Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = light-saturated photosynthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1019 KiB  
Article
Genotypic Variability in Growth and Leaf-Level Physiological Performance of Highly Improved Genotypes of Pinus radiata D. Don Across Different Sites in Central Chile
by Sergio Espinoza, Marco Yáñez, Carlos Magni, Eduardo Martínez-Herrera, Karen Peña-Rojas, Sergio Donoso, Marcos Carrasco-Benavides and Samuel Ortega-Farias
Forests 2025, 16(7), 1108; https://doi.org/10.3390/f16071108 - 4 Jul 2025
Viewed by 238
Abstract
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth [...] Read more.
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth and water use, needs to be evaluated. In this study, we assessed the genotypic variability of leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (iWUE), and Chlorophyll a fluorescence (OJIP-test parameters) among 30 P. radiata genotypes (i.e., full-sib families) from third-cycle parents at age 6 years on three sites in Central Chile. We also evaluated tree height (HT), diameter at breast height (DBH), and stem index volume (VOL). Families were ranked for HT as top-15 and bottom-15. In the OJIP-test parameters we observed differences at the family level for the maximum quantum yield of primary PSII photochemistry (Fv/Fm), the probability that a photon trapped by the PSII reaction center enters the electron transport chain (ψEo), and the potential for energy conservation from photons captured by PSII to the reduction in intersystem electron acceptors (PIABS). Fv/Fm, PIABS, and ψEo ranged from 0.82 to 0.87, 45 to 95, and 0.57 to 0.64, respectively. Differences among families for growth and not for leaf-level physiology were detected. DBT, H, and VOL were higher in the top-15 families (12.6 cm, 8.4 m, and 0.10 m3, respectively) whereas Asat, gs, E, and iWUE were similar in both the top-15 and bottom-15 families (4.0 μmol m−2 s−1, 0.023 mol m−2 s−1, 0.36 mmol m−2 s−1, and 185 μmol mol m−2 s−1, respectively). However, no family by site interaction was detected for growth and leaf-level physiology. The results of this study suggest that highly improved genotypes of P. radiata have uniformity in leaf-level physiological rates, which could imply uniform water use at the stand-level. The family variation found in PIABS suggests that this parameter could be incorporated to select genotypes tolerant to environmentally stressful conditions. Full article
(This article belongs to the Special Issue Water Use Efficiency of Forest Trees)
Show Figures

Figure 1

17 pages, 658 KiB  
Article
Modulations of Photosynthetic Membrane Lipids and Fatty Acids in Response to High Light in Brown Algae (Undaria pinnatifida)
by Natalia V. Zhukova and Irina M. Yakovleva
Plants 2025, 14(12), 1818; https://doi.org/10.3390/plants14121818 - 13 Jun 2025
Viewed by 419
Abstract
Light is a source of energy for photosynthesis and hence promotes the regulation of multiple physiological and metabolic processes in photoautotrophic organisms. Understanding how brown macrophytes adjust the physical and biochemical properties of photosynthetic membranes in response to high-irradiance environments has received little [...] Read more.
Light is a source of energy for photosynthesis and hence promotes the regulation of multiple physiological and metabolic processes in photoautotrophic organisms. Understanding how brown macrophytes adjust the physical and biochemical properties of photosynthetic membranes in response to high-irradiance environments has received little attention so far. Particularly, it concerns the lipid flexibility of thylakoid membranes. We examined the lipid classes, fatty acid (FA) profiles, chloroplast ultrastructure, and photosynthetic performance of the brown macroalga Undaria pinnatifida after long-term exposure to high light (HL) and moderate light (ML) intensities, at 400 and 270 µmol photons m−2 s−1, respectively. U. pinnatifida responded to HL with a reduction in the level of thylakoid membrane lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG), and phosphatidylglycerol (PG), while the character of lipid modulations was specific. The content of storage lipids, triacylglycerols enriched in n-3 polyunsaturated fatty acids (PUFAs), increased under HL. The general response to long-term HL for the studied thylakoid membrane lipids, but not for SQDG, was the remodeling of FA composition towards increasing the percentages of saturated and monounsaturated acyl groups over PUFAs, suggesting a photoprotective strategy against the intensification of lipid peroxidation. In all, we showed that remodeling in photosynthetic membrane lipids accompanied by structural changes in chloroplasts and modulations in photosynthetic performance augmented the ability of U. pinnatifida to counteract high-intensity light, thereby contributing to its survival potential under suboptimal irradiance conditions. Full article
(This article belongs to the Special Issue Mechanisms of Algae Adapting to Environmental Changes)
Show Figures

Figure 1

15 pages, 20198 KiB  
Article
Mechanistic Modeling Reveals Adaptive Photosynthetic Strategies of Pontederia crassipes: Implications for Aquatic Plant Physiology and Invasion Dynamics
by Lihua Liu, Xiaolong Yang, Piotr Robakowski, Zipiao Ye, Fubiao Wang and Shuangxi Zhou
Biology 2025, 14(6), 600; https://doi.org/10.3390/biology14060600 - 25 May 2025
Viewed by 487
Abstract
The invasive aquatic macrophyte Pontederia crassipes (water hyacinth) exhibits exceptional adaptability across a wide range of light environments, yet the mechanistic basis of its photosynthetic plasticity under both high- and low-light stress remains poorly resolved. This study integrated chlorophyll fluorescence and gas-exchange analyses [...] Read more.
The invasive aquatic macrophyte Pontederia crassipes (water hyacinth) exhibits exceptional adaptability across a wide range of light environments, yet the mechanistic basis of its photosynthetic plasticity under both high- and low-light stress remains poorly resolved. This study integrated chlorophyll fluorescence and gas-exchange analyses to evaluate three photosynthetic models—rectangular hyperbola (RH), non-rectangular hyperbola (NRH), and the Ye mechanistic model—in capturing light-response dynamics in P. crassipes. The Ye model provided superior accuracy (R2 > 0.996) in simulating the net photosynthetic rate (Pn) and electron transport rate (J), outperforming empirical models that overestimated Pnmax by 36–46% and Jmax by 1.5–24.7% and failed to predict saturation light intensity. Mechanistic analysis revealed that P. crassipes maintains high photosynthetic efficiency in low light (LUEmax = 0.030 mol mol−1 at 200 µmol photons m−2 s−1) and robust photoprotection under strong light (NPQmax = 1.375, PSII efficiency decline), supported by a large photosynthetic pigment pool (9.46 × 1016 molecules m−2) and high eigen-absorption cross-section (1.91 × 10−21 m2). Unlike terrestrial plants, its floating leaves experience enhanced irradiance due to water-surface reflection and are decoupled from water limitation via submerged root uptake, enabling flexible stomatal and energy regulation. Distinct thresholds for carboxylation efficiency (CEmax = 0.085 mol m−2 s−1) and water-use efficiency (WUEi-max = 45.91 μmol mol−1 and WUEinst = 1.96 μmol mmol−1) highlighted its flexible energy management strategies. These results establish the Ye model as a reliable tool for characterizing aquatic photosynthesis and reveal how P. crassipes balances light harvesting and dissipation to thrive in fluctuating environments. These resulting insights have implications for both understanding invasiveness and managing eutrophic aquatic systems. Full article
(This article belongs to the Special Issue Plant Stress Physiology: A Trait Perspective)
Show Figures

Figure 1

15 pages, 2229 KiB  
Article
Effect of Light Intensity and Light Spectrum of LED Light Sources on Photosynthesis and Secondary Metabolite Synthesis in Ocimum basilicum
by Luca Jokic, Isabell Pappert, Tran Quoc Khanh and Ralf Kaldenhoff
Plants 2025, 14(9), 1334; https://doi.org/10.3390/plants14091334 - 28 Apr 2025
Viewed by 1018
Abstract
Basil is best known as an aromatic and medicinal herb due to its rich profile of bioactive compounds. While secondary metabolite production, coupled with growth, has been well studied, photosynthesis has often been overlooked in this regard. In this study, we investigate the [...] Read more.
Basil is best known as an aromatic and medicinal herb due to its rich profile of bioactive compounds. While secondary metabolite production, coupled with growth, has been well studied, photosynthesis has often been overlooked in this regard. In this study, we investigate the effect of light intensities of blue, green, red, and white light of semiconductor LEDs up to 10000 µmol m−2 s−1 on photosynthetic efficiency and primary and secondary metabolism. Chlorophyll fluorescence data indicate that the conversion of light into chemical energy is the same under green, red, and white light, and 35% increased under blue light. Primary metabolism, represented by assimilation rate, shows that blue light has the lowest assimilation, whereas red and (surprisingly) green light have the highest. Light saturation is reached at 1500 µmol m−2 s−1, while assimilation under green light is maintained up to 5000 µmol m−2 s−1. The earliest photoinhibition occurred under blue light in comparison to the other light wavelength under investigation. Blue light also enhances the production of phenolic and flavonoid concentrations up to 40% or 100%, respectively. These results show that photosynthesis, photoinhibition, and secondary metabolite production are wavelength-dependent and indicate how energy fluxes between these processes are related. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 2721 KiB  
Article
Different Leaf Strategies Between Lithophytic and Terrestrial Orchids in a Subtropical Karst Forest
by Mei Yang, Dan Sun, Xiaoyin Wang, Shidan Zhu and Uromi Manage Goodale
Plants 2025, 14(8), 1161; https://doi.org/10.3390/plants14081161 - 8 Apr 2025
Viewed by 558
Abstract
The leaf economic spectrum framework explains how plants optimize leaf traits for productivity, distribution, and stress tolerance. Orchids in Southwestern China’s karst forests, especially lithophytic species, are challenged by prolonged drought and limited light availability. This study investigated different leaf strategies between lithophytic [...] Read more.
The leaf economic spectrum framework explains how plants optimize leaf traits for productivity, distribution, and stress tolerance. Orchids in Southwestern China’s karst forests, especially lithophytic species, are challenged by prolonged drought and limited light availability. This study investigated different leaf strategies between lithophytic and terrestrial orchids under the harsh karst environment. We measured key leaf traits, including photosynthesis, structure, biomechanics, nitrogen allocation, and water relations, in twenty-two lithophytic and six terrestrial orchids in a subtropical karst forest. After accounting for phylogenetic influences, we found that lithophytic orchids had a higher leaf mass per area, cuticle thickness, and biomechanical resistance (Fp) but a lower maximum photosynthetic rate (Amax-mass), nitrogen allocation to photosynthesis (NT), and saturated water content (SWC) than terrestrial orchids. These results suggest that lithophytic orchids prioritize structural investment and stress tolerance over photosynthetic efficiency. Across species, NT correlated positively with Amax-mass and negatively with Fp, highlighting nitrogen allocation as a key mechanism in leaf cost–benefit strategies. Additionally, SWC emerged as a critical driver of variation in multiple traits, supporting its integration into the leaf economic spectrum for orchids in karst ecosystems. This study offers new insights into orchid adaptation in subtropical karst environments, with implications for plant resilience under changing climates. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

17 pages, 4274 KiB  
Article
Photomorphogenic and Biochemical Effects of Radiation and Nitrate Availability on the Red Alga Plocamium cartilagineum
by Bruna Rodrigues Moreira, Julia Vega, Marta García-Sánchez, Cristina González-Fernández, Antonio Avilés, José Bonomi-Barufi and Félix L. Figueroa
Plants 2025, 14(7), 1121; https://doi.org/10.3390/plants14071121 - 3 Apr 2025
Viewed by 515
Abstract
Non-photosynthetic photoreceptors detecting different wavelength ranges in the UV and visible region of spectra may trigger algal acclimation and homeostasis. We studied Plocamium cartilagineum responses based on the saturation of photosynthesis by Amber light and supplementation by different light qualities, applying an experimental [...] Read more.
Non-photosynthetic photoreceptors detecting different wavelength ranges in the UV and visible region of spectra may trigger algal acclimation and homeostasis. We studied Plocamium cartilagineum responses based on the saturation of photosynthesis by Amber light and supplementation by different light qualities, applying an experimental design able to simulate a daily cycle in a fully automated system. Thalli were exposed to Amber, Amber + UV-A, Amber + Blue and Amber + Green radiation treatments under two nitrate levels (60 and 240 μM) for enrichment lasting two weeks. P. cartilagineum photosynthesis and biochemistry were measured during different experimental periods. Photosynthesis showed only slight variations, emphasizing that other response variations could be activated by photomorphogenic pathways. Nitrate assimilation was higher in the treatments containing blue and green lights, potentially caused by increasing nitrate reductase activity. Photosynthetic pigments and mycosporine-like amino acids were affected over the two weeks, being mostly influenced by UV-A and blue radiations with the highest nitrate concentration. The shinorine content of thalli under blue radiation with 240 μM of nitrate increased at day 7, possibly modulated by a blue light photoreceptor. The increase in the bioactive compounds in the short-term by specific light qualities under optimal photosynthetic performance was found to be a relevant biotechnological strategy. Full article
(This article belongs to the Special Issue Algal Growth and Biochemical Responses to Environmental Stress)
Show Figures

Figure 1

19 pages, 4421 KiB  
Article
Variations in Leaf Photosynthesis and Its Limitations at Different Canopy Positions in Mature Camphor Trees
by Hanbing Leng, Lingyan Zhou and Wei Yan
Forests 2025, 16(4), 581; https://doi.org/10.3390/f16040581 - 27 Mar 2025
Viewed by 358
Abstract
Urban forests play important roles in carbon sequestration and climate change mitigation. However, their adaptive mechanisms and limitations on photosynthesis throughout the canopy are poorly understood. This study takes the most widely distributed 50-year-old camphor plantations (Cinnamomum camphora) in Shanghai as [...] Read more.
Urban forests play important roles in carbon sequestration and climate change mitigation. However, their adaptive mechanisms and limitations on photosynthesis throughout the canopy are poorly understood. This study takes the most widely distributed 50-year-old camphor plantations (Cinnamomum camphora) in Shanghai as the research objects. We investigated the variations in leaf morphology and photosynthetic physiology and biochemistry at six different canopy positions during a summer and an autumn period. We discovered that on account of leaf nitrogen loss and water deficit, light-saturated photosynthesis (Amax) declined in upper sunlit leaves despite being exposed to high sunlight in the same fashion as stomatal and mesophyll conductance (gsw, gm), photochemical quenching coefficient and actual photochemical efficiency of PSII (ΦPSII, qP), and maximum rate of electron transport and carboxylation (Jmax, Vcmax) during the growing season. Although seasonal change had little effect on Amax, the relative importance of limitations varied temporally. Mesophyll and biochemical limitation were the major contributors to the decline in the Amax in upper sunlit leaves between summer and autumn, respectively. Our study highlights the constraints of carbon fixation capacity in dense stands of mature camphor trees and offers technical support for the accurate prediction of canopy photosynthesis and the enhancement of carbon sequestration management in urban forests. Full article
Show Figures

Graphical abstract

14 pages, 2519 KiB  
Article
Effects of the Diurnal Light and Temperature Fluctuations on the Growth, Photosynthesis and Biochemical Composition of Terrestrial Oleaginous Microalga Vischeria sp. WL1 (Eustigmatophyceae)
by Xinhong Guo, Zhengke Li, Daxi Wang, Xiaolong Yuan, Xiaojiao Wang, Huidan Xue, Qiao Zeng and Xiang Gao
Diversity 2025, 17(2), 135; https://doi.org/10.3390/d17020135 - 16 Feb 2025
Viewed by 732
Abstract
Dynamic changes in diurnal light and temperature are a natural phenomenon, particularly pronounced in arid environments. However, it remains unclear whether the coupling of diurnal light and temperature fluctuations contributes to the capability and evolution of lipid accumulation in arid terrestrial microalgae. Here, [...] Read more.
Dynamic changes in diurnal light and temperature are a natural phenomenon, particularly pronounced in arid environments. However, it remains unclear whether the coupling of diurnal light and temperature fluctuations contributes to the capability and evolution of lipid accumulation in arid terrestrial microalgae. Here, we characterized the effects of diurnal light and temperature fluctuations on the growth, photosynthesis, lipids, carbohydrates, proteins and fatty acids in Vischeria sp. WL1, an oil-producing Eustigmatophyceae microalga sourced from an arid steppe. The photosynthetic activity parameters (Fv/Fm, PIabs, ψ0 and φE0) were the highest, while parameters of damage and energy dissipation (Wk and DIO/RC) were the lowest, under the diurnal light cycle (DLC) among all conditions and then followed by the diurnal light–temperature cycle (DLTC). DLTC led to reduced growth and biomass but enhanced lipid accumulation, with lipid content reaching a maximum of 54.7% on day 4. This observation may suggest a carbon reallocation from carbohydrates toward lipid synthesis. DLTC resulted in an increase in the saturated fatty acids (SFA) content on day 12 and only in C18:2 among polyunsaturated fatty acids (PUFA) on day 4 while lowering eicosapentaenoic acid (EPA) concentration and content on day 12. Together, our findings will contribute to the understanding of the adaptive strategies of terrestrial microalgae to the arid environment, as well as the beneficial clues for exploring terrestrial microalgae for oil production. Full article
(This article belongs to the Special Issue Studies on Biodiversity and Ecology of Algae in China—2nd Edition)
Show Figures

Figure 1

12 pages, 2644 KiB  
Article
Photosynthetic Induction Characteristics in Saplings of Four Sun-Demanding Trees and Shrubs
by Qiuping Liu, Wei Jin, Liying Huang, Danfeng Wang, Kedong Xu and Yunmin Wei
Plants 2025, 14(1), 144; https://doi.org/10.3390/plants14010144 - 6 Jan 2025
Cited by 2 | Viewed by 1365
Abstract
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings [...] Read more.
Light serves as the unique driving force of photosynthesis in plants, yet its intensity varies over time and space, leading to corresponding changes in the photosynthetic rate. Here, the photosynthetic induction response under constant and fluctuating light was examined in naturally occurring saplings of four sun-demanding woody species, Eucalyptus. Ficus macrocarpa L., Hibiscus syriacus L. and Ficus carica L. We aimed to find out the relations among gas exchange parameter adaptions among different species during photosynthetic induction. The net photosynthetic rates (A) versus time course curves were sigmoidal or hyperbolic after the dark-adapted leaves were irradiated by continuous saturated light. Compared with other species, Ficus carica L. have the largest net photosynthesis rate, stomatal conductance to CO2 (gsc), and the maximum carboxylation rate (Vcmax) at both the initial and steady photosynthetic state. The initial gsc (gsci) was as much as sixfold higher compared to the other shrub, Hibiscus syriacus L. The time required to reach 90% of A (tA90) was 7–30 min; tA90 of Ficus carica L. and Ficus macrocarpa L. were lower than that of the other two species. The time required to reach 90% of gsc (tgsc90) significantly lagged behind tA90 among species. Biochemical induction was fast in leaves of Ficus carica L., as about 4 min were needed to reach 90% of Vcmax, while the other species needed 7–18 min. Correlation analysis showed that the tgsc90 was the main factor in limiting tA90, especially for Eucalyptus spp. and Hibiscus syriacus L.; gsci was negatively correlated with tgsc90 among species. Moreover, time-integrated limitation analysis revealed that gsc still accounted for the largest limitation in constraining A of Eucalyptus spp. and Hibiscus syriacus L. and Ficus macrocarpa L. Overall, the findings suggest that to enhance the carbon gain by woody species under naturally dynamic light environments, attention should be focused on improving the rate of stomatal opening or initial stomatal conductance. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

20 pages, 5163 KiB  
Article
Evaluating Photosynthetic Light Response Models for Leaf Photosynthetic Traits in Paddy Rice (Oryza sativa L.) Under Field Conditions
by Xinfeng Yao, Huifeng Sun, Sheng Zhou and Linyi Li
Plants 2025, 14(1), 23; https://doi.org/10.3390/plants14010023 - 25 Dec 2024
Cited by 1 | Viewed by 720
Abstract
Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based [...] Read more.
Accurate photosynthetic parameters obtained from photosynthetic light-response curves (LRCs) are crucial for enhancing our comprehension of plant photosynthesis. However, the task of fitting LRCs is still demanding due to diverse variations in LRCs under different environmental conditions, as previous models were evaluated based on a limited number of leaf traits and a small number of LRCs. This study aimed to compare the performance of nine LRC models in fitting a set of 108 LRCs measured from paddy rice (Oryza sativa L.) grown in field across 3 years under different leaf positions, leaf ages, nitrogen levels, irrigation levels, and varieties. The shape of 108 LRCs varies significantly under a range of leaf traits, which can be typed into three leaf light-acclimation types—high-light leaves (HL-1 and HL-2), and low-light leaves (LL). The accuracy of these models was evaluated by (1) LRCs from three acclimation types: HL-1 and HL-2, and LL; and (2) LRCs across three irradiance stages: light-limited, light-saturated, and photoinhibition. Results indicate that the Ye model emerged as the top performance among the nine models, particularly in the photoinhibition stage of LL leaves, with median values of R2, SSE, and AIC of 0.99, 2.39, and −14.03, respectively. Furthermore, the Ye model produced the most accurate predictions of key photosynthetic parameters, including dark respiration (RD), light-compensation point (Icomp), maximum net photosynthetic rate (PNmax), and light-saturation point (Isat). Results also suggest that PNImax and Imax were the most appropriate parameters to describe photosynthetic activity at the light-saturation point. These findings have significant implications for improving the accuracy of fitting LRCs, and thus robust predictions of photosynthetic parameters in rice under different environmental conditions. Full article
Show Figures

Figure 1

21 pages, 6708 KiB  
Article
Smart Automatic Irrigation Enhances Sap Flow, Growth, and Water Use Efficiency in Containerized Prunus × yedoensis Matsum. Seedling
by Eon-Ju Jin, Myung-Suk Choi, Hyeok Lee, Eun-Ji Bae, Do-Hyun Kim and Jun-Hyuck Yoon
Plants 2024, 13(23), 3270; https://doi.org/10.3390/plants13233270 - 21 Nov 2024
Viewed by 1429
Abstract
This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of Prunus × yedoensis Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, [...] Read more.
This study conducted a comparative analysis on the effects of smart automatic and semi-automatic irrigation methods on the physiological characteristics and growth of Prunus × yedoensis Matsum. seedlings. The smart automatic irrigation system, which activates irrigation when the soil moisture drops below 15%, demonstrated superior characteristics in sap-wood area and bark ratio, as well as excellent water management efficiency, compared to the semi-automatic irrigation method, which involves watering (2.0 L) for 10 min at 60 min intervals starting at 8 AM every day. The analysis of soil moisture content changes under varying weather conditions and irrigation methods showed that smart automatic irrigation effectively maintained optimal moisture levels. Moreover, sap flow in the smart automatic irrigation treatment was more efficiently regulated in response to seasonal variations, showing a strong correlation with climatic factors such as temperature and solar radiation. In contrast, the semi-automatic irrigation treatment led to excessive sap flow during the summer due to a fixed watering schedule, resulting in unnecessary water supply. Analysis of photosynthesis parameters and chlorophyll fluorescence also revealed that smart automatic irrigation achieved higher values in light compensation and saturation points, maximizing photosynthetic efficiency. These findings suggest that the smart automatic irrigation system can enhance plant growth and water use efficiency, contributing to sustainable water management strategies. This research provides critical foundational data for developing efficient agricultural and horticultural irrigation management strategies in response to future climate change. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 5323 KiB  
Article
Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum
by Anna T. Keightley, Chris D. Field, James G. Rowson and Simon J. M. Caporn
Int. J. Plant Biol. 2024, 15(4), 959-978; https://doi.org/10.3390/ijpb15040068 - 2 Oct 2024
Cited by 2 | Viewed by 2763
Abstract
The rapid, effective restoration of degraded peatlands is urgently needed to reduce their current high levels of carbon loss. The re-introduction of Sphagnum moss, along with re-wetting, is key to returning carbon sequestration and retention capabilities to northern degraded bogs. Micropropagated Sphagnum has [...] Read more.
The rapid, effective restoration of degraded peatlands is urgently needed to reduce their current high levels of carbon loss. The re-introduction of Sphagnum moss, along with re-wetting, is key to returning carbon sequestration and retention capabilities to northern degraded bogs. Micropropagated Sphagnum has already been applied in large quantities, and more is planned, for restoration projects in Britain and parts of Europe. A comparison with wild-sourced Sphagnum material is therefore pertinent to demonstrate its safety and suitability for wide-scale application. Six Sphagnum species of both micropropagated and wild-sourced origin were assessed for photosynthetic capacity, nutrient content, form parity, chlorocyst size, and chloroplast numbers. Micropropagated Sphagnum had significantly higher light-saturated photosynthesis (Pmax) rates, little color expression, an open growth habit, greater chloroplast numbers, and more numerous, smaller shoot apices than wild-sourced Sphagnum. Higher Pmax rates were associated with a lower bulk density and higher tissue nutrient concentrations. Potentially, greater chloroplast numbers in micropropagated Sphagnum facilitate higher photosynthesis rates, driving rapid growth in early-stage plants, particularly in optimum moisture conditions. Micropropagated Sphagnum can be used confidently, propagated in large quantities, and will likely establish well on application to sites where re-wetting has already occurred, therefore making it highly beneficial for the restoration of degraded bogs. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

17 pages, 1804 KiB  
Article
S-Benzyl-L-cysteine Inhibits Growth and Photosynthesis, and Triggers Oxidative Stress in Ipomoea grandifolia
by Danielly Caroline Inacio Martarello, Luiz Henryque Escher Grizza, Marcela de Paiva Foletto-Felipe, Ana Paula da Silva Mendonça, Renato Polimeni Constantin, Ana Paula Ferro, Wanderley Dantas dos Santos, Rodrigo Polimeni Constantin, Rogerio Marchiosi and Osvaldo Ferrarese-Filho
Agronomy 2024, 14(8), 1633; https://doi.org/10.3390/agronomy14081633 - 25 Jul 2024
Cited by 2 | Viewed by 1212
Abstract
L-cysteine, a precursor of essential components for plant growth, is synthesized by the cysteine synthase complex, which includes O-acetylserine(thiol) lyase (OAS-TL) and serine acetyltransferase. In this work, we investigated how S-benzyl-L-cysteine (SBC), an OAS-TL inhibitor, affects the growth, photosynthesis, and oxidative [...] Read more.
L-cysteine, a precursor of essential components for plant growth, is synthesized by the cysteine synthase complex, which includes O-acetylserine(thiol) lyase (OAS-TL) and serine acetyltransferase. In this work, we investigated how S-benzyl-L-cysteine (SBC), an OAS-TL inhibitor, affects the growth, photosynthesis, and oxidative stress of Ipomoea grandifolia plants. SBC impaired gas exchange and chlorophyll a fluorescence, indicating damage that compromised photosynthesis and reduced plant growth. Critical parameters such as the electron transport rate (J), triose phosphate utilization (TPU), light-saturation point (LSP), maximum carboxylation rate of Rubisco (Vcmax), and light-saturated net photosynthetic rate (PNmax) decreased by 19%, 20%, 22%, 23%, and 24%, respectively. The photochemical quenching coefficient (qP), quantum yield of photosystem II photochemistry (ϕPSII), electron transport rate through PSII (ETR), and stomatal conductance (gs) decreased by 12%, 19%, 19%, and 34%, respectively. Additionally, SBC decreased the maximum fluorescence yield (Fm), variable fluorescence (Fv), and chlorophyll (SPAD index) by 14%, 15%, and 15%, respectively, indicating possible damage to the photosynthetic apparatus. SBC triggered root oxidative stress by increasing malondialdehyde, reactive oxygen species, and conjugated dienes by 30%, 55%, and 61%, respectively. We hypothesize that dysfunctions in sulfur-containing components of the photosynthetic electron transport chain, such as the cytochrome b6f complex, ferredoxin, and the iron–sulfur (Fe-S) centers are the cause of these effects, which ultimately reduce the efficiency of electron transport and hinder photosynthesis in I. grandifolia plants. In short, our findings suggest that targeting OAS-TL with inhibitors like SBC could be a promising strategy for the development of novel herbicides. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

11 pages, 1521 KiB  
Article
Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period
by Heewoong Goo, Yongseung Roh, Joonwoo Lee and Kyoung Sub Park
Horticulturae 2024, 10(6), 646; https://doi.org/10.3390/horticulturae10060646 - 16 Jun 2024
Cited by 3 | Viewed by 2777
Abstract
This study analyzed the leaf spectral properties and photosynthesis rates of greenhouse-grown bell pepper leaves according to the growth period and leaf position to investigate the changes in carbon assimilation function according to leaf aging. Photosynthesis, growth, transpiration, stomatal conductance, light transmittance, and [...] Read more.
This study analyzed the leaf spectral properties and photosynthesis rates of greenhouse-grown bell pepper leaves according to the growth period and leaf position to investigate the changes in carbon assimilation function according to leaf aging. Photosynthesis, growth, transpiration, stomatal conductance, light transmittance, and light reflectance were measured. As the plants’ growth progressed, the number of leaves, fresh weight, and dry weight increased, but the specific leaf area decreased, likely due to the increased distribution of assimilates to reproductive organs. The average photosynthesis rate, according to the measured dates, exhibited a high value despite a large standard error, which was likely influenced by measurement errors caused by external environmental factors. The reflectance and transmittance increased from the upper to the middle and bottom leaves, and the absorption ratio decreased in the same order. The green light spectrum (500–580 nm) had a lower absorption ratio than other spectra because the green coloration of the leaves increased the light reflectance of this spectrum. As the PPFD increased where the leaf was positioned higher, the photosynthesis rate, transpiration amount, and stomatal conductance also increased. The higher the leaf position, the higher the photosynthesis rate, the amount of transpiration, and the stomatal conductance. As the CO2 concentration increased, the photosynthesis rate increased, but the transpiration and stomatal conductance changed little, indicating that the gas exchange within leaves was hardly affected by CO2, but the light levels promoted photosynthesis. From the results of this study, the optical properties of the leaves indicate that they are consistent with Lambert–Beer’s law, which implies that the length of the optical path is linearly proportional to the number of molecules in the absorption layer. We obtained the light saturation point and CO2 saturation point of bell peppers grown in a greenhouse and were able to determine the physiological changes in the leaves with increasing leaf age. Therefore, based on this information, it appears that a leaf removal model based on the productivity of bell pepper leaves could be developed. Full article
Show Figures

Figure 1

23 pages, 4484 KiB  
Article
Drip Fertigation Enhances the Responses of Grain Yield and Quality to Nitrogen Topdressing Rate in Irrigated Winter Wheat in North China
by Jin Tong, Yulei Xiong, Yu Lu, Wen Li, Wen Lin, Jianfu Xue, Min Sun, Yuechao Wang and Zhiqiang Gao
Plants 2024, 13(11), 1439; https://doi.org/10.3390/plants13111439 - 22 May 2024
Cited by 4 | Viewed by 1659
Abstract
Conventional water and nitrogen (N) management practice in north China, comprising flood irrigation and N fertilizer broadcast (FB), limits sustainable wheat production. Drip fertigation (DF) has been widely adopted in wheat production in recent years and has effectively improved yields. However, the responses [...] Read more.
Conventional water and nitrogen (N) management practice in north China, comprising flood irrigation and N fertilizer broadcast (FB), limits sustainable wheat production. Drip fertigation (DF) has been widely adopted in wheat production in recent years and has effectively improved yields. However, the responses of the yield and quality to the N topdressing rate (NTR) under DF are still unclear. This study determined the responses of the wheat yield and quality to NTR under DF, as well as assessing whether DF could synergistically increase the yield and quality. A field experiment was conducted in north China for two seasons (2021–2023) using a split-plot design with three replicates. The main plot used the management practice (FB and DF) and the sub-plot had N treatment (no N applied, and NTRs of 0, 40, 80, 120, and 160 kg ha−1 with 150 kg N ha−1 as basal fertilizer, denoted as N0, T0, T40, T80, T120, and T160, respectively). Our results showed that high and saturated wheat yields (12.08 and 11.46 t ha−1) were obtained under DF at T80, and the highest yields were produced at T160 (11.71 and 11.30 t ha−1) under FB. Compared with FB, the greatest yield increase of 10.4–12.6% was achieved at T80 under DF. A higher spike number due to the increased effective stem percentage and a greater grain weight because of enhanced post-anthesis biomass production (BPpost) explained the improved yield under DF. The enhanced post-anthesis radiation use efficiency (RUE) led to the greater BPpost under DF. The enhanced specific leaf N, antioxidant capacity, and stomatal conductance under DF explained the higher light-saturated photosynthesis rate of flag leaves, which partly led to the increased post-anthesis RUE. NTR higher than 80 kg ha−1 did not enhance the yield, but it significantly improved the gliadin and glutelin contents, thereby leading to a higher total protein content, better gluten characteristics, and superior processing quality. Therefore, drip fertigation is a practical strategy for increasing both yield and quality with reduced water input and appropriate N input in irrigated winter wheat in north China. Applying 80 kg ha−1 of NTR under drip irrigation produces a high yield, but further gain in grain quality needs a higher NTR. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

Back to TopTop