine soil samples from four offshore wind farms are tested in the study, and the cyclic behaviors under different confining pressures and CSR are investigated. The experiments reveal two unique development modes and specify the critical CSR of five submarine soil martials under different testing conductions. Based on the dynamic triaxial test results, the machine learning-based partition models for cyclic development mode were established, and the discrimination accuracy of the hysteresis loop were discussed. This study found that the RF model has a better generalization ability and higher accuracy than the GBDT model in discriminating the hysteresis loop of submarine soil, the RF model has achieved a prediction accuracy of 0.96 and a recall of 0.95 on the test dataset, which provides an important theoretical basis and technical support for the design and construction of offshore wind turbines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 3656 KiB  
Article
The Gut Bacteria of Gampsocleis gratiosa (Orthoptera: Tettigoniidae) by Culturomics
by Hongmei Li, Huimin Huang, Ying Jia, Yuwei Tong and Zhijun Zhou
Insects 2025, 16(2), 123; https://doi.org/10.3390/insects16020123 - 27 Jan 2025
Cited by 1 | Viewed by 1038
Abstract
Gampsocleis gratiosa Brunner von Wattenwyl, 1862, is a type of omnivorous chirping insect with a long history of artificial breeding. It has high economic value and is also an excellent orthopteran model organism. In this study, 12 types of culture media combined with [...] Read more.
Gampsocleis gratiosa Brunner von Wattenwyl, 1862, is a type of omnivorous chirping insect with a long history of artificial breeding. It has high economic value and is also an excellent orthopteran model organism. In this study, 12 types of culture media combined with 16S rRNA sequencing were employed to isolate 838 bacterial strains from the gut of G. gratiosa. After sequence comparison, a total of 98 species of bacteria were identified, belonging to 3 phyla, 5 classes, 11 orders, 20 families, and 45 genera. Firmicutes and Proteobacteria accounted for the majority (92.86%). At the order level, Enterobacteriaceae, Bacillales, and Lactobacillales predominated (79.59%). At the genus level, Klebsiella (11.22%) and Enterococcus (7.14%) predominated. This study also enumerated the strain morphological, physiological and biochemical properties of 98 species of bacteria, including colony morphology, Gram staining, bacterial motility test, temperature gradient growth, pH gradient growth, citrate utilization test, temperature oxidase test, contact enzyme test, methyl red test, V-P test, indole test, gelatin liquefaction test, nitrate reduction test, hydrogen sulfide test, starch hydrolysis test, cellulose decomposition test, esterase (corn oil) test and antibiotic susceptibility testing. Additionally, 16 antibiotics were utilized to test the bacterial susceptibility of the strains. This study explored the types and community structure of some culturable microorganisms in the intestinal tract of G. gratiosa and recorded their physiological characteristics. These data reflect the physiological functions of the intestinal microorganisms of G. gratiosa and provide support for subsequent research on the interaction mechanism between microorganisms and their hosts. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

28 pages, 1662 KiB  
Review
Numerical Simulation of Earthquake Impacts on Marine Structures: A Comprehensive Review
by Adel Kabi, Jersson X. Leon-Medina and Francesc Pozo
Buildings 2024, 14(12), 4039; https://doi.org/10.3390/buildings14124039 - 19 Dec 2024
Viewed by 1534
Abstract
Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, [...] Read more.
Marine and underwater structures, such as seawalls, piers, breakwaters, and pipelines, are particularly susceptible to seismic events. These events can directly damage the structures or destabilize their supporting soil through phenomena like liquefaction. This review examines advanced numerical modeling approaches, including CFD, FEM, DEM, FVM, and BEM, to assess the impacts of earthquakes on these structures. These methods provide cost-effective and reliable simulations, demonstrating strong alignment with experimental and theoretical data. However, challenges persist in areas such as computational efficiency and algorithmic limitations. Key findings highlight the ability of these models to accurately simulate primary forces during seismic events and secondary effects, such as wave-induced loads. Nonetheless, discrepancies remain, particularly in capturing energy dissipation processes in existing models. Future advancements in computational capabilities and techniques, such as high-resolution DNS for wave–structure interactions and improved near-field seismoacoustic modeling show potential for enhancing simulation accuracy. Furthermore, integrating laboratory and field data into unified frameworks will significantly improve the precision and practicality of these models, offering robust tools for predicting earthquake and wave impacts on marine environments. Full article
Show Figures

Figure 1

22 pages, 4068 KiB  
Article
Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio
by Olegario Alonso-Pandavenes, Francisco Javier Torrijo and Gabriela Torres
Geosciences 2024, 14(11), 306; https://doi.org/10.3390/geosciences14110306 - 13 Nov 2024
Viewed by 1452
Abstract
Ground liquefaction potential analysis is a fundamental characterization in areas with continuous seismic activity, such as Ecuador. Geotechnical liquefaction studies are usually approached from dynamic penetration tests, which pose problems both in their correct execution and in their evaluation. Our research involves analyzing [...] Read more.
Ground liquefaction potential analysis is a fundamental characterization in areas with continuous seismic activity, such as Ecuador. Geotechnical liquefaction studies are usually approached from dynamic penetration tests, which pose problems both in their correct execution and in their evaluation. Our research involves analyzing dynamic penetration tests and microtremor geophysical surveys (horizontal-to-vertical spectral ratio technique, HVSR) for analyzing the liquefaction potential at the base of the San Marcos dam, a reservoir located in Cayambe canton (Ecuador). Based on the investigations performed at the time of construction of the dam (drilling and geophysical refraction profiles) and the application of 20 microtremor observation stations via the HVSR technique, an analysis of the safety factor of liquefaction (SFliq) was conducted using the 2001 Youd and Idriss formulation and the values of the standard penetration test (SPT) applied in granular materials (sands). In addition, the vulnerability index (Kg) proposed by Nakamura in 1989 was analyzed through the HVSR records related to the ground shear strain (GSS). The results obtained in the HVSR analysis indicate the presence of a zone of about 100 m length in the central part of the foot of the dam, whose GSS values identified a condition of susceptibility to liquefaction. In the same area, the SPT essays analysis in the P-8A drill hole also shows a potential susceptibility to liquefaction in earthquake conditions greater than a moment magnitude (Mw) of 4.5. That seismic event could occur in the area, for example, with a new activity condition of the nearby Cayambe volcano or even from an earthquake from the vicinity of the fractured zone. Full article
(This article belongs to the Special Issue Geotechnical Earthquake Engineering and Geohazard Prevention)
Show Figures

Figure 1

24 pages, 22919 KiB  
Article
Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle
by Xu Ji, Qiang Xu, Kaiyi Ren, Lanting Wei and Wensong Wang
Water 2024, 16(20), 2958; https://doi.org/10.3390/w16202958 - 17 Oct 2024
Viewed by 1321
Abstract
The formation of layering during the sedimentation process of tailings makes it of great significance to investigate tailings and to analyze their susceptibility to flow liquefaction. In this study, homogeneous iron ore tailings (IOTs) specimens were reconstituted with pure coarser grains and pure [...] Read more.
The formation of layering during the sedimentation process of tailings makes it of great significance to investigate tailings and to analyze their susceptibility to flow liquefaction. In this study, homogeneous iron ore tailings (IOTs) specimens were reconstituted with pure coarser grains and pure finer grains sampled from a typical tailings storage facility. Additionally, an improved sample preparation method was developed to create heterogeneous IOTs samples containing a fine-grained interlayer with different thicknesses and dip angles using the above two materials. A series of standard drained and undrained triaxial compression tests were conducted to investigate the effects of the presence of a layered structure and its geometry on the stress–strain responses, and the properties of the IOTs under the critical state soil mechanics framework, which has been widely adopted in the analysis of liquefaction in mine tailings. The results showed that for the two homogeneous specimens, unique critical state lines (CSLs) can be identified, but they have different degrees of curvature in the e-ln p′ plane, causing a decrease in the susceptibility to liquefaction with increasing fines content. With increasing fine-grained interlayer thickness (FGLT) within 0–40 mm, the critical state friction angle (φcs) decreased steadily, while the CSLs in the e-ln p′ plane translated upward. This may be because the morphology of the microstructure within the fine-grained interlayer restricted the compression of the intergranular pores. With increasing fine-grained interlayer dip angle (FGLA) within the range 0–30°, φcs decreased until a discontinuity occurred at a dip angle of 15°, while the CSLs in the e-ln p′ plane rotated clockwise through a pivot point. Different FGLAs could change the contact area between the different layers and the axial distribution of the fine-grained interlayer and thus may further contribute to the rotation of the CSLs. Full article
(This article belongs to the Topic Landslides and Natural Resources)
Show Figures

Figure 1

16 pages, 2014 KiB  
Article
Study on Dynamic Strength Characteristics of Sand Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)
by Gang Li, Xueqing Hua, Jia Liu, Yao Zhang and Yu Li
Materials 2024, 17(20), 4976; https://doi.org/10.3390/ma17204976 - 11 Oct 2024
Cited by 1 | Viewed by 1236
Abstract
Saturated sand foundations are susceptible to liquefaction under dynamic loads. This can result in roadbed subsidence, flotation of underground structures, and other engineering failures. Compared with the traditional foundation reinforcement technology, enzyme-induced calcium carbonate precipitation technology (EICP) is a green environmental protection reinforcement [...] Read more.
Saturated sand foundations are susceptible to liquefaction under dynamic loads. This can result in roadbed subsidence, flotation of underground structures, and other engineering failures. Compared with the traditional foundation reinforcement technology, enzyme-induced calcium carbonate precipitation technology (EICP) is a green environmental protection reinforcement technology. The EICP technology can use enzymes to induce calcium carbonate to cement soil particles and fill soil pores, thus effectively improving soil strength and inhibiting sand liquefaction damage. The study takes EICP-solidified standard sand as the research object and, through the dynamic triaxial test, analyzes the influence of different confining pressure (σ3) cementation times (CT), cyclic stress ratio (CSR), dry density (ρd), and vibration frequency (f) on dynamic strength characteristics. Then, a modified dynamic strength model of EICP-solidified standard sand was established. The results show that, under the same confining pressure, the required vibration number for failure decreases with the increase in dynamic strength, and the dynamic strength increases with the rise in dry density. At the same number of cyclic vibrations, the greater the confining pressure and cementation times, the greater the dynamic strength. When the cementation times are constant, the dynamic strength of EICP-solidified sand decreases with the increase in the vibration number. When cementation times are 6, the dynamic strength of the specimens with CSR of 0.35 is 25.9% and 32.4% higher than those with CSR of 0.25 and 0.30, respectively. The predicted results show that the model can predict the measured values well, which fully verifies the applicability of the model. The research results can provide a reference for liquefaction prevention in sand foundations. Full article
Show Figures

Figure 1

20 pages, 16241 KiB  
Article
Seismic Performance of Pile Groups under Liquefaction-Induced Lateral Spreading: Insights from Advanced Numerical Modeling
by Rujiang Pan, Chengshun Xu, Romain Meite and Jilong Chen
Buildings 2024, 14(10), 3125; https://doi.org/10.3390/buildings14103125 - 29 Sep 2024
Viewed by 1993
Abstract
Post-earthquake investigations have shown that piles in liquefiable soils are highly susceptible to damage, especially in sloping sites. This study examines the seismic performance of pile groups with lateral spreading through advanced numerical modeling. A three-dimensional finite element model, validated against large-scale shaking [...] Read more.
Post-earthquake investigations have shown that piles in liquefiable soils are highly susceptible to damage, especially in sloping sites. This study examines the seismic performance of pile groups with lateral spreading through advanced numerical modeling. A three-dimensional finite element model, validated against large-scale shaking table test results, is implemented to capture the key mechanisms driving the dynamic response of pile groups under both inertial and kinematic loading conditions. Parametric seismic response analyses are conducted to compare the behavior of batter and vertical piles under varying ground motion intensities. The results indicate that batter piles experience increased axial compressive and tensile forces compared to vertical piles, up to 70% and 20%, respectively. However, batter piles provide enhanced lateral stiffness and shear resistance compared to vertical piles, reducing horizontal displacements by up to 20% and tilting the cap by 85% under strong ground motion. The results demonstrate that batter piles not only enhance the overall seismic stability of the structure but also mitigate the risk of liquefaction-induced lateral spreading in the near-field through pile-pinning effects. While vertical piles are more commonly used in practice, the distinct advantages of batter piles for seismic stability highlighted in this study may encourage using more advanced numerical modeling in engineering projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 6051 KiB  
Article
The Effect of Non-Plastic Fines Content on Pore Pressure Generation Rates in Cyclic Triaxial and Cyclic Direct Simple Shear Tests
by Carmine P. Polito, James R. Martin and Erin L. D. Sibley
Eng 2024, 5(4), 2410-2427; https://doi.org/10.3390/eng5040126 - 26 Sep 2024
Cited by 1 | Viewed by 891
Abstract
When loose, saturated sands and non-plastic silts are subjected to undrained cyclic loading, they will generate positive pore pressures. This increase in pore pressures leads to a decrease in effective stress with a corresponding decrease in shear strength and increase in liquefaction susceptibility. [...] Read more.
When loose, saturated sands and non-plastic silts are subjected to undrained cyclic loading, they will generate positive pore pressures. This increase in pore pressures leads to a decrease in effective stress with a corresponding decrease in shear strength and increase in liquefaction susceptibility. For combinations of sand and non-plastic silt, the threshold fines content can be defined as the non-plastic silt fines content at which the soil changes from sand-like behavior to silt-like behavior. Soils below the threshold fines content behave like sands and soils above the threshold fines content behave like silts. During cyclic triaxial and cyclic direct simple shear tests performed on specimens of sand and silt prepared to the same relative density but different fines contents, two rates of pore pressure generation were observed. When compared at five cycles of loading, soils with silt contents above the threshold fines content were found to produce pore pressure ratios as much as 50% higher than those observed for soils with silt contents below the threshold fines content. When evaluated in terms of cycles, cycle ratio, and dissipated energy ratio, the rate of pore pressure generation was found to be more rapid for soils above the threshold fines content than for soils below the threshold fines content. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

45 pages, 16939 KiB  
Article
Reconstructing Impact of the 1867 Ionian Sea (Western Greece) Earthquake by Focusing on New Contemporary and Modern Sources for Building Damage, Environmental and Health Effects
by Spyridon Mavroulis, Maria Mavrouli, Efthymios Lekkas and Panayotis Carydis
Geosciences 2024, 14(8), 214; https://doi.org/10.3390/geosciences14080214 - 11 Aug 2024
Cited by 2 | Viewed by 2485
Abstract
The 4 February 1867 Cephalonia (Western Greece) earthquake is the largest in the Ionian Islands and one of the largest in the Eastern Mediterranean. However, it remained one of the least studied historical events. For reconstructing this earthquake, we reevaluated existing knowledge and [...] Read more.
The 4 February 1867 Cephalonia (Western Greece) earthquake is the largest in the Ionian Islands and one of the largest in the Eastern Mediterranean. However, it remained one of the least studied historical events. For reconstructing this earthquake, we reevaluated existing knowledge and used new contemporary and modern sources, including scientific and local writers’ reports and books, local and national journals, newspapers, and ecclesiastical chronicles. The extracted information covered the earthquake parameters, population impact, building damage, and earthquake environmental effects (EEEs). The earthquake parameters included the origin time and duration of the main shock, epicenter location, precursors, aftershocks, and characteristics of the earthquake ground motion. The population impact involved direct and indirect health effects and population change. Building data highlighted the dominant building types and the types, grades, and distribution of damage. The EEEs included ground cracks, landslides, liquefaction, hydrological anomalies, and mild sea disturbances. Field surveys were also conducted for validation. The quantitative and qualitative information enabled the application of seismic intensity scales (EMS-98, ESI-07). The study concluded that since the affected areas were mainly composed of post-alpine deposits and secondarily of clay–clastic alpine formations with poor geotechnical properties, they were highly susceptible to failure. Effects and maximum intensities occurred in highly susceptible areas with a rich inventory. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

21 pages, 11086 KiB  
Article
AI-Driven Prediction and Mapping of Soil Liquefaction Risks for Enhancing Earthquake Resilience in Smart Cities
by Arisa Katsuumi, Yuxin Cong and Shinya Inazumi
Smart Cities 2024, 7(4), 1836-1856; https://doi.org/10.3390/smartcities7040071 - 17 Jul 2024
Cited by 6 | Viewed by 3890
Abstract
In response to increasing urbanization and the need for infrastructure resilient to natural hazards, this study introduces an AI-driven predictive model designed to assess the risk of soil liquefaction. Utilizing advanced ensemble machine learning techniques, the model integrates geotechnical and geographical data to [...] Read more.
In response to increasing urbanization and the need for infrastructure resilient to natural hazards, this study introduces an AI-driven predictive model designed to assess the risk of soil liquefaction. Utilizing advanced ensemble machine learning techniques, the model integrates geotechnical and geographical data to accurately predict the potential for soil liquefaction in urban areas, with a specific focus on Yokohama, Japan. This methodology leverages comprehensive datasets from geological surveys and seismic activity to enhance urban planning and infrastructure development in smart cities. The primary outputs include detailed soil liquefaction risk maps that are essential for effective urban risk management. These maps support urban planners and engineers in making informed decisions, prioritizing safety, and promoting sustainability. The model employs a robust combination of artificial neural networks and gradient boosting decision trees to analyze and predict data points, assessing soil susceptibility to liquefaction during seismic events. Notably, the model achieves high accuracy in predicting soil classifications and N-values, which are critical for evaluating soil liquefaction risk. Validation against an extensive dataset from geotechnical surveys confirms the model’s practical effectiveness. Moreover, the results highlight the transformative potential of AI in enhancing geotechnical risk assessments and improving the resilience of urban areas against natural hazards. Full article
(This article belongs to the Special Issue Inclusive Smart Cities)
Show Figures

Figure 1

17 pages, 4121 KiB  
Article
Susceptibility to Liquefaction of Iron Ore Tailings in Upstream Dams Considering Drainage Conditions Based on Seismic Piezocone Tests
by Giovani C. L. R. da Costa, Guilherme J. C. Gomes and Helena Paula Nierwinski
Appl. Sci. 2024, 14(14), 6129; https://doi.org/10.3390/app14146129 - 14 Jul 2024
Cited by 1 | Viewed by 1706
Abstract
One of the critical challenges facing the mining sector is related to the prevention and mitigation of catastrophic incidents associated with its tailing dams. As mining tailings are very heterogeneous and field characterization is expensive and complex, geotechnical properties of these materials are [...] Read more.
One of the critical challenges facing the mining sector is related to the prevention and mitigation of catastrophic incidents associated with its tailing dams. As mining tailings are very heterogeneous and field characterization is expensive and complex, geotechnical properties of these materials are largely unknown. The seismic cone penetration test (SCPTu) provides a field approach to estimate a large array of geotechnical information, including the liquefaction potential of tailing dams. Yet, the exploration of strain softening behaviors in geomaterials under undrained loading, utilizing the state parameter (ψ) inferred from SCPTu tests initially applied to soft soils, has been often used for mining tailings. This study is concerned with the implementation of a tailing classification system which uses the ratio between the small strain shear modulus and the cone tip resistance (G0/qt). A series of laboratory tests was executed, and three different methodologies were adopted to assess the effects of (partial) drainage conditions based on 531.26 m of SCPTu measurements conducted at three different upstream iron ore tailing dams in Brazil. Furthermore, the G0/qt ratio is integrated with ψ to assess the liquefaction tendencies of the investigated materials. The findings reveal the heterogeneous nature of the tailings, wherein indications of partial drainage are discernible across numerous records. Liquefaction analyses demonstrate that the tailings exhibit a contractive behavior in over 94% of the SCPTu data, confirming their susceptibility to flow liquefaction. Our findings are relevant for site characterization within iron ore tailing dams and other mining sites with similar geotechnical attributes. Full article
(This article belongs to the Special Issue Geotechnical Engineering and Infrastructure Construction)
Show Figures

Figure 1

Back to TopTop