Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = line loss compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7821 KB  
Article
Systematic Analysis of Fertility Conversion via WGCNA Implicates a Compensatory Regulatory Network in a Reverse Thermosensitive Genic Male Sterility Line of Eggplant (Solanum melongena L.)
by Bing Li, Yongpeng Li, Peng Tian, Jingjing Zhang, Wei Liu, Xiurui Gao and Yanrong Wu
Int. J. Mol. Sci. 2025, 26(22), 10873; https://doi.org/10.3390/ijms262210873 - 9 Nov 2025
Viewed by 186
Abstract
Thermosensitive genic male sterility (TGMS) lines are vital for two-line hybrid breeding. However, the molecular mechanism in the reverse TGMS line 05ms in eggplant remains unclear. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data revealed modules correlated with fertility conversion enriched in [...] Read more.
Thermosensitive genic male sterility (TGMS) lines are vital for two-line hybrid breeding. However, the molecular mechanism in the reverse TGMS line 05ms in eggplant remains unclear. Weighted gene co-expression network analysis (WGCNA) of RNA-seq data revealed modules correlated with fertility conversion enriched in carbohydrate metabolism, lipid metabolism, and mRNA surveillance pathways. Hub genes within these modules were predominantly associated with sugar-related processes, fatty acid metabolism, and nucleotide processing. BSA-seq defined candidate genomic intervals. Integrated analysis of BSA-seq intervals and transcriptomic data identified a candidate gene, SmHTH, with consistently lower expression in 05ms compared to S63. Its homologs exhibited temperature-induced expression, possibly compensating for SmHTH deficiency under high temperatures to restore fertility. The homologs co-expressed with three transcription factors are likely intricately linked to this response. We propose a compensatory model demonstrating that low SmHTH expression at low temperatures disrupts key metabolic pathways, causing male sterility. Conversely, elevated expression of homologous genes and transcription factors (TFs) at higher temperatures compensates for the loss of SmHTH function, thereby restoring fertility. The findings of this research not only deepen the theoretical understanding of plant male sterility mechanisms but also provide valuable resources for developing stress-resilient vegetable varieties through modern breeding techniques. Full article
Show Figures

Figure 1

13 pages, 1451 KB  
Article
Exposure to Sulfur Hexafluoride Influences Viability in Cell Transplant Suspensions
by Laura Martínez-Alarcón, Sergio Liarte, Juana M. Abellaneda, Juan J. Quereda, Livia Mendonça, Antonio Muñoz, Pablo Ramírez and Guillermo Ramis
BioTech 2025, 14(4), 86; https://doi.org/10.3390/biotech14040086 - 31 Oct 2025
Viewed by 199
Abstract
Cell transplantation is often performed with ultrasonographic guidance for accurate delivery through injection. In such procedures, using ultrasonographic contrast greatly improves target delivery. However, accumulating evidence suggests that exposure to such contrast agents may have negative effects on transplanted cells. No study so [...] Read more.
Cell transplantation is often performed with ultrasonographic guidance for accurate delivery through injection. In such procedures, using ultrasonographic contrast greatly improves target delivery. However, accumulating evidence suggests that exposure to such contrast agents may have negative effects on transplanted cells. No study so far has researched this issue. Stabilized sulfur hexafluoride (SF6) microbubbles are a widely used sonographic contrast agent. Skin hCD55 porcine transgenic fibroblasts and mesenchymal stem cells from human bone marrow (hMSCs) were exposed in vitro to SF6 in concentrations ranging from 1.54 µM to 308 µM. The effects on viability and cell growth were registered using an impedance-based label-free Real-Time Cell Analyzer (RTCA). Data was recorded every 15 min for 50 h of total study time. Both cell lines behave distinctly when exposed to SF6. Porcine fibroblast growth showed relevant alterations only when exposed to higher concentrations. In contrast, hMSCs showed progressive growth decrease in relation to SF6 concentration. Taken together, while SF6-based contrast agents pose no threat to patient safety, our results indicate that exposure of suspended stem cells to the contrast agent could affect the effective dose administered in cell therapy procedures. This prompts specific cell lineage testing, adjusting methods and properly compensating for cell loss, with a potential impact on procedural cost and success rates. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

34 pages, 10051 KB  
Article
Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO
by Ramesh Bonela, Sasmita Tripathy, Sriparna Roy Ghatak, Sarat Chandra Swain, Fernando Lopes and Parimal Acharjee
Energies 2025, 18(21), 5728; https://doi.org/10.3390/en18215728 - 30 Oct 2025
Viewed by 274
Abstract
This study aims to provide an efficient framework for the coordinated integration of AC and DC chargers, intermittent solar Photovoltaic (PV) Distributed Generation (DG) units, and a Distribution Static Compensator (DSTATCOM) across residential, commercial, and industrial zones of a Radial Distribution Network (RDN) [...] Read more.
This study aims to provide an efficient framework for the coordinated integration of AC and DC chargers, intermittent solar Photovoltaic (PV) Distributed Generation (DG) units, and a Distribution Static Compensator (DSTATCOM) across residential, commercial, and industrial zones of a Radial Distribution Network (RDN) considering the benefits of various stakeholders: Electric Vehicle (EV) charging station owners, EV owners, and distribution network operators. The model uses a multi-zone planning method and healthy-bus strategy to allocate Electric Vehicle Charging Stations (EVCSs), Photovoltaic Distributed Generation (PVDG) units, and DSTATCOMs. The proposed framework optimally determines the numbers of EVCSs, PVDG units, and DSTATCOMs using Harris Hawk Optimization, considering the maximization of techno-economic benefits while satisfying all the security constraints. Further, to showcase the benefits from the perspective of EV owners, an EV waiting-time evaluation is performed. The simulation results show that integrating EVCSs (with both AC and DC chargers) with solar PVDG units and DSTATCOMs in the existing RDN improves the voltage profile, reduces power losses, and enhances cost-effectiveness compared to the system with only EVCSs. Furthermore, the zonal division ensures that charging infrastructure is distributed across the network increasing accessibility to the EV users. It is also observed that combining AC and DC chargers across the network provides overall benefits in terms of voltage profile, line loss, and waiting time as compared to a system with only AC or DC chargers. The proposed framework improves EV owners’ access and reduces waiting time, while supporting distribution network operators through enhanced grid stability and efficient integration of EV loads, PV generation, and DSTATCOM. Full article
Show Figures

Figure 1

16 pages, 1426 KB  
Article
Nighttime Reactive Power Optimization for Large-Scale PV Plants: Minimizing Compensation Equipment Investment
by Yu-Ming Liu, Cheng-Chien Kuo and Hung-Cheng Chen
Appl. Sci. 2025, 15(19), 10748; https://doi.org/10.3390/app151910748 - 6 Oct 2025
Cited by 2 | Viewed by 478
Abstract
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, [...] Read more.
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, and inflexible, rendering them unsuitable for substation use. This study proposes an optimization-based strategy that leverages the existing inverter infrastructure of PV plants to provide nighttime reactive power compensation without additional hardware. A genetic algorithm (GA) determines the optimal number and spatial deployment of inverters to minimize line losses. Field validation at a 120 MW PV plant with 1292 inverters shows that the strategy reduces reverse reactive power from 0.84 MVAr to 0.00214 MVAr and line losses from 1.8235 kW to 0.386 kW using only 55 inverters, achieving near-zero additional capital expenditure (CAPEX). This method enhances the voltage stability and system efficiency while reducing the investment and maintenance costs. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

19 pages, 1347 KB  
Article
Model Predictive Control of a Parallel Transformerless Static Synchronous Series Compensator for Power Flow Control and Circulating Current Mitigation
by Wei Zuo, Xuejiao Pan and Li Zhang
Energies 2025, 18(18), 4884; https://doi.org/10.3390/en18184884 - 14 Sep 2025
Viewed by 438
Abstract
The paper proposes a parallel transformerless (TL) static synchronous series compensator (SSSC) for the control of power flow along the power distribution lines under balanced or unbalanced voltages. This new SSSC configuration offers the advantages of a fast dynamic response, light weight, and [...] Read more.
The paper proposes a parallel transformerless (TL) static synchronous series compensator (SSSC) for the control of power flow along the power distribution lines under balanced or unbalanced voltages. This new SSSC configuration offers the advantages of a fast dynamic response, light weight, and high efficiency. By connecting multiple SSSCs in parallel, the current rating is increased, which improves the grid power transfer capabilities and flexibility. However, there may be circulating current flowing between the parallel-connected inverters, hence causing losses. A modified model predictive control scheme is thus developed, which ensures that the proposed SSSC accurately tracks the reference currents while effectively mitigating the circulating current. The model and cost function of the controller are derived and analyzed in the paper. A real-time simulation of a power line with the parallel TL SSSC controlled by a hardware-in-loop (HIL) DSP is developed to validate the performance of this device under both balanced and unbalanced line voltages. Full article
Show Figures

Figure 1

14 pages, 2221 KB  
Article
Design and Optimization of Broadband Optical Half-Band Filters Based on Cascaded MZIs
by Ke Zeng, Yu Zheng, Shu Liu, Xin Tang, Xinyu Ouyang, Keyi Fan and Chentong Yang
Photonics 2025, 12(6), 618; https://doi.org/10.3390/photonics12060618 - 18 Jun 2025
Viewed by 639
Abstract
In optical communication systems, optical half-band filters are essential for efficient spectral separation, necessitating stringent performance criteria such as a wide spectral range, low insertion loss, and minimal crosstalk. This paper proposes a broadband optical half-band filter based on a cascaded Mach–Zehnder Interferometer [...] Read more.
In optical communication systems, optical half-band filters are essential for efficient spectral separation, necessitating stringent performance criteria such as a wide spectral range, low insertion loss, and minimal crosstalk. This paper proposes a broadband optical half-band filter based on a cascaded Mach–Zehnder Interferometer (MZI) structure, which effectively improves spectral separation by enhancing flatness and sharpness at transition edges through the optimization of delay line length differences and phase compensation values. The results demonstrate that the proposed design achieves an insertion loss below 0.45 dB and inter-band crosstalk under −20.7 dB over a 40 nm bandwidth, with a roll-off of 2.2 dB/nm between 1517 nm and 1528 nm. The findings highlight the technical advantages of cascaded MZI structures in achieving high-precision spectral separation, offering a valuable reference for the development of future high-performance optical communication networks and integrated optical devices. Full article
Show Figures

Figure 1

16 pages, 7170 KB  
Article
Optimizing Reactive Compensation for Enhanced Voltage Stability in Renewable-Integrated Stochastic Distribution Networks
by Yiguo Guo, Yimu Fu, Jingxuan Li and Jiajia Chen
Processes 2025, 13(2), 303; https://doi.org/10.3390/pr13020303 - 22 Jan 2025
Cited by 2 | Viewed by 1020
Abstract
The rapid expansion of renewable energy sources and the increasing electrical load demand are complicating the operational dynamics of power grids, leading to significant voltage fluctuations and elevated line losses. To address these challenges, we propose an information gap decision-theory-based robust optimization method [...] Read more.
The rapid expansion of renewable energy sources and the increasing electrical load demand are complicating the operational dynamics of power grids, leading to significant voltage fluctuations and elevated line losses. To address these challenges, we propose an information gap decision-theory-based robust optimization method for the siting and operation of reactive compensation equipment, utilizing static var generators (SVGs) to mitigate voltage fluctuations and reduce losses. Our approach begins by projecting the scale of renewable energy integration and load growth, establishing scenarios with varying renewable-to-load growth ratios. We then develop a multi-objective optimization model that incorporates voltage–loss sensitivity, accounting for the uncertainties in renewable energy production. A case study demonstrates that our method reduces grid voltage fluctuations and losses by 29.53% and 7.75%, respectively, compared to non-intervention scenarios, highlighting its effectiveness in stabilizing distribution networks. Full article
Show Figures

Figure 1

25 pages, 1471 KB  
Article
Optimal Placement and Sizing of Modular Series Static Synchronous Compensators (M-SSSCs) for Enhanced Transmission Line Loadability, Loss Reduction, and Stability Improvement
by Cristian Urrea-Aguirre, Sergio D. Saldarriaga-Zuluaga, Santiago Bustamante-Mesa, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
Processes 2025, 13(1), 34; https://doi.org/10.3390/pr13010034 - 27 Dec 2024
Cited by 4 | Viewed by 1583
Abstract
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the [...] Read more.
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the L-index. The methodology is validated on two systems: the IEEE 14-bus test network and a sub-area of the Colombian power grid, characterized by aging infrastructure and operational challenges. The optimization process employs three metaheuristic algorithms—Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Teaching–Learning-Based Optimization (TLBO)—to identify optimal configurations. System performance is analyzed under both normal operating conditions and contingency scenarios (N − 1). The results demonstrate that M-SSSC deployment significantly reduces congestion, enhances voltage stability, and improves overall system efficiency. Furthermore, this work highlights the practical application of M-SSSC in modernizing real-world grids, aligning with sustainable energy transition goals. This study identifies the optimal M-SSSC configurations and placement alternatives for the analyzed systems. Specifically, for the Colombian sub-area, the most suitable solutions involve installing M-SSSC devices in capacitive mode on the Termocol–Guajira and Santa Marta–Guajira 220 kV transmission lines. Full article
Show Figures

Figure 1

17 pages, 546 KB  
Article
Factors Affecting Food Security of Expropriated Peri-Urban Households in Ethiopia: The Case of the East Gojjam Administrative Zone
by Moges Wubet Shita, Sayeh Kassaw Agegnehu, Derjew Fentie Nurie, Tilahun Dires and Gerhard Navratil
Land 2024, 13(11), 1779; https://doi.org/10.3390/land13111779 - 29 Oct 2024
Cited by 2 | Viewed by 1506
Abstract
Food insecurity in peri-urban areas is exacerbated by high living costs, limited access to healthy food, and economic inequality. Despite its growing prevalence due to factors like land loss from urban expansion, food insecurity has received limited attention. In Ethiopia, drastic urbanization creates [...] Read more.
Food insecurity in peri-urban areas is exacerbated by high living costs, limited access to healthy food, and economic inequality. Despite its growing prevalence due to factors like land loss from urban expansion, food insecurity has received limited attention. In Ethiopia, drastic urbanization creates competition for land between agriculture and urban development, which is becoming extreme in peri-urban areas., This study aims to assess the impact of urban expansion on food security among expropriated peri-urban households in Ethiopia. Using a calorie intake-based food security line, we categorize respondents as food-secure or -insecure. The research analyzed data from 350 expropriated peri-urban households through a structured questionnaire, employing descriptive statistics and binary logistic regression. About 67% of the respondents were classified as food-insecure. The binary logit model identified several significant determinants of food security, including compensation amount and type, household head demographics, agricultural land rent participation, irrigation and credit access, off-farm income, and organic fertilizer use. To address food insecurity among expropriated households, policymakers must prioritize these factors. Government attention and policy consideration are crucial to ensure the well-being of these vulnerable populations. Full article
Show Figures

Figure 1

23 pages, 4630 KB  
Article
Ensemble LVQ Model for Photovoltaic Line-to-Line Fault Diagnosis Using K-Means Clustering and AdaGrad
by Peyman Ghaedi, Aref Eskandari, Amir Nedaei, Morteza Habibi, Parviz Parvin and Mohammadreza Aghaei
Energies 2024, 17(21), 5269; https://doi.org/10.3390/en17215269 - 23 Oct 2024
Cited by 4 | Viewed by 1380
Abstract
Line-to-line (LL) faults are one of the most frequent short-circuit conditions in photovoltaic (PV) arrays which are conventionally detected and cleared by overcurrent protection devices (OCPDs). However, OCPDs are shown to face challenges when detecting LL faults under critical detection conditions, i.e., low [...] Read more.
Line-to-line (LL) faults are one of the most frequent short-circuit conditions in photovoltaic (PV) arrays which are conventionally detected and cleared by overcurrent protection devices (OCPDs). However, OCPDs are shown to face challenges when detecting LL faults under critical detection conditions, i.e., low mismatch levels and/or high fault impedance values. This occurs due to insufficient fault current, thus leaving the LL faults undetected and leading to power losses and even catastrophic fire hazards. To compensate for OCPD deficiencies, recent studies have proposed modern artificial intelligence (AI)-based methods. However, various limitations can still be witnessed even in AI-based methods, such as (i) most of the models requiring a massive training dataset, (ii) critical fault detection conditions not being taken into consideration, (iii) models not being accurate enough when dealing with critical conditions, etc. To this end, the present paper proposes a learning vector quantization (LVQ)-based ensemble learning model in which three LVQs are individually trained to detect and classify LL faults in PV arrays. The initial LVQ vectors are determined using the k-means clustering method, and the learning rate is optimized by the adaptive gradient (AdaGrad) optimizer. The training and testing datasets are collected according to the PV array’s current–voltage (I–V) characteristic curve, and several features are extracted based on the Canberra and chi-squared distance techniques. The model utilizes a small training dataset, considers various critical detection conditions for LL faults—such as different mismatch levels and fault impedance values—and the final experimental results show that the model achieves an impressive average accuracy of 99.26%. Full article
(This article belongs to the Special Issue Terawatt-Scale Grid-Connected Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 4186 KB  
Article
Optimal Reactive Power Dispatch and Demand Response in Electricity Market Using Multi-Objective Grasshopper Optimization Algorithm
by Punam Das, Subhojit Dawn, Sadhan Gope, Diptanu Das and Ferdinando Salata
Processes 2024, 12(9), 2049; https://doi.org/10.3390/pr12092049 - 23 Sep 2024
Cited by 5 | Viewed by 2026
Abstract
Optimal Reactive Power Dispatch (ORPD) is a power system optimization tool that modifies system control variables such as bus voltage and transformer tap settings, and it compensates devices’ Volt Ampere Reactive (VAR) output. It is used to decrease real power loss, enhance the [...] Read more.
Optimal Reactive Power Dispatch (ORPD) is a power system optimization tool that modifies system control variables such as bus voltage and transformer tap settings, and it compensates devices’ Volt Ampere Reactive (VAR) output. It is used to decrease real power loss, enhance the voltage profile, and promote stability. Furthermore, several issues have been faced in electricity markets, such as price volatility, transmission line congestion, and an increase in the cost of electricity during peak hours. Programs such as demand response (DR) provide system operators with more control over how small customers participate in lowering peak-hour energy prices and demand. This paper presents an extensive study on ORPD methodologies and DR programs for lowering voltage deviation, limiting cost, and minimizing power losses to create effective and economical operations systems. The main objectives of this work are to minimize costs and losses in the system and reduce voltage variation. The Grasshopper Optimization Algorithm (GOA) and Dragonfly Algorithm (DA) have been implemented successfully to solve this problem. The proposed technique has been evaluated by using the IEEE-30 bus system. The results obtained by the implementation of demand response systems show a considerable reduction in costs and load demands that benefit consumers through DR considerations. The results obtained from the GOA and DA are compared with those generated by other researchers and published in the literature to ascertain the algorithm’s efficiency. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

18 pages, 7251 KB  
Article
A Wide-Range TCSC Based ADN in Mountainous Areas Considering Hydropower-Photovoltaic-ESS Complementarity
by Yao Guo, Shaorong Wang and Dezhi Chen
Sensors 2024, 24(18), 6028; https://doi.org/10.3390/s24186028 - 18 Sep 2024
Cited by 1 | Viewed by 1013
Abstract
Due to the radial network structures, small cross-sectional lines, and light loads characteristic of existing AC distribution networks in mountainous areas, the development of active distribution networks (ADNs) in these regions has revealed significant issues with integrating distributed generation (DGs) and consuming renewable [...] Read more.
Due to the radial network structures, small cross-sectional lines, and light loads characteristic of existing AC distribution networks in mountainous areas, the development of active distribution networks (ADNs) in these regions has revealed significant issues with integrating distributed generation (DGs) and consuming renewable energy. Focusing on this issue, this paper proposes a wide-range thyristor-controlled series compensation (TCSC)-based ADN and presents a deep reinforcement learning (DRL)-based optimal operation strategy. This strategy takes into account the complementarity of hydropower, photovoltaic (PV) systems, and energy storage systems (ESSs) to enhance the capacity for consuming renewable energy. In the proposed ADN, a wide-range TCSC connects the sub-networks where PV and hydropower systems are located, with ESSs configured for each renewable energy generation. The designed wide-range TCSC allows for power reversal and improves power delivery efficiency, providing conditions for the optimization operation. The optimal operation issue is formulated as a Markov decision process (MDP) with continuous action space and solved using the twin delayed deep deterministic policy gradient (TD3) algorithm. The optimal objective is to maximize the consumption of renewable energy sources (RESs) and minimize line losses by coordinating the charging/discharging of ESSs with the operation mode of the TCSC. The simulation results demonstrate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

17 pages, 3441 KB  
Article
Functional Insights in PLS3-Mediated Osteogenic Regulation
by Wenchao Zhong, Janine Neugebauer, Janak L. Pathak, Xingyang Li, Gerard Pals, M. Carola Zillikens, Elisabeth M. W. Eekhoff, Nathalie Bravenboer, Qingbin Zhang, Matthias Hammerschmidt, Brunhilde Wirth and Dimitra Micha
Cells 2024, 13(17), 1507; https://doi.org/10.3390/cells13171507 - 9 Sep 2024
Viewed by 2067
Abstract
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional [...] Read more.
Plastin-3 (PLS3) encodes T-plastin, an actin-bundling protein mediating the formation of actin filaments by which numerous cellular processes are regulated. Loss-of-function genetic defects in PLS3 are reported to cause X-linked osteoporosis and childhood-onset fractures. However, the molecular etiology of PLS3 remains elusive. Functional compensation by actin-bundling proteins ACTN1, ACTN4, and FSCN1 was investigated in zebrafish following morpholino-mediated pls3 knockdown. Primary dermal fibroblasts from six patients with a PLS3 variant were also used to examine expression of these proteins during osteogenic differentiation. In addition, Pls3 knockdown in the murine MLO-Y4 cell line was employed to provide insights in global gene expression. Our results showed that ACTN1 and ACTN4 can rescue the skeletal deformities in zebrafish after pls3 knockdown, but this was inadequate for FSCN1. Patients’ fibroblasts showed the same osteogenic transdifferentiation ability as healthy donors. RNA-seq results showed differential expression in Wnt1, Nos1ap, and Myh3 after Pls3 knockdown in MLO-Y4 cells, which were also associated with the Wnt and Th17 cell differentiation pathways. Moreover, WNT2 was significantly increased in patient osteoblast-like cells compared to healthy donors. Altogether, our findings in different bone cell types indicate that the mechanism of PLS3-related pathology extends beyond actin-bundling proteins, implicating broader pathways of bone metabolism. Full article
Show Figures

Figure 1

11 pages, 4770 KB  
Article
The Study Design of a Double-Action Plate Vacuum Pump
by Oleksandr Medvedskyi, Rolandas Bleizgys, Jonas Čėsna, Rolandas Domeika, Savelii Kukharets and Roman Hrudovij
Processes 2024, 12(8), 1731; https://doi.org/10.3390/pr12081731 - 17 Aug 2024
Viewed by 1321
Abstract
Rotary plate vacuum pumps have become widely used as a source of vacuum for milking systems. The main features of a plate vacuum pump include design simplicity, high efficiency, low cost and adaptability to climatic conditions. A plate vacuum pump requires the improvement [...] Read more.
Rotary plate vacuum pumps have become widely used as a source of vacuum for milking systems. The main features of a plate vacuum pump include design simplicity, high efficiency, low cost and adaptability to climatic conditions. A plate vacuum pump requires the improvement of specific performance indicators. This refers to the indicator of specific productivity and specific energy intensity. It is possible to improve the vacuum pump by optimizing the design parameters and technological models of operation. The known studies allow the establishment of rational geometric parameters, the number of plates, the ratio of the main dimensions and eccentricity. However, the problem of reducing the degree of uneven air pumping from the vacuum system needs a scientific solution. The use of a vacuum cylinder in a vacuum line of an increased diameter partially solves the problem of vacuum pressure fluctuations. But such a decision requires additional material costs. In addition, the power of a vacuum pump increases to compensate for the pressure losses. In this study, the authors proposed the design of a double-action plate vacuum pump. It was proven that the simultaneous operation of combined rotors with plates shifted by 45° decreased the degree of air pumping by 7.8%. The research results indicated that the productivity of the developed vacuum pump increased by 13.6%. The drive power increased by 12%, and the specific energy intensity was 20% lower than that of vacuum pumps with similar geometric parameters. The relationship between rational kinematic and design parameters of a double-action vacuum pump was established. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

10 pages, 2710 KB  
Article
High-Efficiency 5G-Band Rectifier with Impedance Dispersion Compensation Network
by Yiyang Kong, Xue Bai, Leijun Xu and Jianfeng Chen
Electronics 2024, 13(16), 3105; https://doi.org/10.3390/electronics13163105 - 6 Aug 2024
Cited by 2 | Viewed by 1502
Abstract
This paper proposes a microwave rectifier designed for the popular 5G band, featuring impedance dispersion compensation and a cross-type impedance matching network. The rectifier has an ultra-high power conversion efficiency. The compensation network employs two parallel transmission lines to counteract the nonlinear shift [...] Read more.
This paper proposes a microwave rectifier designed for the popular 5G band, featuring impedance dispersion compensation and a cross-type impedance matching network. The rectifier has an ultra-high power conversion efficiency. The compensation network employs two parallel transmission lines to counteract the nonlinear shift of the diode input impedance caused by frequency variation. Additionally, the cross-over impedance matching network enhances matching and minimizes losses. After rigorous theoretical analysis and simulation, the rectifier is fabricated. Experimental results show significant conversion efficiency in the 5G band (across 4–6.5 GHz). At an input power of 12 dBm, the rectifier achieves more than 60% efficiency between 4.8 and 6.4 GHz and more than 70% between 5.2 and 6.2 GHz, with a peak efficiency of 78.1%. Moreover, the rectifier maintains more than 50% efficiency over a wide input power range of 5 to 14 dBm. Full article
(This article belongs to the Special Issue Micro Energy Harvesters: Modelling, Design, and Applications)
Show Figures

Figure 1

Back to TopTop