Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = linear elastic fracture mechanics (LEFM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7657 KiB  
Article
Utilizing Excess Resin in Prepregs to Achieve Good Performance in Joining Hybrid Materials
by Nawres J. Al-Ramahi, Safaa M. Hassoni, Janis Varna and Roberts Joffe
Polymers 2025, 17(12), 1689; https://doi.org/10.3390/polym17121689 - 18 Jun 2025
Viewed by 423
Abstract
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg [...] Read more.
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg composite, forming a thin layer, and a toughened structural epoxy (Sika Power-533), designed for the automotive industry, forming a thick layer. Modified double cantilever beam (DCB) and end-notched flexure (ENF) specimens were used for testing. The results show that using Sika Power-533 increases the critical energy release rate by up to 30 times compared to the prepreg resin, highlighting the impact of adhesive layer thickness. Joints with the thick Sika adhesive performed similarly regardless of whether uncoated or Al–Si-coated steel was used, indicating the composite/Sika interface as the failure point. In contrast, the thin resin adhesive layer exhibited poor bonding with uncoated steel, which detached during sample preparation. This suggests that, for thin layers, the resin/steel interface is the weakest link. These findings underline the importance of adhesive selection and layer thickness for optimizing joint performance in composite–metal hybrid structures. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 3195 KiB  
Article
Fatigue Life Analysis of Cruciform Specimens Under Biaxial Loading Using the Paris Equation
by Ahmed Al-Mukhtar and Carsten Koenke
Metals 2025, 15(6), 579; https://doi.org/10.3390/met15060579 - 23 May 2025
Viewed by 607
Abstract
The presence of mixed-mode stresses, combining both opening and shearing components, complicates fatigue life estimation when applying the Paris law. To address this, the crack path, along with Mode-I (opening) and Mode-II (shear) components, was numerically analyzed using Fracture Analysis Code (Franc2D) based [...] Read more.
The presence of mixed-mode stresses, combining both opening and shearing components, complicates fatigue life estimation when applying the Paris law. To address this, the crack path, along with Mode-I (opening) and Mode-II (shear) components, was numerically analyzed using Fracture Analysis Code (Franc2D) based on the linear elastic fracture mechanics (LEFM) approach. Accordingly, fatigue life and stress intensity factors (SIFs) under various biaxial loading ratios (λ) were calculated using the Paris law and compared with available data in the literature. The results show that crack growth is primarily driven by the Mode-I component, which exhibits the largest magnitude. Thus, the Mode-I stress intensity factor (KI) was adopted for the numerical integration of the fatigue life equation. Furthermore, the influence of normal and transverse loads (σy and σx, respectively) on the crack path plane and SIF was examined for λ. The analysis revealed that lower λ values led to faster crack propagation, while higher λ values resulted in extended fatigue life due to an increased number of cycles to failure. The comparison demonstrated good agreement with reference data, confirming the reliability of the proposed modeling approach over a wide range of biaxial loading conditions. Full article
(This article belongs to the Special Issue Fracture and Fatigue of Advanced Metallic Materials)
Show Figures

Graphical abstract

20 pages, 3455 KiB  
Article
Chemical Equilibrium Fracture Mechanics—Hydrogen Embrittlement Application
by Andreas G. Varias
Corros. Mater. Degrad. 2025, 6(1), 5; https://doi.org/10.3390/cmd6010005 - 6 Feb 2025
Viewed by 1016
Abstract
Chemical Equilibrium Fracture Mechanics (CEFM) studies the effect of chemical reactions and phase transformations on crack-tip fields and material fracture toughness under chemical equilibrium. An important CEFM direction is hydrogen-induced embrittlement of alloys, due to several industrial applications, including those within the industrial [...] Read more.
Chemical Equilibrium Fracture Mechanics (CEFM) studies the effect of chemical reactions and phase transformations on crack-tip fields and material fracture toughness under chemical equilibrium. An important CEFM direction is hydrogen-induced embrittlement of alloys, due to several industrial applications, including those within the industrial value chain of hydrogen that is under development, which, according to European and international policies, are expected to contribute significantly to the replacement of fossil fuels by renewable energy sources. In the present study, the effect of hydrogen on the crack-tip fields of hydride- and non-hydride-forming alloys is examined. The crack-tip stress and hydrogen concentration distributions are derived under hydrogen chemical equilibrium, which is approached by considering the coupling of the operating physical mechanisms. In all cases, analytic relations are derived, thus facilitating integrity assessments, i.e., without the need to rely on complicated numerical methods, expected to lead to the development of respective tools in industrial applications. It is shown that, in the case of hydride precipitation, there are significant deviations from the K, HRR, and Prandtl fields, and, thus, the well-known approaches of Linear Elastic Fracture Mechanics (LEFM) and Elastic–Plastic Fracture Mechanics (EPFM) need to be accordingly modified/extended. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

26 pages, 8496 KiB  
Article
Two-Dimensional Numerical Method for Predicting the Resistance of Ships in Pack Ice: Development and Validation
by Yan Huang, Ce Sun and Jianqiao Sun
J. Mar. Sci. Eng. 2024, 12(12), 2251; https://doi.org/10.3390/jmse12122251 - 7 Dec 2024
Viewed by 888
Abstract
This study presents a 2D numerical simulation method for predicting the resistance of ships navigating in pack ice. The key contribution of this study lies in the derivation of analytical closed-form solutions for calculating the flexural deformation and stress distribution in an elastic [...] Read more.
This study presents a 2D numerical simulation method for predicting the resistance of ships navigating in pack ice. The key contribution of this study lies in the derivation of analytical closed-form solutions for calculating the flexural deformation and stress distribution in an elastic plate using Symplectic Mechanics and Hooke’s laws. These solutions are used to determine the failure mode of ice floes. Linear Elastic Fracture Mechanics (LEFMs) and the weight function method are utilized to analyze crack initiation, propagation, and fracture. Ice is broken when a crack propagates to 14.5% of the ice length. The compressive strength of ice and the contact area are used to calculate the ice load. A collision method was developed based on the Sweep and Prune (SAP) and Gilbert–Johnson–Keerthi (GJK) algorithms. A program for predicting the resistance of ships navigating in pack ice was developed based on MATLAB and the aforementioned theories. The navigation resistance of RV Xuelong at different ice concentrations and speeds was simulated and compared with the model test results from an ice tank. The comparison shows that the simulation results are consistent with the test results, with an average error of 9.05%, indicating the effectiveness and reliability of this numerical method. This study lays a solid foundation for future research on autonomous ship navigation in pack ice. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 1986 KiB  
Article
Use of a Semi-Explicit Probabilistic Numerical Model for Concrete Cracking: From Static to Dynamic Loadings
by Gustavo Costa, Pierre Rossi, Mariane Rita, Eduardo Fairbairn and Fernando Ribeiro
Appl. Sci. 2024, 14(22), 10643; https://doi.org/10.3390/app142210643 - 18 Nov 2024
Cited by 2 | Viewed by 847
Abstract
In this paper, concrete cracking is investigated in dynamics through finite element modeling. A probabilistic semi-explicit model, previously developed and validated for static loading, is extended for dynamic loading. The model in statics is based on two material mechanical parameters: the tensile strength [...] Read more.
In this paper, concrete cracking is investigated in dynamics through finite element modeling. A probabilistic semi-explicit model, previously developed and validated for static loading, is extended for dynamic loading. The model in statics is based on two material mechanical parameters: the tensile strength and the critical strain-energy release rate in mode I, GIC, of the Linear Elastic Fracture Mechanics (LEFM) theory. Concerning the dynamic aspects of the model, the tensile strength rate effect is modeled by an empirical dynamic-to-static strength ratio (Dynamic Increase Factor—DIF) and a similar formulation is proposed for GIC. The structural rate effect is naturally captured when mass and damping are included in the equation of motion. For static and dynamic loading, only macroscopic crack propagation is considered. Some numerical simulations in statics and dynamics are presented in the present paper. The main results related to this work can be summarized as follows: the dispersion of the numerical results related to the load–displacement curves decreases with the loading rate. The crack pattern considerably changes with loading rate (numerically and experimentally); the agreement between the experimental and numerical results (load–displacement curves and crack pattern) indicates the model is promising for engineering applications. Full article
Show Figures

Figure 1

14 pages, 6611 KiB  
Article
A Relationship between Fracture Toughness Kc and Energy Release Rate Gc According to Fracture Morphology Analysis
by Haohao Liu, Jinlun Yan, Aofei Li, Zhenyu He, Yuchen Xie, Han Yan and Dawei Huang
Crystals 2024, 14(8), 740; https://doi.org/10.3390/cryst14080740 - 20 Aug 2024
Cited by 1 | Viewed by 2605
Abstract
This study investigated the relationship between fracture toughness (Kc) and energy release rate (Gc) through fracture morphology analysis, emphasizing the critical role of fractal dimensions in accurately characterizing fracture surfaces. Traditional linear elastic fracture mechanics (LEFM) models relate Gc [...] Read more.
This study investigated the relationship between fracture toughness (Kc) and energy release rate (Gc) through fracture morphology analysis, emphasizing the critical role of fractal dimensions in accurately characterizing fracture surfaces. Traditional linear elastic fracture mechanics (LEFM) models relate Gc to Kc by combining energy principles with the nominal area of the fracture surface. However, real materials often exhibit plasticity, and their fracture surfaces are not regular planes. To address these issues, this research applied fractal theory and introduced the concept of ubiquitiform surface area to refine the calculation of fracture surfaces, leading to more accurate estimates of Gc and Kc. The method was validated through standard compact tensile specimen tests on a nickel-based superalloy at 550 °C. Additionally, the analysis of fractal dimension differences and dispersion in various fracture regions provides a novel perspective for evaluating the fracture toughness of materials. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Anisotropic Materials)
Show Figures

Figure 1

22 pages, 24656 KiB  
Article
Micro/Nanomechanical Characterization of ScAlMgO4 Single Crystal by Instrumented Indentation and Scratch Methods
by Zifeng Ni, Jie Yu, Guomei Chen, Mingjie Ji, Shanhua Qian, Da Bian and Ming Liu
Materials 2024, 17(15), 3811; https://doi.org/10.3390/ma17153811 - 2 Aug 2024
Cited by 3 | Viewed by 1514
Abstract
ScAlMgO4 (SCAM), which can be used as an epitaxial substrate material of GaN in power devices, faces the challenge of achieving a high-quality surface by ultra-precision polishing due to its brittle and easily cleaved characteristics, which are closely associated with its mechanical [...] Read more.
ScAlMgO4 (SCAM), which can be used as an epitaxial substrate material of GaN in power devices, faces the challenge of achieving a high-quality surface by ultra-precision polishing due to its brittle and easily cleaved characteristics, which are closely associated with its mechanical properties. The micromechanical properties of SCAM single crystals were evaluated by nanoindentation and microscratch tests using different indenters. The elastic modulus EIT and the indentation hardness HIT of SCAM obtained by nanoindentation were 226 GPa and 12.1 GPa, respectively. Leaf-shaped chips and the associated step-like planes of SCAM can be found in the severely damaged regime during scratching by Berkovich and Vickers indenters with sharp edges due to the intersection of intense radial and lateral cracks. The fracture toughness (Kc = 1.12 MPa·m1/2) of SCAM can be obtained by using a scratch-based methodology for a spherical indenter based on linear elastic fracture mechanics (LEFM) under an appropriate range of applied loads. An optimal expression for calculating the fracture toughness of easily cleaved materials, including SCAM, via the Vickers indenter-induced cracking method using a Berkovich indenter was recommended. Full article
(This article belongs to the Special Issue Advances of Indentation Technology in Materials)
Show Figures

Figure 1

14 pages, 2515 KiB  
Article
Numerical Investigation of Fatigue Behavior in Ti-6Al-4V Orthopedic Hip Implants Subjected to Different Environments
by Tamara Smoljanić, Ljubica Milović, Simon Sedmak, Aleksa Milovanović, Katarina Čolić, Zoran Radaković and Aleksandar Sedmak
Materials 2024, 17(15), 3796; https://doi.org/10.3390/ma17153796 - 1 Aug 2024
Cited by 2 | Viewed by 1232
Abstract
In this paper, hip implants made of Ti-6Al-4V titanium alloy are analyzed numerically using Extended Finite Element Method XFEM. The combined effect of corrosion and fatigue was considered here since this is a common cause of failure of hip implants. Experimental testing of [...] Read more.
In this paper, hip implants made of Ti-6Al-4V titanium alloy are analyzed numerically using Extended Finite Element Method XFEM. The combined effect of corrosion and fatigue was considered here since this is a common cause of failure of hip implants. Experimental testing of Ti-6Al-4V alloy was performed to determine its mechanical properties under different working environments, including normal, salty, and humid conditions. The integrity and life of the hip implant were assessed using the Linear Elastic Fracture Mechanics (LEFM) approach. For this purpose, the conditional fracture toughness Kq using CT specimens from all three groups (normal, humid, salty conditions) were determined. This provided insight into how different aggressive environments affect the behavior of Ti-6Al-4V alloy; i.e., how much its resistance to crack growth would degrade depending on conditions corresponding to the real exploitation of hip implants. Next, analytical and XFEM analyses of fatigue behavior in terms of the number of cycles were performed for all three groups, and the obtained results showed good agreement, confirming the validity of the integrity assessment approach shown in this work, which also represented a novel approach since fatigue and corrosion effects were investigated simultaneously. Full article
Show Figures

Figure 1

21 pages, 9241 KiB  
Article
Evaluation of Interlayer Reinforcement Effectiveness in Road Pavement Rehabilitation Using FEM Modeling and Fracture Mechanics Analysis
by Arianna Antoniazzi, Gianluca Ravizzoni, Cecilia Schiavone, Maurizio Crispino and Emanuele Toraldo
Buildings 2024, 14(8), 2264; https://doi.org/10.3390/buildings14082264 - 23 Jul 2024
Viewed by 1828
Abstract
In this paper, the effectiveness of reinforcements for flexible pavements is evaluated through an analysis of reflective cracking. Different stiffness and thickness reinforcements are considered for the rehabilitation of an already cracked pavement. The effect of the reinforcement is assessed from two different [...] Read more.
In this paper, the effectiveness of reinforcements for flexible pavements is evaluated through an analysis of reflective cracking. Different stiffness and thickness reinforcements are considered for the rehabilitation of an already cracked pavement. The effect of the reinforcement is assessed from two different perspectives: (i) the ability to reduce stresses in the rehabilitated pavement layers, and (ii) the capacity to mitigate the crack propagation from deeper layers. A finite element model (FEM) is adopted to study the stress and strain state of the pavement layers. The pavement model has been properly validated, transitioning from a simply supported beam scheme to an elastic multilayer model. In addition, to represent crack propagation, fracture evolution is analyzed using Linear Elastic Fracture Mechanics (LEFMs) and Paris’ law. The effect of different reinforcements on the pavement is then simulated. The results show that the reinforcement performance is strictly dependent on the interlayer thickness and stiffness. In particular, high stiffness reinforcements (geomembranes) show increasing effectiveness with stiffness, both in terms of reflective cracking and stress reduction. Conversely, low stiffness reinforcements (SAMIs) show a variable trend with the stiffness modulus. In fact, extremely low stiffness is effective in slowing down crack propagation but is detrimental to the wearing course’s stress condition. However, as the stiffness increases, the likelihood of cracking in the wearing course decreases, though only a small beneficial effect is registered for crack propagation in the base layer. Full article
(This article belongs to the Special Issue Advances in Road Pavements)
Show Figures

Figure 1

11 pages, 4108 KiB  
Article
USAF Characteristic K Approach: A Robust Tool for Predicting Fatigue Crack Growth under Various Underload Spectra
by Kushagra Tiwari, Alankar Alankar, R. K. Singh Raman and Rhys Jones
Materials 2024, 17(13), 3303; https://doi.org/10.3390/ma17133303 - 4 Jul 2024
Viewed by 1178
Abstract
This paper forms part of an ongoing investigation into the tools required in linear elastic fracture mechanics (LEFM) for evaluating the durability of components designed for limited life replacement. In this study, we demonstrate that the USAF ‘Characteristic K’ method, when combined [...] Read more.
This paper forms part of an ongoing investigation into the tools required in linear elastic fracture mechanics (LEFM) for evaluating the durability of components designed for limited life replacement. In this study, we demonstrate that the USAF ‘Characteristic K’ method, when combined with the Hartman–Schijve adaptation of the NASGRO crack growth formula, can predict the impact of underloads on the propagation of small cracks in aluminum alloy AA7050-T7451 with reasonable accuracy. The published da/dN versus ΔK small crack growth curves associated with five specific underload spectra are examined. It is found that, in each case, there is reasonably good agreement between the predicted and the measured curves. To the best of the author’s knowledge, this paper is the first to highlight the ability of the USAF Characteristic K approach, when coupled with the Hartman–Schijve equation, to reasonably accurately predict the growth of small cracks subjected to a range of underload spectra. Full article
Show Figures

Figure 1

20 pages, 1669 KiB  
Article
Three-Dimensional Probabilistic Semi-Explicit Cracking Model for Concrete Structures
by Mariane Rodrigues Rita, Pierre Rossi, Eduardo de Moraes Rego Fairbairn, Fernando Luiz Bastos Ribeiro, Jean-Louis Tailhan, Henrique Conde Carvalho de Andrade and Magno Teixeira Mota
Appl. Sci. 2024, 14(6), 2298; https://doi.org/10.3390/app14062298 - 8 Mar 2024
Cited by 4 | Viewed by 1386
Abstract
This paper introduces a three-dimensional (3D) semi-explicit probabilistic numerical model for simulating crack propagation within the framework of the finite element method. The model specifically addresses macrocrack propagation using linear volume elements. The criteria governing the macrocrack propagation is based on the softening [...] Read more.
This paper introduces a three-dimensional (3D) semi-explicit probabilistic numerical model for simulating crack propagation within the framework of the finite element method. The model specifically addresses macrocrack propagation using linear volume elements. The criteria governing the macrocrack propagation is based on the softening behavior observed in concrete under uniaxial tension. This softening behavior corresponds to a dissipated cracking energy that is equal to the mode I critical fracture energy (GIC) used in the Linear Elastic Fracture Mechanics theory (LEFM). The probabilistic nature of this model revolves around the random distribution of two mechanical properties: tensile strength (ft) and fracture energy, which varies based on the volume of finite elements. The scattering of the fracture energy increases as the volume of finite elements decreases in order to consider the strong heterogeneity of the material. This work primarily aims to estimate the relationship between the standard deviation of GIC and the volume of finite elements through the development of the numerical model. For this purpose, an inverse analysis is conducted based on a fracture mechanical test simulation. This test involves macrocrack propagation in a large Double Cantilever Beam (DCB) specimen with a crack length exceeding two meters. The proposed inverse analysis procedure yields highly significant results, indicating that the numerical model effectively evaluates both crack length and crack opening during propagation. Full article
Show Figures

Figure 1

36 pages, 5506 KiB  
Review
A Literature Review of Incorporating Crack Tip Plasticity into Fatigue Crack Growth Models
by Antonio Garcia-Gonzalez, Jose A. Aguilera, Pablo M. Cerezo, Cristina Castro-Egler and Pablo Lopez-Crespo
Materials 2023, 16(24), 7603; https://doi.org/10.3390/ma16247603 - 11 Dec 2023
Cited by 1 | Viewed by 2926
Abstract
This paper presents an extensive literature review focusing on the utilisation of crack tip plasticity as a crucial parameter in determining and enhancing crack growth models. The review encompasses a comprehensive analysis of various methodologies, predominantly emphasising numerical simulations of crack growth models [...] Read more.
This paper presents an extensive literature review focusing on the utilisation of crack tip plasticity as a crucial parameter in determining and enhancing crack growth models. The review encompasses a comprehensive analysis of various methodologies, predominantly emphasising numerical simulations of crack growth models while also considering analytical approaches. Although experimental investigations are not the focus of this review, their relevance and interplay with numerical and analytical methods are acknowledged. The paper critically examines these methodologies, providing insights into their advantages and limitations. Ultimately, this review aims to offer a holistic understanding of the role of crack tip plasticity in the development of effective crack growth models, highlighting the synergies and gaps between theoretical, experimental, and simulation-based approaches. Full article
(This article belongs to the Special Issue Fatigue Damage and Fracture Mechanics of Materials)
Show Figures

Figure 1

10 pages, 3320 KiB  
Proceeding Paper
Fatigue Testing and Analysis of Flare Bevel Groove-Welded Aluminum Joints for Pedestrian Bridge Applications
by Abdullah Abdelbadie and Scott Walbridge
Eng. Proc. 2023, 43(1), 46; https://doi.org/10.3390/engproc2023043046 - 7 Oct 2023
Viewed by 1997
Abstract
Flare bevel groove (FBG) welds are used in truss bridges with square hollow structural section (HSS) members. To reduce costs, joints can be welded without bevelling, but this negatively impacts the fatigue performance of the connection. This approach is often used in pedestrian [...] Read more.
Flare bevel groove (FBG) welds are used in truss bridges with square hollow structural section (HSS) members. To reduce costs, joints can be welded without bevelling, but this negatively impacts the fatigue performance of the connection. This approach is often used in pedestrian bridges made from steel or aluminum. To investigate the fatigue performance of FBG welds, a study was conducted on T-joints made from aluminum square HSS members. The goal was to establish an S–N curve for these welds and present a numerical fatigue life prediction methodology. The study involved cyclic tests supplemented by a fatigue life prediction using linear elastic fracture mechanics (LEFM) coupled with finite element (FE) analysis using the software ABAQUS. Several parameters were varied, including the HSS section size and the corner radius (as extruded and hand ground). Six identical samples were tested for each combination of parameters to generate an S–N curve. The paper ends by drawing conclusions regarding the fatigue performance of aluminum FBG welds and their suitability for use in cyclically loaded structures such as pedestrian bridges. Full article
(This article belongs to the Proceedings of The 15th International Aluminium Conference)
Show Figures

Figure 1

25 pages, 8996 KiB  
Review
A Robust Adaptive Mesh Generation Algorithm: A Solution for Simulating 2D Crack Growth Problems
by Abdulnaser M. Alshoaibi and Yahya Ali Fageehi
Materials 2023, 16(19), 6481; https://doi.org/10.3390/ma16196481 - 29 Sep 2023
Cited by 2 | Viewed by 2097
Abstract
This paper introduces a robust algorithm that efficiently generates high-quality unstructured triangular meshes to model complex two-dimensional crack growth problems within the framework of linear elastic fracture mechanics (LEFM). The proposed Visual Fortran code aims to address key challenges in mesh generation including [...] Read more.
This paper introduces a robust algorithm that efficiently generates high-quality unstructured triangular meshes to model complex two-dimensional crack growth problems within the framework of linear elastic fracture mechanics (LEFM). The proposed Visual Fortran code aims to address key challenges in mesh generation including geometric complexity, required simulation accuracy, and computational resource constraints. The algorithm incorporates adaptive refinement and updates to the mesh structure near the crack tip, resulting in the formation of rosette elements that provide accurate approximations of stress intensity factors (SIFs). By utilizing the maximum circumferential stress theory, the algorithm predicts the new crack path based on these SIFs. Throughout the simulation of crack propagation, a node splitting approach was employed to represent the progression of the crack, while the crack growth path is determined by successive linear extensions for each crack growth increment. To compute stress intensity factors (SIFs) for each increment of crack extension, a displacement extrapolation method was used. The experimental and numerical results demonstrated the algorithm’s effectiveness in accurately predicting crack growth and facilitating reliable stress analysis for complex crack growth problems in two dimensions. The obtained results for the SIF were found to be consistent with other analytical solutions for standard geometries. Full article
(This article belongs to the Special Issue Fatigue Damage and Fracture Mechanics of Materials)
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
Fatigue Crack Growth Studies under Mixed-Mode Loading in AISI 316 Stainless Steel
by Abdulnaser M. Alshoaibi and Abdullateef H. Bashiri
Appl. Sci. 2023, 13(16), 9446; https://doi.org/10.3390/app13169446 - 21 Aug 2023
Cited by 5 | Viewed by 3065
Abstract
The objective of this study is to examine the behavior of fatigue crack growth (FCG) in the mixed mode (I/II) of the AISI 316 austenitic stainless steel alloy, considering mode mixity angles of 30°, 45°, and 60°. This particular alloy is widely used [...] Read more.
The objective of this study is to examine the behavior of fatigue crack growth (FCG) in the mixed mode (I/II) of the AISI 316 austenitic stainless steel alloy, considering mode mixity angles of 30°, 45°, and 60°. This particular alloy is widely used in the marine industry and various structural components because of its exceptional properties, such as high corrosion resistance, good formability, weldability, and high-temperature strength. By investigating the crack growth behavior, the study seeks to provide insights into the material’s durability and potential for long-term use in demanding applications. To analyze fatigue crack growth behavior using linear elastic fracture mechanics (LEFM), this study utilizes compact tension shear (CTS) specimens with varying loading angles. The CTS specimens provide an accurate simulation of real-world loading conditions by allowing for the application of various loading configurations, resulting in mixed-mode loading. The ANSYS Mechanical APDL 19.2 software, which includes advanced features such as separating, morphing, and adaptive remeshing technologies (SMART), was utilized in this study to precisely model the path of crack propagation, evaluate the associated fatigue life, and determine stress intensity factors. Through comparison with experimental data, it was confirmed that the loading angle had a significant impact on both the fatigue crack growth paths and the fatigue life cycles. The stress-intensity factor predictions from numerical models were compared to analytical data. Interestingly, it was observed that the maximum shear stress and von Mises stresses occurred when the loading angle was 45 degrees, which is considered a pure shear loading condition. The comparison shows consistent results, indicating that the simulation accurately captures the behavior of the AISI 316 austenitic stainless steel alloy under mixed-mode loading conditions. Full article
(This article belongs to the Special Issue Focus on Fatigue and Fracture of Engineering Materials, Volume II)
Show Figures

Figure 1

Back to TopTop