Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle
Abstract
:1. Introduction
2. Materials and Testing Procedures
2.1. Materials Tested
2.2. Standard Triaxial Compression Test
3. Shearing Behavior of Iron Ore Tailings without a Fine-Grained Interlayer
3.1. Stress–Strain Responses
3.2. Stress Paths and Critical States
4. Shearing Behavior of Iron Ore Tailings Containing a Fine-Grained Interlayer
4.1. Effect of the Layer Thickness
4.2. Effect of the Dip Angle
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.; Harbottle, D.; Liu, Q.; Xu, Z. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng. 2014, 58, 113–131. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Torres-Cruz, L.A.; Bachus, R.C. Why coal ash and tailings dam disasters occur. Science 2019, 364, 526–528. [Google Scholar] [CrossRef]
- Li, W.; Coop, M.R.; Senetakis, K.; Schnaid, F. The mechanics of a silt-sized gold tailing. Eng. Geol. 2018, 241, 97–108. [Google Scholar] [CrossRef]
- Carrera, A.; Coop, M.; Lancellotta, R. Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique 2011, 61, 935–946. [Google Scholar] [CrossRef]
- Gens, A.; Alonso, E.E. Aznalcóllar dam failure. Part 2: Stability conditions and failure mechanism. Géotechnique 2006, 56, 185–201. [Google Scholar] [CrossRef]
- Fourie, A.; Blight, G.; Papageorgiou, G. Static liquefaction as a possible explanation for the Merriespruit tailings dam failure. Can. Geotech. J. 2001, 38, 707–719. [Google Scholar] [CrossRef]
- Morgenstern, N.R.; Vick, S.G.; Van Zyl, D. Report on Mount Polley Tailings Storage Facility Breach, Report of Independent Expert Engineering Investigation and Review Panel to Province of British Columbia; Mount Polley Independent Expert Engineering Investigation and Review Panel: Victoria, BC, Canada, 30 January 2015. [Google Scholar]
- Zabolotnii, E.; Morgenstern, N.R.; Wilson, G.W. Mechanism of failure of the Mount Polley Tailings Storage Facility. Can. Geotech. J. 2022, 59, 1503–1518. [Google Scholar] [CrossRef]
- Reid, D. Additional Analyses of the Fundão Tailings Storage Facility: In Situ State and Triggering Conditions. J. Geotech. Geoenviron. Eng. 2019, 145, 04019088. [Google Scholar] [CrossRef]
- Bayaraa, M.; Sheil, B.; Rossi, C. InSAR and numerical modelling for tailings dam monitoring—The Cadia failure case study. Géotechnique 2024, 74, 985–1003. [Google Scholar] [CrossRef]
- Jefferies, M.; Morgenstern, N.; Van Zyl, D.; Wates, J. Report on NTSF Embankment Failure, Cadia Valley Operations, for Ashurst Australia; Newcrest: Melbourne, Australia, 2019. [Google Scholar]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic mass flows resulting from tailings impoundment failures. Eng. Geol. 2021, 292, 106262. [Google Scholar] [CrossRef]
- Fourie, A.; Verdugo, R.; Bjelkevik, A.; Torres-Cruz, L.; Znidarcic, D. Geotechnics of mine tailings: A 2022 state of the art. In Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney, Australia, 1–5 May 2022. [Google Scholar]
- Goñi, C.; Celi, D.; Concha, F. Determination of the volumetric solids fraction of saturated polydisperse ore tailing sediments. Powder Technol. 2017, 305, 528–537. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, C.; Ding, J.; Qian, P.; Yu, Y.; Ye, S.; Chen, Y. Characterization of a hybrid polyacrylamide and its flocculation properties in cyanide tailing suspensions. Water Sci. Technol. 2017, 76, 2482–2493. [Google Scholar] [CrossRef]
- Høeg, K.; Dyvik, R.; Sandbækken, G. Strength of Undisturbed versus Reconstituted Silt and Silty Sand Specimens. J. Geotech. Geoenviron. Eng. 2000, 126, 606–617. [Google Scholar] [CrossRef]
- Chang, N.; Heymann, G.; Clayton, C. The effect of fabric on the behaviour of gold tailings. Géotechnique 2011, 61, 187–197. [Google Scholar] [CrossRef]
- Reid, D.; Fanni, R. A comparison of intact and reconstituted samples of a silt tailings. Géotechnique 2022, 72, 176–188. [Google Scholar] [CrossRef]
- Reid, D.; Fanni, R.; Koh, K.; Orea, I. Characterisation of a subaqueously deposited silt iron ore tailings. Géotechnique Lett. 2018, 8, 278–283. [Google Scholar] [CrossRef]
- Oda, M.; Nemat-Nasser, S.; Konishi, J. Stress-Induced Anisotropy in Granular Masses. Soils Found. 1985, 25, 85–97. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, G.; Wei, Z.; Fan, X.; Wang, W.; Nie, W. An experimental study of the mechanical features of layered structures in dam tailings from macroscopic and microscopic points of view. Eng. Geol. 2015, 195, 142–154. [Google Scholar] [CrossRef]
- Chen, R.; Lei, W.; Li, Z. Anisotropic shear strength characteristics of a tailings sand. Environ. Earth Sci. 2014, 71, 5165–5172. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, C.; Yang, C.; Ma, C.; Pan, Z.; Daemen, J.J.K. Strength and deformation of tailings with fine-grained interlayers. Eng. Geol. 2019, 256, 110–120. [Google Scholar] [CrossRef]
- Fourie, A.B.; Tshabalala, L. Initiation of static liquefaction and the role of K0 consolidation. Can. Geotech. J. 2005, 42, 892–906. [Google Scholar] [CrossRef]
- Bedin, J.; Schnaid, F.; Fonseca, A.V.D.; Filho, L.D.M.C. Gold tailings liquefaction under critical state soil mechanics. Géotechnique 2012, 62, 263–267. [Google Scholar] [CrossRef]
- Li, W.; Coop, M.R. Mechanical behaviour of Panzhihua iron tailings. Can. Geotech. J. 2019, 56, 420–435. [Google Scholar] [CrossRef]
- Torres-Cruz, L.A.; Santamarina, J.C. The critical state line of nonplastic tailings. Can. Geotech. J. 2020, 57, 1508–1517. [Google Scholar] [CrossRef]
- Reid, D.; Fourie, A.; Ayala, J.L.; Dickinson, S.; Ochoa-Cornejo, F.; Fanni, R.; Garfias, J.; Fonseca, A.V.D.; Ghafghazi, M.; Ovalle, C.; et al. Results of a critical state line testing round robin programme. Géotechnique 2021, 71, 616–630. [Google Scholar] [CrossRef]
- Riveros, G.A.; Sadrekarimi, A. Static liquefaction behaviour of gold mine tailings. Can. Geotech. J. 2021, 58, 889–901. [Google Scholar] [CrossRef]
- Fotovvat, A.R.; Sadrekarimi, A. Instability of a Gold Mine Tailings Subjected to Different Stress Paths. J. Geotech. Geoenviron. Eng. 2022, 148, 04022020. [Google Scholar] [CrossRef]
- Karim, M.E.; Rahman, M.M.; Karim, M.R.; Fourie, A.B.; Reid, D. Characteristics of Copper Tailings in Direct Simple Shearing: A Critical State Approach. J. Geotech. Geoenviron. Eng. 2023, 149, 04023018. [Google Scholar] [CrossRef]
- Macedo, J.; Vergaray, L. Properties of mine tailings for static liquefaction assessment. Can. Geotech. J. 2022, 59, 667–687. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Crous, P.A.; Jacobsz, S.W. Centrifuge and Numerical Modeling of Liquefied Flow and Nonliquefied Slide Failures of Tailings Dams. J. Geotech. Geoenviron. Eng. 2023, 149, 04023075. [Google Scholar] [CrossRef]
- Silva, J.P.S.; Rissoli, A.L.C.; Cacciari, P.P.; da Fonseca, A.J.P.V.; Filho, H.C.S.; Wagner, A.C.; Carvalho, J.V.D.A.; Festugato, L.; Consoli, N.C. Triaxial testing response of compacted iron ore tailings considering a broad spectrum of confining pressures. Soils Found. 2024, 64, 101438. [Google Scholar] [CrossRef]
- Fotovvat, A.; Sadrekarimi, A.; Etezad, M. Instability of gold mine tailings subjected to undrained and drained unloading stress paths. Géotechnique 2024, 74, 174–192. [Google Scholar] [CrossRef]
- Sarkar, G.; Sadrekarimi, A. Undrained shearing behaviour of oil sands tailings. Soil Dyn. Earthq. Eng. 2022, 161, 107410. [Google Scholar] [CrossRef]
- Verdugo, R. Static liquefaction in the context of steady state/critical state and its application in the stability of tailings dams. Soil Dyn. Earthq. Eng. 2024, 176, 108270. [Google Scholar] [CrossRef]
- Reid, D.; Fourie, A.; Moggach, S. Characterization of a gold tailings with hypersaline pore fluid. Can. Geotech. J. 2020, 57, 482–496. [Google Scholar] [CrossRef]
- Baziar, M.H.; Dobry, R. Residual Strength and Large-Deformation Potential of Loose Silty Sands. J. Geotech. Eng. 1995, 121, 896–906. [Google Scholar] [CrossRef]
- Morgenstern, N.; Vick, S.; Viotti, C.; Watts, B. Fundão Tailings Dam Review Panel Report on the Immediate Causes of the Failure of the Fundão Dam; Cleary Gottlieb Steen & Hamilton LLP: New York, NY, USA, 2016. [Google Scholar]
- Jefferies, M.; Been, K. Soil Liquefaction: A Critical State Approach; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Yao, G.; Liu, Q.; Wang, J.; Wu, P.; Lyu, X. Effect of mechanical grinding on pozzolanic activity and hydration properties of siliceous gold ore tailings. J. Clean. Prod. 2019, 217, 12–21. [Google Scholar] [CrossRef]
- Zhao, X.; Fourie, A.; Qi, C.-C. Mechanics and safety issues in tailing-based backfill: A review. Int. J. Miner. Metall. Mater. 2020, 27, 1165–1178. [Google Scholar] [CrossRef]
- Chen, B.; Pang, L.; Zhou, Z.; Chang, Q.; Fu, P. Study on the activation mechanism and hydration properties of gold tailings activated by mechanical-chemical-thermal coupling. J. Build. Eng. 2022, 48, 104014. [Google Scholar] [CrossRef]
- Sladen, J.A.; Handford, G. A potential systematic error in laboratory testing of very loose sands. Can. Geotech. J. 1987, 24, 462–466. [Google Scholar] [CrossRef]
- Bishop, A. Progressive failure-with special reference to the mechanism causing it. Proc. Geotech. Conf. 1967, 2, 142–150. [Google Scholar]
- Poulos, S.J.; Castro, G.; France, J.W. Liquefaction evaluation procedure. J. Geotech. Eng. 1985, 111, 772–792. [Google Scholar] [CrossRef]
- Yamamuro, J.A.; Covert, K.M. Monotonic and cyclic liquefaction of very loose sands with high silt content. J. Geotech. Geoenviron. Eng. 2001, 127, 314–324. [Google Scholar] [CrossRef]
- Wagner, A.C.; de Sousa Silva, J.P.; de Azambuja Carvalho, J.V.; Rissoli, A.L.C.; Cacciari, P.P.; Chaves, H.M.; Filho, H.C.S.; Consoli, N.C. Mechanical behavior of iron ore tailings under standard compression and extension triaxial stress paths. J. Rock Mech. Geotech. Eng. 2023, 15, 1883–1894. [Google Scholar] [CrossRef]
- Consoli, N.C.; Silva, J.P.S.; Wagner, A.C.; Carvalho, J.V.D.A.; Baudet, B.A.; Coop, M.R.; Filho, H.C.S.; Carvalho, I.; de Sousa, G.M.; Cacciari, P.P. Critical state analysis of two compacted filtered iron ore tailings with different gradings and mineralogy at different stages of treatment. Acta Geotech. 2024, 19, 881–898. [Google Scholar] [CrossRef]
- Vergaray, L.; Macedo, J.; Arnold, C. Static and Cyclic Liquefaction of Copper Mine Tailings. J. Geotech. Geoenviron. Eng. 2023, 149, 04023021. [Google Scholar] [CrossRef]
- Yang, S.L.; Sandven, R.; Grande, L. Steady-state lines of sand–silt mixtures. Can. Geotech. J. 2006, 43, 1213–1219. [Google Scholar] [CrossRef]
- Thevanayagam, S.; Shenthan, T.; Mohan, S.; Liang, J. Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts. J. Geotech. Geoenviron. Eng. 2002, 128, 849–859. [Google Scholar] [CrossRef]
- Fourie, A.B.; Papageorgiou, G. Defining an appropriate steady state line for Merriespruit gold tailings. Can. Geotech. J. 2001, 38, 695–706. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M.G. A state parameter for sands. Géotechnique 1985, 35, 99–112. [Google Scholar] [CrossRef]
- Been, K.; Jefferies, M.G.; Hachey, J. The critical state of sands. Géotechnique 1991, 41, 365–381. [Google Scholar] [CrossRef]
- Verdugo, R.; Ishihara, K. The Steady State of Sandy Soils. Soils Found. 1996, 36, 81–91. [Google Scholar] [CrossRef]
- Bouckovalas, G.D.; Andrianopoulos, K.I.; Papadimitriou, A.G. A critical state interpretation for the cyclic liquefaction resistance of silty sands. Soil Dyn. Earthq. Eng. 2003, 23, 115–125. [Google Scholar] [CrossRef]
Parameter | IOT-C | IOT-F |
---|---|---|
Specific gravity, Gs | 2.962 | 3.037 |
Mean particle size, D50 (mm) | 0.124 | 0.072 |
Fines content (%) | 38.5 | 60.4 |
Coefficient of uniformity, Cu | 7.384 | 3.571 |
Coefficient of curvature, Ccr | 1.008 | 1.639 |
Maximum void ratio, emax | 0.898 | 1.116 |
Minimum void ratio, emin | 0.435 | 0.488 |
Plastic limit (%) | - | 8.93 |
Liquid limit (%) | - | 23.09 |
Plasticity index (%) | - | 14.16 |
Mean aspect ratio | 0.669 | 0.697 |
Mean convexity | 0.929 | 0.916 |
Mean sphericity | 0.832 | 0.850 |
Sample | Non-Clay Minerals | Clay Minerals | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mica (%) | Hornblende (%) | Gypsum (%) | Quartz (%) | Plagioclase (%) | Calcite (%) | Pyroxene (%) | Ilmenite (%) | Hematite (%) | Magnetite (%) | Pyrite (%) | Olivine (%) | Chlorite (%) | |
IOT-C | 2.0 | - | 0.3 | 9.8 | 57.6 | 0.1 | 2.7 | 1.1 | 0.3 | 3.5 | 0.2 | 2.7 | 19.7 |
IOT-F | 5.4 | 6.6 | 0.4 | 5.0 | 43.2 | 0.3 | 5.4 | 2.3 | 0.2 | 8.5 | 0.6 | 7.0 | 15.1 |
Sample | Na2O (%) | MgO (%) | Al2O3 (%) | SiO2 (%) | P2O5 (%) | K2O (%) | CaO (%) | TiO2 (%) | MnO (%) | Fe2O3 (%) | LOI (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
IOT-C | 2.11 | 12.30 | 13.48 | 44.03 | 0.089 | 0.652 | 7.60 | 2.54 | 0.208 | 14.30 | 2.38 |
IOT-F | 2.13 | 15.74 | 11.66 | 41.48 | 0.109 | 0.369 | 7.24 | 3.24 | 0.255 | 15.10 | 2.82 |
Sample Name | Test Sample No. | Void Ratio After Saturation | Confining Effective Stress, kPa | Void Ratio After Consolidation | End of Test | ||
---|---|---|---|---|---|---|---|
Deviatoric Stress, qcs: kPa | Mean Effective Stress, p′cs: kPa | Void Ratio | |||||
IOT-C | 01 | 0.896 | 100 | 0.821 | 4.27 | 9.35 | 0.821 |
02 | 0.865 | 200 | 0.768 | 28.82 | 28.90 | 0.768 | |
03 | 0.890 | 300 | 0.764 | 69.97 | 57.434 | 0.764 | |
04 | 0.880 | 400 | 0.746 | 137.05 | 109.33 | 0.746 | |
05 | 0.877 | 600 | 0.726 | 237.13 | 181.04 | 0.726 | |
06 | 0.790 | 100 | 0.716 | 1.30 | 3.17 | 0.716 | |
07 | 0.788 | 300 | 0.674 | 50.44 | 38.35 | 0.674 | |
08 | 0.786 | 600 | 0.622 | 235.14 | 173.77 | 0.622 | |
09 * | 0.840 | 200 | 0.740 | 567.10 | 398.76 | 0.653 | |
10 * | 0.854 | 300 | 0.727 | 830.58 | 580.39 | 0.642 | |
11 * | 0.871 | 400 | 0.728 | 1130.83 | 780.74 | 0.632 | |
IOT-F | 12 | 0.901 | 100 | 0.831 | 4.52 | 7.41 | 0.831 |
13 | 0.887 | 200 | 0.804 | 5.11 | 7.68 | 0.804 | |
14 | 0.909 | 300 | 0.814 | 20.19 | 20.96 | 0.814 | |
15 | 0.896 | 400 | 0.784 | 36.84 | 31.96 | 0.784 | |
16 | 0.896 | 600 | 0.637 | 100.63 | 80.34 | 0.637 | |
17 | 0.805 | 100 | 0.778 | 3.80 | 7.15 | 0.778 | |
18 | 0.796 | 300 | 0.732 | 25.45 | 23.45 | 0.732 | |
19 | 0.812 | 600 | 0.702 | 146.45 | 116.65 | 0.702 | |
20 * | 0.896 | 100 | 0.823 | 249.73 | 192.60 | 0.715 | |
21 * | 0.889 | 200 | 0.791 | 485.97 | 369.61 | 0.679 | |
22 * | 0.899 | 400 | 0.758 | 1004.62 | 739.96 | 0.652 |
Sample Name | Test Sample No. | Void Ratio After Saturation | Confining Effective Stress, kPa | Void Ratio After Consolidation | End of Test | ||
---|---|---|---|---|---|---|---|
Deviatoric Stress, qcs: kPa | Mean Effective Stress, p′cs: kPa | Void Ratio | |||||
FGLT-20 | 23 | 0.870 | 100 | 0.794 | 3.50 | 9.15 | 0.794 |
24 | 0.868 | 200 | 0.770 | 20.24 | 19.41 | 0.770 | |
25 | 0.898 | 300 | 0.778 | 40.67 | 38.62 | 0.778 | |
26 | 0.899 | 600 | 0.731 | 165.81 | 128.85 | 0.731 | |
27 * | 0.896 | 200 | 0.799 | 523.88 | 382.74 | 0.705 | |
28 * | 0.883 | 400 | 0.744 | 913.18 | 707.45 | 0.641 | |
FGLT-40 | 29 | 0.875 | 100 | 0.812 | 4.90 | 2.85 | 0.812 |
30 | 0.909 | 200 | 0.825 | 10.25 | 7.32 | 0.825 | |
31 | 0.912 | 400 | 0.775 | 56.34 | 48.17 | 0.775 | |
32 * | 0.900 | 200 | 0.807 | 449.11 | 358.05 | 0.704 | |
33 * | 0.921 | 400 | 0.776 | 911.39 | 709.40 | 0.661 | |
FGLA-15 | 34 | 0.878 | 100 | 0.799 | 5.36 | 5.31 | 0.799 |
35 | 0.893 | 200 | 0.800 | 14.47 | 10.12 | 0.800 | |
36 | 0.898 | 400 | 0.755 | 67.52 | 56.22 | 0.755 | |
37 | 0.907 | 600 | 0.744 | 191.45 | 148.11 | 0.744 | |
38 * | 0.899 | 200 | 0.788 | 503.17 | 370.40 | 0.693 | |
39 * | 0.899 | 400 | 0.758 | 979.60 | 729.07 | 0.662 | |
FGLA-30 | 40 | 0.909 | 100 | 0.831 | 1.04 | 8.67 | 0.831 |
41 | 0.909 | 200 | 0.798 | 13.31 | 18.18 | 0.798 | |
42 | 0.903 | 400 | 0.759 | 82.02 | 70.04 | 0.759 | |
43 | 0.913 | 600 | 0.752 | 187.51 | 139.33 | 0.752 | |
44 * | 0.896 | 200 | 0.804 | 443.22 | 356.09 | 0.701 | |
45 * | 0.901 | 400 | 0.757 | 898.52 | 705.11 | 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Xu, Q.; Ren, K.; Wei, L.; Wang, W. Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle. Water 2024, 16, 2958. https://doi.org/10.3390/w16202958
Ji X, Xu Q, Ren K, Wei L, Wang W. Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle. Water. 2024; 16(20):2958. https://doi.org/10.3390/w16202958
Chicago/Turabian StyleJi, Xu, Qiang Xu, Kaiyi Ren, Lanting Wei, and Wensong Wang. 2024. "Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle" Water 16, no. 20: 2958. https://doi.org/10.3390/w16202958
APA StyleJi, X., Xu, Q., Ren, K., Wei, L., & Wang, W. (2024). Critical State Analysis for Iron Ore Tailings with a Fine-Grained Interlayer: Effects of Layering Thickness and Dip Angle. Water, 16(20), 2958. https://doi.org/10.3390/w16202958