Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO
Abstract
1. Introduction
1.1. Literature Review and Research Gap
1.2. Contribution
- The present work aims to optimally determine the distribution of EVCSs, PVDG units, and DSTATCOMs using HHO, considering key techno-economic factors while satisfying all the system security constraints.
- In order to develop a practical planning framework, the types of chargers (i.e., AC and DC) are allocated based on the load characteristics of the network (i.e., residential, commercial, and industrial load).
- To achieve fair and effective resource distribution, the suggested planning framework incorporates a zonal division approach into the RDN. For EV users, this zonal-planning strategy seeks to improve accessibility and lessen range anxiety.
- To make the planning more practical, uncertainties related to PVDG are considered. Additionally, a realistic objective function is developed to minimize energy loss cost, investment cost, and operation and maintenance cost. The feasibility of the plan from the EV users’ perspective is also evaluated by analyzing the waiting time of EVs at charging stations.
2. Mathematical Model
2.1. EVCSs Modelling
2.2. PVDG Modelling
2.3. DSTATCOM Modelling
3. Technical Parameters
3.1. Total Power Loss
3.2. Voltage Profile
3.3. Waiting Time per EV
4. Objective Function and Constraints
4.1. Objective Function
- (a)
- Total Installation Cost ()
- (b)
- Total Operational Cost ()
- (c)
- Total Energy Loss Cost ()
4.2. Constraints
- (a)
- Power balance constraints
- (b)
- Power flow constraints
- (c)
- Voltage constraints
- (d)
- Power factor constraints
5. Problem Formulation
- i
- Minimization of total installation cost of all devices.
- ii
- Minimization of total operation and maintenance cost of all devices.
- iii
- Minimization of total energy loss cost
6. Methodology
6.1. Harris Hawk Optimization Algorithm (HHO)
6.2. Procedure for Locating the Devices
6.3. Implementation of HHO
7. Results and Discussions
7.1. Analysis of Test System and Input Data
7.2. Case Description
7.3. Identification of Locations of EVCSs, Solar PVDG Units, and DSTATCOMs
7.4. Results of Optimal Capacity Determination for All Devices and Objective Function
7.5. Impact Assessment
- (a)
- Economic Assessment
- (b)
- Voltage Profile Assessment
- (c)
- Power Loss Assessment
- (d)
- Waiting Time Assessment
7.6. Validation of Proposed Method for 28-Bus RDN
7.7. Algorithm Comparison
7.8. Sensitivity Analysis
8. Conclusions
- The combined integration of uncertain solar PVDG units and DSTATCOMs offers both active and reactive power support in an EV-integrated RDN, reducing the grid dependency, thereby significantly lowering the operation and maintenance costs of the system.
- In comparison to Case I, Case II achieved a reduction in energy loss by 38%, 37%, and 39.13% for Scenarios 1, 2, and 3, respectively. In Case II, the voltage profile shows an improvement of 2.89%, 2.63%, and 2.62% for Scenarios 1, 2, and 3, respectively, compared to Case I.
- The zonal division strategy ensures that EVCSs are distributed throughout the network, enhancing overall coverage of the network for EVCS placement. This approach allows more areas to be served with fewer chargers, thereby improving EVCS accessibility for EV users.
- 4.
- Further, the analysis reveals that among Scenarios 1, 2, and 3, the results of , , , and follow the order of Scenario 1< Scenario 3 < Scenario 2 for both cases. This indicates that the combined deployment of both AC and DC chargers in Scenario 3 offers the best balance of operational flexibility and investment cost. As a result, Scenario 3 stands out as the most practical and viable option for real-world implementation.
- 5.
- Additionally, the HHO algorithm outperforms classic TLBO, PSO, and GA in terms of convergence rate and accuracy. It effectively minimizes the total planning costs of EV-, PV-, and DSTATCOM-integrated RDNs, making it suitable for real-world planning challenges.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Hourly Variation in Voltage Profile, Line Loading, and Power Factor at Bus 2 of 33-Bus System



| Branch Number | Sending End Bus | Receiving End Bus | Resistance (Ω) | Reactance (Ω) | Active Power (MW) | Reactive Power (MVAr) | 
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 0.0922 | 0.047 | 0.1 | 0.06 | 
| 2 | 2 | 3 | 0.493 | 0.2511 | 0.09 | 0.04 | 
| 3 | 3 | 4 | 0.366 | 0.1864 | 0.12 | 0.08 | 
| 4 | 4 | 5 | 0.3811 | 0.1941 | 0.06 | 0.03 | 
| 5 | 5 | 6 | 0.819 | 0.707 | 0.06 | 0.02 | 
| 6 | 6 | 7 | 0.1872 | 0.6188 | 0.2 | 0.01 | 
| 7 | 7 | 8 | 0.7114 | 0.2351 | 0.2 | 0.01 | 
| 8 | 8 | 9 | 1.03 | 0.74 | 0.06 | 0.02 | 
| 9 | 9 | 10 | 1.044 | 0.74 | 0.06 | 0.02 | 
| 10 | 10 | 11 | 0.1966 | 0.065 | 0.045 | 0.03 | 
| 11 | 11 | 12 | 0.3744 | 0.1238 | 0.06 | 0.035 | 
| 12 | 12 | 13 | 1.468 | 1.155 | 0.06 | 0.035 | 
| 13 | 13 | 14 | 0.5416 | 0.7129 | 0.12 | 0.08 | 
| 14 | 14 | 15 | 0.591 | 0.526 | 0.06 | 0.01 | 
| 15 | 15 | 16 | 0.7463 | 0.545 | 0.06 | 0.02 | 
| 16 | 16 | 17 | 1.289 | 1.721 | 0.06 | 0.02 | 
| 17 | 17 | 18 | 0.732 | 0.574 | 0.09 | 0.04 | 
| 18 | 2 | 19 | 0.164 | 0.1565 | 0.09 | 0.04 | 
| 19 | 19 | 20 | 1.5042 | 1.3554 | 0.09 | 0.04 | 
| 20 | 20 | 21 | 0.4095 | 0.4784 | 0.09 | 0.04 | 
| 21 | 21 | 22 | 0.7089 | 0.9373 | 0.09 | 0.04 | 
| 22 | 3 | 23 | 0.4512 | 0.3083 | 0.09 | 0.05 | 
| 23 | 23 | 24 | 0.898 | 0.7091 | 0.42 | 0.2 | 
| 24 | 24 | 25 | 0.896 | 0.7011 | 0.42 | 0.2 | 
| 25 | 6 | 26 | 0.203 | 0.1034 | 0.06 | 0.025 | 
| 26 | 26 | 27 | 0.2842 | 0.1447 | 0.06 | 0.025 | 
| 27 | 27 | 28 | 1.059 | 0.9337 | 0.06 | 0.02 | 
| 28 | 28 | 29 | 0.8042 | 0.7006 | 0.12 | 0.07 | 
| 29 | 29 | 30 | 0.5075 | 0.2585 | 0.2 | 0.06 | 
| 30 | 30 | 31 | 0.9744 | 0.963 | 0.15 | 0.07 | 
| 31 | 31 | 32 | 0.3105 | 0.3619 | 0.21 | 0.1 | 
| 32 | 32 | 33 | 0.341 | 0.5302 | 0.06 | 0.04 | 
| Branch Number | Sending End Bus | Receiving End Bus | Resistance (Ω) | Reactance (Ω) | Active Power (MW) | Reactive Power (MVAr) | 
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 1.197 | 0.82 | 35.28 | 35.993 | 
| 2 | 2 | 3 | 1.796 | 1.231 | 14 | 14.283 | 
| 3 | 3 | 4 | 1.306 | 0.895 | 35.28 | 35.993 | 
| 4 | 4 | 5 | 1.851 | 1.268 | 14 | 14.283 | 
| 5 | 5 | 6 | 1.524 | 1.044 | 35.28 | 35.993 | 
| 6 | 6 | 7 | 1.905 | 1.305 | 35.28 | 35.993 | 
| 7 | 7 | 8 | 1.197 | 0.82 | 35.28 | 35.993 | 
| 8 | 8 | 9 | 0.653 | 0.447 | 14 | 14.283 | 
| 9 | 9 | 10 | 1.143 | 0.783 | 14 | 14.283 | 
| 10 | 4 | 11 | 2.823 | 1.172 | 56 | 57.131 | 
| 11 | 11 | 12 | 1.184 | 0.491 | 35.28 | 35.993 | 
| 12 | 12 | 13 | 1.002 | 0.416 | 35.28 | 35.993 | 
| 13 | 13 | 14 | 0.455 | 0.189 | 14 | 14.283 | 
| 14 | 14 | 15 | 0.546 | 0.227 | 35.28 | 35.993 | 
| 15 | 5 | 16 | 2.55 | 1.058 | 35.28 | 35.993 | 
| 16 | 6 | 17 | 1.366 | 0.567 | 8.96 | 9.141 | 
| 17 | 17 | 18 | 0.819 | 0.34 | 8.96 | 9.141 | 
| 18 | 18 | 19 | 1.548 | 0.642 | 35.28 | 35.993 | 
| 19 | 19 | 20 | 1.366 | 0.567 | 35.28 | 35.993 | 
| 20 | 20 | 21 | 3.552 | 1.474 | 14 | 14.283 | 
| 21 | 7 | 22 | 1.548 | 0.642 | 35.28 | 35.993 | 
| 22 | 22 | 23 | 1.092 | 0.453 | 8.96 | 9.141 | 
| 23 | 23 | 24 | 0.91 | 0.378 | 56 | 57.131 | 
| 24 | 24 | 25 | 0.455 | 0.189 | 8.96 | 9.141 | 
| 25 | 25 | 26 | 0.364 | 0.151 | 35.28 | 35.993 | 
| 26 | 8 | 27 | 0.546 | 0.226 | 35.28 | 35.993 | 
| 27 | 27 | 28 | 0.273 | 0.113 | 35.28 | 35.993 | 
References
- Bind, U.; Lamoria, J.P. Customer Adaptation towards Electric Vehicle in Gujarat. Int. J. Res. Publ. Rev. 2025, 6, 1439–1444. [Google Scholar] [CrossRef]
- Kumar, A.; Jadon, J.K.S. A Review on Electric Vehicles and Its Future. S. Asian J. Mark. Manag. Res. 2021, 11, 85–91. [Google Scholar] [CrossRef]
- Adegoke, S.A.; Sun, Y.; Adegoke, A.S.; Ojeniyi, D. Optimal Placement of Distributed Generation to Minimize Power Loss and Improve Voltage Stability. Heliyon 2024, 10, e39298. [Google Scholar] [CrossRef] [PubMed]
- Bonela, R.; Roy Ghatak, S.; Swain, S.C.; Lopes, F.; Nandi, S.; Sannigrahi, S.; Acharjee, P. Analysis of Techno–Economic and Social Impacts of Electric Vehicle Charging Ecosystem in the Distribution Network Integrated with Solar DG and DSTATCOM. Energies 2025, 18, 363. [Google Scholar] [CrossRef]
- Nutkani, I.; Toole, H.; Fernando, N.; Andrew, L.P.C. Impact of EV Charging on Electrical Distribution Network and Mitigating Solutions—A Review. IET Smart Grid 2024, 7, 485–502. [Google Scholar] [CrossRef]
- Sawant, V.; Zambare, P. DC Fast Charging Stations for Electric Vehicles: A Review. Energy Convers. Econ. 2024, 5, 54–71. [Google Scholar] [CrossRef]
- Jin, Y.; Acquah, M.A.; Seo, M.; Han, S. Optimal Siting and Sizing of EV Charging Station Using Stochastic Power Flow Analysis for Voltage Stability. IEEE Trans. Transp. Electrif. 2024, 10, 777–794. [Google Scholar] [CrossRef]
- Abualigah, L.; Abu-Dalhoum, E.; Ikotun, A.M.; Zitar, R.A.; Alsoud, A.R.; Khodadadi, N.; Ezugwu, A.E.; Hanandeh, E.S.; Jia, H. Teaching–Learning-Based Optimization Algorithm: Analysis Study and Its Application. In Metaheuristic Optimization Algorithms; Morgan Kaufmann: San Francisco, CA, USA, 2024; pp. 59–71. [Google Scholar] [CrossRef]
- Golive, S.G.; Paramasivam, B.; Ravindra, J. Optimal Location of EV Charging Stations in the Distribution System Considering GWO Algorithm. Indian J. Sci. Technol. 2024, 17, 751–759. [Google Scholar] [CrossRef]
- Altaf, M.; Yousif, M.; Ijaz, H.; Rashid, M.; Abbas, N.; Khan, M.A.; Waseem, M.; Saleh, A.M. PSO-based Optimal Placement of Electric Vehicle Charging Stations in a Distribution Network in Smart Grid Environment Incorporating Backward Forward Sweep Method. IET Renew. Power Gener. 2024, 18, 3173–3187. [Google Scholar] [CrossRef]
- Kumar, B.V.; Aneesa Farhan, M.A. Optimal Integration of EV Charging Stations and Capacitors for Net Present Value Maximization in Distribution Network. IEEE Lat. Am. Trans. 2025, 23, 239–250. [Google Scholar] [CrossRef]
- Kumar, B.V.; Aneesa Farhan, M.A. Optimal Allocation of EV Charging Station and Capacitors Considering Reliability Using a Hybrid Optimization Approach. Appl. Energy 2024, 375, 124139. [Google Scholar] [CrossRef]
- Rene, E.A.; Fokui, W.S.T. Artificial Intelligence-Based Optimal EVCS Integration with Stochastically Sized and Distributed PVs in an RDNS Segmented in Zones. J. Electr. Syst. Inf. Technol. 2024, 11, 1. [Google Scholar] [CrossRef]
- Kazemi-Robati, E.; Sepasian, M.S.; Hafezi, H.; Arasteh, H. PV-Hosting-Capacity Enhancement and Power-Quality Improvement through Multiobjective Reconfiguration of Harmonic-Polluted Distribution Systems. Int. J. Electr. Power Energy Syst. 2022, 140, 107972. [Google Scholar] [CrossRef]
- Ghatak, S.R.; Basu, D.; Acharjee, P. Voltage Profile Improvement and Loss Reduction Using Optimal Allocation of SVC. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–6. [Google Scholar]
- Ahmadi, B.; Çağlar, R. Determining the Pareto Front of Distributed Generator and Static VAR Compensator Units Placement in Distribution Networks. Int. J. Electr. Comput. Eng. IJECE 2022, 12, 3440. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Ghatak, S.R.; Acharjee, P. Fuzzy Logic–Based Rooted Tree Optimization Algorithm for Strategic Incorporation of DG and DSTATCOM. Int. Trans. Electr. Energy Syst. 2019, 29, e12031. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. Optimal Allocation of DG and DSTATCOM in Radial Distribution System Using Cuckoo Search Optimization Algorithm. Model. Simul. Eng. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Karami, H.; Zaker, B.; Vahidi, B.; Gharehpetian, G.B. Optimal Multi-Objective Number, Locating, and Sizing of Distributed Generations and Distributed Static Compensators Considering Loadability Using the Genetic Algorithm. Electr. Power Compon. Syst. 2016, 44, 2161–2171. [Google Scholar] [CrossRef]
- Barhagh, S.S.; Mohammadi-Ivatloo, B.; Abapour, M.; Shafie-Khah, M. Optimal Sizing and Siting of Electric Vehicle Charging Stations in Distribution Networks With Robust Optimizing Model. IEEE Trans. Intell. Transp. Syst. 2024, 25, 4314–4325. [Google Scholar] [CrossRef]
- Rajbala; Nain, P.K.S.; Kumar, A. Supply Chain Management Using Soft Computing: A Review. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28 April 2022; pp. 1510–1515. [Google Scholar]
- Lazari, V.; Chassiakos, A. Multi-Objective Optimization of Electric Vehicle Charging Station Deployment Using Genetic Algorithms. Appl. Sci. 2023, 13, 4867. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Ningthoujam, J. Electric Vehicle Charging Infrastructure-A Guide for DISCOM Readiness 2020. Available online: https://rmi.org/wp-content/uploads/dlm_uploads/2020/08/EV-Readiness-Guide_Haryana_Lighthouse_Discom_Programme.pdf (accessed on 20 January 2024).
- Weather Report of Durgapur, West Bengal. Available online: https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/durgapur_india_1272175 (accessed on 20 March 2024).
- Yuvaraj, T.; Devabalaji, K.R.; Thanikanti, S.B.; Aljafari, B.; Nwulu, N. Minimizing the Electric Vehicle Charging Stations Impact in the Distribution Networks by Simultaneous Allocation of DG and DSTATCOM with Considering Uncertainty in Load. Energy Rep. 2023, 10, 1796–1817. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris Hawks Optimization: Algorithm and Applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Kakueinejad, M.H.; Heydari, A.; Askari, M.; Keynia, F. Optimal Planning for the Development of Power System in Respect to Distributed Generations Based on the Binary Dragonfly Algorithm. Appl. Sci. 2020, 10, 4795. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Nguyen, D.T.; Le, L.B. Energy Management for Households With Solar Assisted Thermal Load Considering Renewable Energy and Price Uncertainty. IEEE Trans. Smart Grid 2015, 6, 301–314. [Google Scholar] [CrossRef]
- Yuvaraj, T.; Thirumalai, M.; Suresh, T.D.; Thanikanti, S.B.; Khishe, M. Dynamic Optimization of Solar DG and Shunt Capacitor Placement to Mitigate the Impact of EV Charging Stations on Power Distribution Network. Results Eng. 2025, 27, 106804. [Google Scholar] [CrossRef]



























| Charger Type | Voltage (V) | Power (kW) | Type of Compatible Charger | Price ($) | 
|---|---|---|---|---|
| Level 2 (AC) | 240 | 10 | Type 2, Bharat AC-001 | 941 | 
| Level 1 (DC) | 480 | 50 | Bharat DC-001 | 6800 | 
| Parameters | Values | Parameters | Values | 
|---|---|---|---|
| 941 $ | 1058 $ | ||
| 6850 $ | 69 $ | ||
| 129/m2 $ | ct | 1 | |
| 29/m2 $ | H | 24 h | |
| 0.08 | 200 | ||
| 10 years | D | 365 days | 
| Scenario 3 | |||
|---|---|---|---|
| Zone | EVCS Locations | PVDG Unit Locations | DSTATCOM Locations | 
| Residential Zone | 2, 10 | 2, 10 | 8 | 
| Commercial Zone | 21, 23 | 21, 23 | 24 | 
| Industrial Zone | 28 | 28 | 28, 30, 33 | 
| Cases | EVCS CAPACITY (kW) | |||
|---|---|---|---|---|
| Scenario-1 | Scenario-2 | Scenario-3 | ||
| ------ | ------ | AC Chargers | DC Chargers | |
| Case-I | 350 kW | 1000 kW | 180 kW | 700 kW | 
| Case-II | 450 kW | 1250 kW | 200 kW | 900 kW | 
| Number of EV Chargers | |||||||
|---|---|---|---|---|---|---|---|
| Scenario-1 | Scenario-2 | Scenario-3 | |||||
| EVAC Charger | EVDC Charger | EVAC Charger | EVDC Charger | ||||
| Location | No of Chargers | Location | No of Chargers | Location | No of Chargers | Location | No of Chargers | 
| 2 | 7 | 2 | 3 | 2 | 8 | 21 | 5 | 
| 6 | 6 | 6 | 3 | 10 | 10 | 23 | 4 | 
| 10 | 8 | 10 | 4 | --------------- | 28 | 5 | |
| 20 | 7 | 20 | 5 | -------------- | |||
| 26 | 7 | 26 | 5 | ||||
| Number of EV Chargers | |||||||
|---|---|---|---|---|---|---|---|
| Scenario-1 | Scenario-2 | Scenario-3 | |||||
| EVAC Charger | EVDC Charger | EVAC Charger | EVDC Charger | ||||
| Location | No of Chargers | Location | No of Chargers | Location | No of Chargers | Location | No of Chargers | 
| 2 | 9 | 2 | 4 | 2 | 9 | 21 | 6 | 
| 6 | 8 | 6 | 5 | 10 | 11 | 23 | 5 | 
| 10 | 8 | 10 | 4 | --------------- | 28 | 7 | |
| 20 | 10 | 20 | 6 | -------------- | |||
| 26 | 10 | 26 | 6 | ||||
| Scenario-1 | Scenario-2 | Scenario-3 | |||
|---|---|---|---|---|---|
| PVDG (kW) | DSTATCOM (kVAr) | PVDG (kW) | DSTATCOM (kVAr) | PVDG (kW) | DSTATCOM (kVAr) | 
| 50 | 35 | 100 | 33 | 100 | 31 | 
| 100 | 10 | 50 | 12 | 50 | 12 | 
| 150 | 25 | 150 | 20 | 150 | 23 | 
| 100 | 20 | 200 | 30 | 200 | 20 | 
| 100 | 13 | 200 | 12 | 150 | 11 | 
| Cases | Scenario-1 | Scenario-2 | Scenario-3 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| I | 0.0203 | 0.095 | 0.043 | 0.1583 | 0.0210 | 0.30 | 0.047 | 0.368 | 0.0207 | 0.252 | 0.046 | 0.3187 | 
| II | 0.0211 | 0.063 | 0.0306 | 0.1166 | 0.0246 | 0.262 | 0.0316 | 0.3176 | 0.0222 | 0.212 | 0.0310 | 0.2652 | 
| AC Charger | DC Charger | ||
|---|---|---|---|
| Hour | Arrival Rate | Hour | Arrival Rate | 
| 1 | 3.25 | 1 | 1.83 | 
| 2 | 2.33 | 2 | 2.08 | 
| 3 | 2.92 | 3 | 2.47 | 
| 4 | 2.92 | 4 | 2.56 | 
| 5 | 3.01 | 5 | 2.58 | 
| 6 | 3.08 | 6 | 3.33 | 
| 7 | 3.23 | 7 | 4.08 | 
| 8 | 3.25 | 8 | 6.33 | 
| 9 | 3.33 | 9 | 7.33 | 
| 10 | 3.75 | 10 | 7.59 | 
| 11 | 4.08 | 11 | 7.67 | 
| 12 | 5.58 | 12 | 7.92 | 
| 13 | 5.83 | 13 | 7.83 | 
| 14 | 4.83 | 14 | 8.16 | 
| 15 | 5.26 | 15 | 7.75 | 
| 16 | 5.63 | 16 | 7.58 | 
| 17 | 5.58 | 17 | 7.54 | 
| 18 | 4.75 | 18 | 7.67 | 
| 19 | 4.83 | 19 | 7.83 | 
| 20 | 4.92 | 20 | 8.11 | 
| 21 | 5.08 | 21 | 8.08 | 
| 22 | 8.33 | 22 | 8.3 | 
| 23 | 5.83 | 23 | 6.67 | 
| 24 | 0.32 | 24 | 1.25 | 
| AC Charger | DC Charger | ||
|---|---|---|---|
| Hour | Service Rate | Hour | Service Rate | 
| 1 | 1.04 | 1 | 1.23 | 
| 2 | 1.11 | 2 | 1.45 | 
| 3 | 1.19 | 3 | 1.28 | 
| 4 | 0.46 | 4 | 1.05 | 
| 5 | 0.52 | 5 | 1.08 | 
| 6 | 0.87 | 6 | 1.13 | 
| 7 | 1.65 | 7 | 2.22 | 
| 8 | 1.59 | 8 | 1.55 | 
| 9 | 1.77 | 9 | 2.34 | 
| 10 | 2.84 | 10 | 2.65 | 
| 11 | 2.31 | 11 | 2.47 | 
| 12 | 0.24 | 12 | 0.39 | 
| 13 | 2.73 | 13 | 3.12 | 
| 14 | 1.96 | 14 | 3.33 | 
| 15 | 2.54 | 15 | 4.61 | 
| 16 | 1.86 | 16 | 6.67 | 
| 17 | 2.39 | 17 | 2.86 | 
| 18 | 0.53 | 18 | 0.78 | 
| 19 | 1.37 | 19 | 5.45 | 
| 20 | 2.86 | 20 | 3.86 | 
| 21 | 3.45 | 21 | 6.11 | 
| 22 | 3.38 | 22 | 4.07 | 
| 23 | 2.11 | 23 | 4.28 | 
| 24 | 1.02 | 24 | 3.15 | 
| Scenarios | Charger Type | Average Waiting Time per EV | 
|---|---|---|
| Scenario 1 | AC Charger | 36 min | 
| Scenario 2 | DC Charger | 9 min | 
| Scenario 3 | ||||||
|---|---|---|---|---|---|---|
| Zone | EVCS Locations | No. of Chargers | PVDG Locations | PVDG (kW) | DSTATCOM Locations | DSTATCOM (kVar) | 
| Residential Zone | 14 | 11 (AC charger) | 14 | 100 | 4 | 35 | 
| Commercial Zone | 20 | 3 (DC charger) | 20 | 250 | 22 | 45 | 
| Industrial Zone | 10 | 5 (DC charger) | 10 | 150 | 8 | 30 | 
| Cases | Scenario 3 | |||
|---|---|---|---|---|
| ) | ) | ) | ) | |
| II | 0.0198 | 0.1060 | 0.0238 | 0.1496 | 
| Performance Indices | HHO | TLBO | PSO | GA | 
|---|---|---|---|---|
| Mean | 0.0275 | 0.0288 | 0.0313 | 0.0342 | 
| Standard Deviation | 0.027 | 0.032 | 0.040 | 0.052 | 
| Convergence rate | 21 | 25 | 32 | 41 | 
| Convergence time (s) | 231 | 242 | 257 | 272 | 
| Performance Indices | HHO | TLBO | PSO | GA | 
|---|---|---|---|---|
| Maximum | 0.0282 | 0.0291 | 0.0326 | 0.0354 | 
| Minimum | 0.0269 | 0.0272 | 0.0303 | 0.0325 | 
| Average | 0.0273 | 0.0283 | 0.0311 | 0.0338 | 
| Change in CAPEX Value | ||||
|---|---|---|---|---|
| −25% | 0.0178 | 0.212 | 0.0310 | 0.2608 | 
| 0% | 0.0222 | 0.212 | 0.0310 | 0.2652 | 
| +25% | 0.0281 | 0.212 | 0.0310 | 0.2711 | 
| Change in Electricity Tariff | ||||
|---|---|---|---|---|
| −20% | 0.0222 | 0.01779 | 0.0252 | 0.2229 | 
| 0% | 0.0222 | 0.212 | 0.0310 | 0.2652 | 
| +20% | 0.0222 | 0.2644 | 0.0381 | 0.324 | 
| Change in Discount Rate | ||||
|---|---|---|---|---|
| 8% | 0.0186 | 0.1356 | 0.0294 | 0.1836 | 
| 0% | 0.0222 | 0.212 | 0.0310 | 0.1496 | 
| 10% | 0.0361 | 0.2642 | 0.0397 | 0.3401 | 
| Change in Power Rating of DC Fast Charger | Total Cost ($) | 
|---|---|
| −20% | 0.3677 | 
| 0% | 0.3683 | 
| +20% | 0.3685 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonela, R.; Tripathy, S.; Ghatak, S.R.; Swain, S.C.; Lopes, F.; Acharjee, P. Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO. Energies 2025, 18, 5728. https://doi.org/10.3390/en18215728
Bonela R, Tripathy S, Ghatak SR, Swain SC, Lopes F, Acharjee P. Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO. Energies. 2025; 18(21):5728. https://doi.org/10.3390/en18215728
Chicago/Turabian StyleBonela, Ramesh, Sasmita Tripathy, Sriparna Roy Ghatak, Sarat Chandra Swain, Fernando Lopes, and Parimal Acharjee. 2025. "Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO" Energies 18, no. 21: 5728. https://doi.org/10.3390/en18215728
APA StyleBonela, R., Tripathy, S., Ghatak, S. R., Swain, S. C., Lopes, F., & Acharjee, P. (2025). Optimized Planning Framework for Radial Distribution Network Considering AC and DC EV Chargers, Uncertain Solar PVDG, and DSTATCOM Using HHO. Energies, 18(21), 5728. https://doi.org/10.3390/en18215728
 
        




 
       