Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = line spectrum vibration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3008 KiB  
Article
Quantitative Analysis of Sulfur Elements in Mars-like Rocks Based on Multimodal Data
by Yuhang Dong, Zhengfeng Shi, Junsheng Yao, Li Zhang, Yongkang Chen and Junyan Jia
Sensors 2025, 25(14), 4388; https://doi.org/10.3390/s25144388 - 14 Jul 2025
Viewed by 146
Abstract
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy [...] Read more.
The Zhurong rover of the Tianwen-1 mission has detected sulfates in its landing area. The analysis of these sulfates provides scientific evidence for exploring past hydration conditions and atmospheric evolution on Mars. As a non-contact technique with long-range detection capability, Laser-Induced Breakdown Spectroscopy (LIBS) is widely used for elemental identification on Mars. However, quantitative analysis of anionic elements using LIBS remains challenging due to the weak characteristic spectral lines of evaporite salt elements, such as sulfur, in LIBS spectra, which provide limited quantitative information. This study proposes a quantitative analysis method for sulfur in sulfate-containing Martian analogs by leveraging spectral line correlations, full-spectrum information, and prior knowledge, aiming to address the challenges of sulfur identification and quantification in Martian exploration. To enhance the accuracy of sulfur quantification, two analytical models for high and low sulfur concentrations were developed. Samples were classified using infrared spectroscopy based on sulfur content levels. Subsequently, multimodal deep learning models were developed for quantitative analysis by integrating LIBS and infrared spectra, based on varying concentrations. Compared to traditional unimodal models, the multimodal method simultaneously utilizes elemental chemical information from LIBS spectra and molecular structural and vibrational characteristics from infrared spectroscopy. Considering that sulfur exhibits distinct absorption bands in infrared spectra but demonstrates weak characteristic lines in LIBS spectra due to its low ionization energy, the combination of both spectral techniques enables the model to capture complementary sample features, thereby effectively improving prediction accuracy and robustness. To validate the advantages of the multimodal approach, comparative analyses were conducted against unimodal methods. Furthermore, to optimize model performance, different feature selection algorithms were evaluated. Ultimately, an XGBoost-based feature selection method incorporating prior knowledge was employed to identify optimal LIBS spectral features, and the selected feature subsets were utilized in multimodal modeling to enhance stability. Experimental results demonstrate that, compared to the BPNN, SVR, and Inception unimodal methods, the proposed multimodal approach achieves at least a 92.36% reduction in RMSE and a 46.3% improvement in R2. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

18 pages, 4257 KiB  
Article
A Semi-Analytical Method to Design a Dynamic Vibration Absorber for Coupled Plate Structures of Offshore Platforms
by Yuan Du, Fuxin Jia, Yang Tang, Jiajun Zheng, Yucheng Zou and Yong Ma
J. Mar. Sci. Eng. 2025, 13(2), 283; https://doi.org/10.3390/jmse13020283 - 3 Feb 2025
Viewed by 669
Abstract
Coupled plate structures composed of stiffened plates and sub-plates have been widely used in marine engineering practice. Meanwhile, the low-frequency multi-linear spectrum vibration control of the coupled stiffened plate structures has become necessary and meaningful. However, the design efficiency of the dynamic vibration [...] Read more.
Coupled plate structures composed of stiffened plates and sub-plates have been widely used in marine engineering practice. Meanwhile, the low-frequency multi-linear spectrum vibration control of the coupled stiffened plate structures has become necessary and meaningful. However, the design efficiency of the dynamic vibration absorber of the corresponding structure is still low. In the present study, a mathematical model of coupled plate structures and a dynamic vibration absorber is introduced to improve design efficiency. Subsequently, an experiment is designed to verify the effectiveness and advantages of the current method. The reliability of the current mathematical model is verified by comparing it with modal experiment results. Moreover, the equivalent mass solution efficiency is greatly improved by comparing it with FEM. Finally, a comparison experiment of the dynamic vibration absorber has also been conducted to further verify the effectiveness of the current method. The semi-analytical method proposed in the current research may be useful when designing dynamic vibration absorbers for the coupled plate structures of offshore platforms. Full article
Show Figures

Figure 1

18 pages, 3538 KiB  
Article
Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study
by Lara Martínez-Fernández and Roberto Improta
Molecules 2025, 30(2), 298; https://doi.org/10.3390/molecules30020298 - 13 Jan 2025
Cited by 1 | Viewed by 1169
Abstract
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that [...] Read more.
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance. In the latter, the spin density is localized on a single naphthalene molecule, and different minima or pseudo-minima are possible, the most stable one corresponding to a slipped parallel arrangement. According to B2PLYP-D3 calculations, excimer minima are the most stable, in line with the indications of ADC(2) studies. However, the relative stability of the minima is reverted when including thermal and vibrational effects. Excimer minima exhibit a very intense absorption spectrum, peaking above 500 nm. The computed absorption spectra of localized minima significantly depend on the stacking geometry and do not coincide with that of isolated naphthalene. Hybrid functionals provide very accurate vibronic absorption spectra for naphthalene monomer, both in the singlet and in the triplet state, but underestimate the stability of the excimer triplet. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

12 pages, 1722 KiB  
Article
Development of Interface-Specific Two-Dimensional Vibrational–Electronic (i2D-VE) Spectroscopy for Vibronic Couplings at Interfaces
by Yuqin Qian, Zhi-Chao Huang-Fu, Jesse B. Brown and Yi Rao
Spectrosc. J. 2025, 3(1), 1; https://doi.org/10.3390/spectroscj3010001 - 3 Jan 2025
Cited by 1 | Viewed by 1463
Abstract
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used [...] Read more.
Bulk 2D electronic–vibrational (2D-EV) and 2D vibrational–electronic spectroscopies (2D-VE) were previously developed to correlate the electronic and vibrational degrees of freedom simultaneously, which allow for the study of couplings between electronic and vibrational transitions in photo-chemical systems. Such bulk-dominated methods have been used to extensively study molecular systems, providing unique information such as coherence sensitivity, molecular configurations, enhanced resolution, and correlated states and their dynamics. However, the analogy of interfacial 2D spectroscopy has fallen behind. Our recent work presented interface-specific 2D-EV spectroscopy (i2D-EV). In this work, we develop interface-specific two-dimensional vibrational–electronic spectroscopy (i2D-VE). The fourth-order spectroscopy is based on a Mach–Zehnder IR interferometer that accurately controls the time delay of an IR pump pulse pair for vibrational transitions, followed by broadband interface second-harmonic generation to probe electronic transitions. We demonstrate step-by-step how a fourth-order i2D-VE spectrum of AP3 molecules at the air/water interface was collected and analyzed. The line shape and signatures of i2D-VE peaks reveal solvent correlations and the spectral nature of vibronic couplings. Together, i2D-VE and i2D-EV spectroscopy provide coupling of different behaviors of the vibrational ground state or excited states with electronic states of molecules at interfaces and surfaces. The methodology presented here could also probe dynamic couplings of electronic and vibrational motions at interfaces and surfaces, extending the usefulness of the rich data that are obtained. Full article
Show Figures

Figure 1

11 pages, 3469 KiB  
Article
Resolving Visible Emission Lines in Hydrogen Diffusion Flames
by Muyi Pan, Xuanqi Liu, Yufeng Lai, Yuchen Zhang and Yang Zhang
Aerospace 2024, 11(12), 983; https://doi.org/10.3390/aerospace11120983 - 28 Nov 2024
Cited by 1 | Viewed by 1269
Abstract
The hydrogen diffusion flame is commonly described as difficult to see in the visible range. However, even in controlled laboratory conditions with careful imaging, the flame appears reddish. Previous research has reported a variety of colours generated from hydrogen flames. Some researchers believe [...] Read more.
The hydrogen diffusion flame is commonly described as difficult to see in the visible range. However, even in controlled laboratory conditions with careful imaging, the flame appears reddish. Previous research has reported a variety of colours generated from hydrogen flames. Some researchers believe that the visible colour is due to sodium in airborne dust. Other studies suggest the flame colour is caused by the vibration–rotation band of water vapour. In addition, Hα emits radiance in the visible range; therefore, the visible colour of the hydrogen flame could be contributed from the Hα emission. Nevertheless, a definitive conclusion to explain the visible reddish colour of the hydrogen flame is lacking. This paper reports precisely instrumented spectroscopic imaging tests, calibration, and data processing in order to resolve the spectral lines in the red colour zone (580–700 nm). This study used a spectrograph and a DSLR camera to capture the spectrum of hydrogen diffusion flames under different co-flow conditions. The values of emission lines in this range were compared with the databases provided by HITRAN molecular spectroscopy and the National Institute of Standards and Technology (NIST). The results of this study show that Hα emission is highly likely to appear in a hydrogen diffusion flame, which contradicts the previous hypothesis. This work may provide new insight into hydrogen-based combustion. Full article
Show Figures

Figure 1

18 pages, 9884 KiB  
Article
The Far-Infrared Absorption Spectrum of HD16O: Experimental Line Positions, Accurate Empirical Energy Levels, and a Recommended Line List
by Semen N. Mikhailenko, Ekaterina V. Karlovets, Aleksandra O. Koroleva and Alain Campargue
Molecules 2024, 29(23), 5508; https://doi.org/10.3390/molecules29235508 - 21 Nov 2024
Cited by 1 | Viewed by 1090
Abstract
The far-infrared absorption spectrum of monodeuterated water vapor, HD16O, is analyzed using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spectroscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of H2O and [...] Read more.
The far-infrared absorption spectrum of monodeuterated water vapor, HD16O, is analyzed using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spectroscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of H2O and D2O leading to a HDO abundance close to 50%. The room temperature spectra recorded in the 50–720 cm−1 range cover most of the rotational band. The sensitivity of the recordings allows for lowering by three orders of magnitude the detectivity threshold of previous absorption studies in the region. Line centers are determined with a typical accuracy of 5 × 10−5 cm−1 for well-isolated lines. The combined line list of 8522 water lines is assigned to 9186 transitions of the nine stable water isotopologues (H2XO, HDXO, and D2XO with X = 16, 17, and 18). Regarding the HD16O isotopologue, a total of 2443 transitions are presently assigned while about 530 absorption transitions were available prior to our SOLEIL recordings. The comparison with the HITRAN list of HD16O transitions is discussed in detail. The obtained set of accurate HD16O transition frequencies is merged with literature sources to generate a set of 1121 accurate empirical rotation–vibration energies for the first five vibrational states (000), (010), (100), (020), and (001). The comparison to the previous dataset from an IUPAC task group illustrates a gain in the average energy accuracy by more than one order of magnitude. Based on these levels, a recommended list of transitions between the first five vibrational states is proposed for HD16O in the 0–4650 cm−1 frequency range. Full article
(This article belongs to the Special Issue Molecular Spectroscopy and Molecular Structure in Europe)
Show Figures

Graphical abstract

15 pages, 1798 KiB  
Article
Long-Tune Natural Logarithmic Wavelength Modulation Spectroscopy for Gas Sensing
by Lijuan Lan, Changsheng Zhang, Yibo Wang, Yu Xie, Luheng Wang and Chunhua Yang
Sensors 2024, 24(22), 7365; https://doi.org/10.3390/s24227365 - 19 Nov 2024
Cited by 1 | Viewed by 825
Abstract
This article presents a gas sensing method based on long-tune natural logarithmic wavelength modulation spectroscopy (long-tune ln-WMS) and explores means to improve its accuracy. The long-tune spectrum can detect multiple gases with high precision. In ln-WMS, due to the natural logarithm algorithm, the [...] Read more.
This article presents a gas sensing method based on long-tune natural logarithmic wavelength modulation spectroscopy (long-tune ln-WMS) and explores means to improve its accuracy. The long-tune spectrum can detect multiple gases with high precision. In ln-WMS, due to the natural logarithm algorithm, the harmonic magnitude which is related to gas concentration would not be affected by the light intensity fluctuations. However, the background signal of the harmonic will become strong and nonlinear in the long-tune spectrum. Three CO2 absorption lines and one H2O line near 2004 nm are applied to verify the proposed theory. The effects of light intensity, modulation depth, gas concentration, and phase shift on the harmonics are tested separately through both simulations and experiments. The results reveal that our proposed method can always keep the harmonics at their maximum which ensures high measurement precision. Moreover, the background signal only varies with the modulation depth, not the concentration and light intensity. Even the mechanical vibrations cannot disturb the harmonics, which enables the proposed method to be suitable for gas detection in harsh environments, especially for heavy dust and severe mechanical vibrations. The CO2 concentration detection results indicate that when the background is eliminated, the accuracy can be achieved with a relative error of below 0.5%, while the error would be greater than 5% with background presence. The proposed long-tune ln-WMS method is effective for trace gas detection (weak absorption) or over-modulation conditions and has potential applications in field inspection. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

24 pages, 14320 KiB  
Article
Localized Bearing Fault Analysis for Different Induction Machine Start-Up Modes via Vibration Time–Frequency Envelope Spectrum
by Jose E. Ruiz-Sarrio, Jose A. Antonino-Daviu and Claudia Martis
Sensors 2024, 24(21), 6935; https://doi.org/10.3390/s24216935 - 29 Oct 2024
Cited by 1 | Viewed by 1686
Abstract
Bearings are the most vulnerable component in low-voltage induction motors from a maintenance standpoint. Vibration monitoring is the benchmark technique for identifying mechanical faults in rotating machinery, including the diagnosis of bearing defects. The study of different bearing fault phenomena under induction motor [...] Read more.
Bearings are the most vulnerable component in low-voltage induction motors from a maintenance standpoint. Vibration monitoring is the benchmark technique for identifying mechanical faults in rotating machinery, including the diagnosis of bearing defects. The study of different bearing fault phenomena under induction motor transient conditions offers interesting capabilities to enhance classic fault detection techniques. This study analyzes the low-frequency localized bearing fault signatures in both the inner and outer races during the start-up and steady-state operation of inverter-fed and line-started induction motors. For this aim, the classic vibration envelope spectrum technique is explored in the time–frequency domain by using a simple, resampling-free, Short Time Fourier Transform (STFT) and a band-pass filtering stage. The vibration data are acquired in the motor housing in the radial direction for different load points. In addition, two different localized defect sizes are considered to explore the influence of the defect width. The analysis of extracted low-frequency characteristic frequencies conducted in this study demonstrates the feasibility of detecting early-stage localized bearing defects in induction motors across various operating conditions and actuation modes. Full article
Show Figures

Figure 1

17 pages, 12036 KiB  
Article
Inversion Uncertainty of OH Airglow Rotational Temperature Based on Fine Spectral Measurement
by Baichuan Jiang, Haiyang Gao, Shuqi Niu, Ke Ren and Shaoyang Sun
Remote Sens. 2024, 16(16), 2940; https://doi.org/10.3390/rs16162940 - 11 Aug 2024
Viewed by 1205
Abstract
The inversion of temperature by detecting the ratio of the intensity of airglow vibrational and rotational spectral lines is a traditional method for obtaining mesopause temperature. However, previous studies have shown that there is significant uncertainty in the temperature inversion using this technology. [...] Read more.
The inversion of temperature by detecting the ratio of the intensity of airglow vibrational and rotational spectral lines is a traditional method for obtaining mesopause temperature. However, previous studies have shown that there is significant uncertainty in the temperature inversion using this technology. A spectrograph instrument called the Mesosphere Airglow Fine Spectrometer (MAFS) was previously developed by our research team. Based on the MAFS, this work systematically evaluated the impact of the spectral line extraction methods and residual background noise elimination methods on temperature inversion results of the OH (6-2) Q-branch as the target. The fitting of residual background noise using different numbers of sampling points can cause the inverted temperature to vary by 5 K to 10 K without changing the overall trend. The temperature inversion results obtained using the three-region single-fit method were generally 3 K to 5 K higher than those obtained using the two-region double-fit method. Moreover, the temperature obtained using the Gaussian fitting area varied by approximately 15 K, with changes in the residual background noise fitting method; however, when using a spectrum peak instead of the Gaussian fitting area, this variation decreased to approximately 10 K. When the temperature is higher, both the residual background noise fitting and the spectral line intensity extraction methods have a more significant impact on the uncertainty of temperature inversion. Full article
Show Figures

Figure 1

19 pages, 9959 KiB  
Article
Physico-Chemical and Biological Features of Fluorine-Substituted Hydroxyapatite Suspensions
by Carmen Steluta Ciobanu, Daniela Predoi, Simona Liliana Iconaru, Mihai Valentin Predoi, Krzysztof Rokosz, Steinar Raaen, Catalin Constantin Negrila, Nicolas Buton, Liliana Ghegoiu and Monica Luminita Badea
Materials 2024, 17(14), 3404; https://doi.org/10.3390/ma17143404 - 10 Jul 2024
Cited by 5 | Viewed by 1501
Abstract
Infections related to orthopedic/stomatology surgery are widely recognized as a significant health concern. Therefore, the development of new materials with superior biological properties and good stability could represent a valuable alternative to the classical treatments. In this paper, the fluorine-substituted hydroxyapatite (FHAp) suspension, [...] Read more.
Infections related to orthopedic/stomatology surgery are widely recognized as a significant health concern. Therefore, the development of new materials with superior biological properties and good stability could represent a valuable alternative to the classical treatments. In this paper, the fluorine-substituted hydroxyapatite (FHAp) suspension, with the chemical formula Ca10(PO4)6(OH)2−2xF2x (where x = 0.05), was prepared using a modified coprecipitation technique. Stability studies were conducted by zeta potential and ultrasound measurements for the first time. The X-ray diffraction (XRD) patterns of FHAp powders displayed a hexagonal structure akin to that of pure hydroxyapatite (HAp). The XPS general spectrum revealed peaks corresponding to the constituent elements of fluorine-substituted hydroxyapatite such as calcium, phosphorus, oxygen, and fluorine. The purity of the obtained FHAp samples was confirmed by energy-dispersive X-ray spectroscopy (EDS) studies. The FHAp morphology was evaluated by scanning electron microscopy (SEM) measurements. Fourier-transform infrared spectroscopy (FTIR) studies were performed in order to study the vibrational properties of the FHAp samples. The FHAp suspensions were tested for antibacterial activity against reference strains such as Staphylococcus aureus 25923 ATCC, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231. Additionally, the biocompatibility of the FHAp suspensions was assessed using human fetal osteoblastic cells (hFOB 1.19 cell line). The results of our biological tests suggest that FHAp suspensions are promising candidates for the future development of new biocompatible and antimicrobial agents for use in the biomedical field. Full article
Show Figures

Figure 1

22 pages, 1272 KiB  
Article
A Novel UAV Air-to-Air Channel Model Incorporating the Effect of UAV Vibrations and Diffuse Scattering
by Wenzhe Qi, Ji Bian, Zili Wang and Wenzhao Liu
Drones 2024, 8(5), 194; https://doi.org/10.3390/drones8050194 - 12 May 2024
Cited by 3 | Viewed by 2511
Abstract
In this paper, we propose a geometric channel model for air-to-air (A2A) unmanned aerial vehicle (UAV) communication scenarios. The model is established by incorporating line-of-sight, specular reflection, and diffuse scattering components, and it can capture the impacts of UAV vibrations induced by the [...] Read more.
In this paper, we propose a geometric channel model for air-to-air (A2A) unmanned aerial vehicle (UAV) communication scenarios. The model is established by incorporating line-of-sight, specular reflection, and diffuse scattering components, and it can capture the impacts of UAV vibrations induced by the propeller’s rotation. Based on UAV heights and ground scatterer density, a closed-form expression is derived to jointly capture the zenith and azimuth angular distributions of diffuse rays. The power of diffuse rays is modeled according to the grazing angle of the rays and the electrical properties and roughness of the ground materials. Key statistics, including the temporal autocorrelation function, spatial cross-correlation function, Doppler power spectrum density, and coherence time are derived, providing an in-depth understanding of the time-variant characteristics of the channel. The results indicate that the presented model is capable of capturing certain A2A channel characteristics, which align with the corresponding theoretical analysis. The findings suggest that the scattering effect of the A2A channel is significantly influenced by the altitude of the UAV. Additionally, it is shown that UAV vibrations can introduce extra Doppler frequencies, notably decreasing the temporal correlation and coherence time of the channel. This effect is more prominent when the system operates at high-frequency bands. The effectiveness of the presented model is confirmed through a comparison of its statistics with those of an existing model and with available measurement data. Full article
Show Figures

Figure 1

19 pages, 27087 KiB  
Article
Bridge Monitoring Strategies for Sustainable Development with Microwave Radar Interferometry
by Lilong Zou, Weike Feng, Olimpia Masci, Giovanni Nico, Amir M. Alani and Motoyuki Sato
Sustainability 2024, 16(7), 2607; https://doi.org/10.3390/su16072607 - 22 Mar 2024
Cited by 7 | Viewed by 2064
Abstract
The potential of a coherent microwave radar for infrastructure health monitoring has been investigated over the past decade. Microwave radar measuring based on interferometry processing is a non-invasive technique that can measure the line-of-sight (LOS) displacements of large infrastructure with sub-millimeter precision and [...] Read more.
The potential of a coherent microwave radar for infrastructure health monitoring has been investigated over the past decade. Microwave radar measuring based on interferometry processing is a non-invasive technique that can measure the line-of-sight (LOS) displacements of large infrastructure with sub-millimeter precision and provide the corresponding frequency spectrum. It has the capability to estimate infrastructure vibration simultaneously and remotely with high accuracy and repeatability, which serves the long-term serviceability of bridge structures within the context of the long-term sustainability of civil engineering infrastructure management. In this paper, we present three types of microwave radar systems employed to monitor the displacement of bridges in Japan and Italy. A technique that fuses polarimetric analysis and the interferometry technique for bridge monitoring is proposed. Monitoring results achieved with full polarimetric real aperture radar (RAR), step-frequency continuous-wave (SFCW)-based linear synthetic aperture, and multi-input multi-output (MIMO) array sensors are also presented. The results reveal bridge dynamic responses under different loading conditions, including wind, vehicular traffic, and passing trains, and show that microwave sensor interferometry can be utilized to monitor the dynamics of bridge structures with unprecedented spatial and temporal resolution. This paper demonstrates that microwave sensor interferometry with efficient, cost-effective, and non-destructive properties is a serious contender to employment as a sustainable infrastructure monitoring technology serving the sustainable development agenda. Full article
Show Figures

Figure 1

17 pages, 15338 KiB  
Article
Experimentally Determined Force Density Spectra for Admittance-Based Vibration Predictions along Railways
by Benedikt Tappauf, Karoline Alten, Marianne Legenstein, Marlene Ofner and Rainer Flesch
Appl. Sci. 2024, 14(6), 2557; https://doi.org/10.3390/app14062557 - 19 Mar 2024
Viewed by 3986
Abstract
The planning application and approval process of railway tracks is generally accompanied by a vibration immission assessment. Starting with the source spectrum, which is ideally obtained through measurements, the German guideline VDI 3837 recommends a series of multiplications using transfer spectra which account [...] Read more.
The planning application and approval process of railway tracks is generally accompanied by a vibration immission assessment. Starting with the source spectrum, which is ideally obtained through measurements, the German guideline VDI 3837 recommends a series of multiplications using transfer spectra which account for the various subdomains of the wave propagation path, such as the effect of the superstructure, the free field propagation, the soil-structure coupling and the transmission inside buildings. Typically, these one-third octave spectra are an average over empirical reference values. While simplified empirical relations are prone to a large variance, the use of artificial vibration sources allows the actual vibration transmission behavior from the tracks to the immission points to be quantified. Using so-called transfer admittances, also known as transfer mobilities, which account for all dynamic interactions along the transmission path (track, tunnel structures, foundations, structural properties), together with force density spectra for relevant rail vehicles, the authors investigate the practical application of the method presented in Report No. 0123 of the Federal Transit Administration (2018) for the frequency range 5–200 Hz. The article demonstrates how such force density spectra were obtained for the most common train types in the Austrian rail network at two different track sections using artificial vibration sources. Furthermore, practical aspects are discussed and a recently developed approximation method for estimating line transfer admittances from point transfer admittances using simplified models is introduced. Full article
Show Figures

Figure 1

15 pages, 5666 KiB  
Article
Inclusions and Spectral Characterization of Demantoid from Baluchistan, Pakistan
by Jian-Yi Zhang, Geng Li, Yu Tian and Fabian Schmitz
Crystals 2024, 14(1), 84; https://doi.org/10.3390/cryst14010084 - 16 Jan 2024
Cited by 15 | Viewed by 2110
Abstract
Demantoid is the green variety of andradite [Ca3Fe2(SiO4)3], an exceptionally rare and precious gemstone worldwide. In recent years, a small amount of gem-quality demantoid has been found in Pakistan. This research focuses on nine demantoids [...] Read more.
Demantoid is the green variety of andradite [Ca3Fe2(SiO4)3], an exceptionally rare and precious gemstone worldwide. In recent years, a small amount of gem-quality demantoid has been found in Pakistan. This research focuses on nine demantoids sourced from Muslim Bagh, Baluchistan, Pakistan, presenting a comprehensive analysis of the spectral characteristics and inclusions of Pakistani demantoid using classical gemological methods, energy dispersive X-ray fluorescence (EDXRF) chemical analyses, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and ultraviolet and visible (UV-vis) spectroscopy. The results show that the content of Cr and V in most samples is lower than the detection line of EDXRF, with only one sample containing a Cr2O3 content of 0.032%. The extremely low Cr content sets Pakistani demantoid apart from demantoid of the serpentinite type found in other regions. Notably, the UV-vis spectrum reveals characteristic absorption at 443 nm due to Fe3+, while a further contribution from Cr3+ would be highly likely, and weak absorption at 550 nm caused by Fe3+. This suggests that iron (Fe) is the primary chromogenic element of Pakistani demantoid, but the role of Cr3+ cannot be ignored. The FTIR spectrum of Pakistani demantoid displays the absorption peaks associated with [SiO4]4− groups at 937 cm−1, 848 cm−1, and 817 cm−1, while the absorption peaks resulting from trivalent cations appear at 481 cm−1 and 442 cm−1, which are the characteristic FTIR spectra of demantoid. Raman spectroscopy further reveals absorption peaks are displayed near 994 cm−1, 843 cm−1, 818 cm−1, associated with (Si–O)Str vibrations (Si–O stretching vibration), and absorption peaks are displayed near 350 cm−1 and 310 cm−1, related to the rotation of SiO4–R(SiO4)4−, and the peaks near 514 cm−1 and 494 cm−1 are related to (Si–O)bend vibrations (Si–O bending vibration). Additionally, related absorption peaks near 168 cm−1 are attributed to the translation of SiO4–T(SiO4)4−, and absorption peaks near 234 cm−1 are associated with the translation of X2+–T(X2+) (X2+ represents divalent ions). The common dark opaque inclusions found in Pakistani demantoid consist of a combination of magnetite and hematite. Additionally, some samples of Pakistani demantoid display inclusions of calcite. This unique combination of inclusions differentiates Pakistani demantoid from demantoids sourced from other regions. It signifies that Pakistani demantoid has a distinctive geological origin resulting from the interplay of serpentinization and skarnization processes. This geological formation distinguishes it from demantoids solely hosted in serpentinite or skarn environments in other origins. The identification of these characteristics holds significant importance for accurately determining the origin of Pakistani demantoid. Full article
Show Figures

Figure 1

17 pages, 2626 KiB  
Article
The Accuracy of Frequency Estimation of Structure Vibration under Ambient Excitation: Problems, Causes, and Methods
by Chang Deng, Jiaqi Wen, Lei Tang, Xin Cai and Feng Peng
Buildings 2024, 14(1), 198; https://doi.org/10.3390/buildings14010198 - 12 Jan 2024
Cited by 1 | Viewed by 1336
Abstract
Accurate identification of building structure frequencies forms the basis for damage detection. The structural dynamic response signal, under ambient excitation, can be transformed into a superposition of multiple single-frequency exponentially damped sinusoids combined with random white noise. However, the peak power spectrum of [...] Read more.
Accurate identification of building structure frequencies forms the basis for damage detection. The structural dynamic response signal, under ambient excitation, can be transformed into a superposition of multiple single-frequency exponentially damped sinusoids combined with random white noise. However, the peak power spectrum of the response signal tends to exhibit line splitting, compromising the precision of frequency identification. This study examines the accuracy characteristics of the single-frequency free damping vibration signal (SFFDVS) and derives the Cramer–Rao lower bound for the frequency estimator. It thoroughly analyzes the factors influencing the accuracy of SFFDVS frequency identification. The study reveals that the primary cause of spectral line splitting is the random delay inherent in SFFDVS. Based on the maximum likelihood method (MLM), this research introduces the MLM algorithm for SFFDVS and provides a simulation analysis. The findings indicate that the MLM estimation algorithm for frequency parameters effectively addresses spectral line splitting and offers robust noise resistance and recognition accuracy. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop