Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Locations for Measurement and Growth Surveys
2.2. Optical Properties of Leaves
2.3. Leaf Photosynthesis
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Analysis of Bell Pepper Leaf Photosynthesis by Time Point
3.2. Analysis of Optical Properties at Different Leaf Positions
3.3. Analysis of Photosynthesis by Leaf Position
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, H.S.; Lee, J.S.; Bang, J.W.; Lee, J.H. Preference and loyalty evaluation using sentiment analysis for promotion and consumption expansion of paprika. J. Bio-Environ. Control. 2022, 31, 343–355. [Google Scholar] [CrossRef]
- Bar, M.; Ori, N. Leaf development and morphogenesis. Development 2014, 141, 4219–4230. [Google Scholar] [CrossRef] [PubMed]
- Wit, M.D.; Galvão, V.C.; Fankhauser, C. Light-mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Volterrani, M.; Minelli, A.; Gaetani, M.; Grossi, N.; Magni, S.; Caturegli, L. Reflectance, absorbance and transmittance spectra of bermudagrass and manilagrass turfgrass canopies. PLoS ONE 2017, 12, e0188080. [Google Scholar] [CrossRef] [PubMed]
- Gates, D.M.; Keegan, H.J.; Schleter, J.C.; Weidner, V.R. Spectral properties of plants. Appl. Opt. 1965, 4, 11. [Google Scholar] [CrossRef]
- Gausman, H.W. Reflectance of leaf components. Remote Sens. Environ. 1977, 6, 1. [Google Scholar] [CrossRef]
- Agati, G.; Foschi, L.; Grossi, N.; Guglielminetti, L.; Cerovic, Z.G.; Volterrani, M. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. Eur. J. Agron. 2013, 45, 39–51. [Google Scholar] [CrossRef]
- Murdock, L.; Call, D.; James, J. Comparison and Use of Chlorophyll Meters on Wheat (Reflectance vs. Transmittance/Absorbance). Cooperative Extension Service, AGR-181; University of Kentucky—College of Agriculture: Frankfort, KY, USA, 2004. [Google Scholar]
- Oswald, W.J.; Golueke, C.G. Biological transformation of solar energy. In Advances in Applied Microbiology, 1st ed.; Elsevier: New York, NY, USA; London, UK, 1960; Volume 2, pp. 223–262. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Park, K.S.; Kim, S.K.; Cho, Y.-Y.; Cha, M.K.; Jung, D.H.; Son, J.E. A coupled model of photosynthesis and stomatal conductance for the ice plant (Mesembryanthemum crystallinum L.), a facultative CAM plant. Hortic. Environ. Biotechnol. 2016, 57, 259–265. [Google Scholar] [CrossRef]
- Kim, S.H.; Lieth, J.H. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 2003, 91, 771–781. [Google Scholar] [CrossRef]
- Caswell, H.; Salguero-Gómez, R. Age, stage and senescence in plants. J. Ecol. 2013, 101, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Quirino, B.F.; Noh, Y.-S.; Himelblau, E.; Amasino, R.M. Molecular aspects of leaf senescence. Trends Plant Sci. 2000, 5, 278–282. [Google Scholar] [CrossRef]
- Diaz, C.; Lemaître, T.; Christ, A.; Azzopardi, M.; Kato, Y.; Sato, F.; Morot-Gaudry, J.-F.; Le Dily, F.; Masclaux-Daubresse, C. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiol. 2008, 147, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Diquelou, S.; Billard, V.; Laîné, P.; Garnica, M.; Prudent, M.; Garcia-Mina, J.-M.; Yvin, J.-C.; Ourry, A. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 2015, 6, 317. [Google Scholar] [CrossRef]
- Imai, K.; Murata, Y. Changes in apparent photosynthesis, CO2 compensation point and dark respiration of leaves of some Poaceae and Cyperaceae species with senescence. Plant Cell Physiol. 1979, 20, 1653–1658. [Google Scholar] [CrossRef]
- Kim, S.E.; Kim, Y.S. Optimum management of tomato side stems pruning in summer cultivation. Protect Hortic. Plant Fact. 2014, 23, 167–173. [Google Scholar] [CrossRef]
- Kume, A.; Ino, Y. Comparison of ecophysiological responses to heavy snow in two varieties of Aucuba japonica with different areas of distribution. Ecol. Res. 1993, 8, 111–121. [Google Scholar] [CrossRef]
- Kim, P.G.; Lee, E.J. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Kor. J. Agric. For. Meteorol. 2001, 3, 126–133. [Google Scholar]
- Kok, B. A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 1948, 13, 1. [Google Scholar]
- Sharp, R.E.; Matthews, M.A.; Boyer, J.S. Kok effect and the quantum yield of photosynthesis: Light partially inhibits dark respiration. Plant Physiol. 1984, 75, 95–101. [Google Scholar] [CrossRef]
- Tcherkez, G.; Gauthier, P.; Buckley, T.N.; Busch, F.A.; Barbour, M.M.; Bruhn, D.; Heskel, M.A.; Gong, X.Y.; Crous, K.; Griffin, K.L.; et al. Tracking the origins of the Kok effect, 70 years after its discovery. New Phytol. 2017, 214, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.H.; Woo, J.H.; Lee, H.S.; Kim, K.U. Seasonal changes of dry matter productivity and photosynthesis in Gerbera hybrida. Int. J. Hortic. Sci. Technol. 2009, 27, 205–210. [Google Scholar]
- Jeong, W.J.; Lee, J.H.; Kim, H.C.; Bae, J.H. Dry matter production, distribution and yield of sweet pepper grown under glasshouse and plastic greenhouse in Korea. J. Bio-Environ. Control. 2009, 18, 258–265. [Google Scholar]
- Kim, E.J.; Park, K.S.; Goo, H.W.; Park, G.E.; Myung, D.J.; Jeon, Y.H.; Na, H. Effect of cooling in a semi-closed greenhouse at high temperature on the growth and photosynthesis characteristics in paprika. J. Bio-Environ. Control. 2021, 30, 335–341. [Google Scholar] [CrossRef]
- Nomura, K.; Saito, M.; Tada, I.; Iwao, T.; Yamazaki, T.; Kira, N.; Nishimura, Y.; Mori, M.; Baeza, E.; Kitano, M. Estimation of photosynthesis loss due to greenhouse superstructures and shade nets: A case study with paprika and tomato canopies. HortScience 2022, 57, 464–471. [Google Scholar] [CrossRef]
- Xiao, X. Light absorption by leaf chlorophyll and maximum light use efficiency. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1933–1935. [Google Scholar] [CrossRef]
- Kramer, P.J. Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 1981, 31, 29–33. [Google Scholar] [CrossRef]
- Buijs, K.; Maurice, M.J. Some considerations on apparent deviations from lambert-beer’s law. Anal. Chim. Acta 1969, 47, 469–474. [Google Scholar] [CrossRef]
- Klein, S.; Fiebig, A.; Noga, G.; Hunsche, M. Influence of light quality on leaf physiology of sweet pepper plants grown under drought. Theor. Exp. Plant Physiol. 2018, 30, 287–296. [Google Scholar] [CrossRef]
- Claypool, N.; Lieth, J. Modeling morphological adaptations of bell pepper (Capsicum annuum) to light spectra. Sci. Hortic. 2021, 285, 110135. [Google Scholar] [CrossRef]
- Buchanan-Wollaston, V. The molecular biology of leaf senescence. J. Exp. Bot. 1997, 48, 181–199. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, M.Y.; Kim, Y.S. Characterization of photosynthetic rates by tomato leaf position. Int. J. Hortic. Sci. Technol. 2013, 31, 146–152. [Google Scholar] [CrossRef]
Period (YYYY/MM/DD) | Number of Leaves (ea) | Fresh Weight (g) | Dry Weight (g) | Leaf Area (cm2) | SLA z (cm2·g−1) |
---|---|---|---|---|---|
2021/08/14 | 26.3 | 170 | 18.6 | 7274 | 397 |
2021/12/14 | 53.0 | 369 | 51.4 | 9814 | 202 |
Significance | *** | *** | * | * | * |
Period (YYYY/MM/DD) | Equation | R2 | Amax (μmol·m−2·s−1) |
---|---|---|---|
2021/07/26 | 0.991 | 33.9 | |
2021/08/14 | 0.998 | 27.5 | |
2021/12/14 | 0.987 | 29.3 |
Wavelength (nm) | Variable | Bottom (%) | Middle (%) | Upper (%) |
---|---|---|---|---|
400–700 | Reflectance | 9.26 ± 0.08 * | 7.79 ± 0.05 | 5.29 ± 0.04 |
Transmittance | 8.37 ± 0.26 | 6.22 ± 0.15 | 5.61 ± 0.07 | |
Absorptance | 82.37 ± 0.09 | 86.00 ± 0.05 | 89.10 ± 0.02 | |
400–500 | Reflectance | 6.87 ± 0.02 | 6.67 ± 0.01 | 4.39 ± 0.004 |
Transmittance | 5.03 ± 0.11 | 4.82 ± 0.11 | 4.87 ± 0.01 | |
Absorptance | 88.09 ± 0.05 | 88.51 ± 0.05 | 90.74 ± 0.002 | |
500–600 | Reflectance | 12.57 ± 0.02 | 9.81 ± 0.09 | 6.83 ± 0.07 |
Transmittance | 13.46 ± 0.33 | 9.28 ± 0.22 | 6.93 ± 0.13 | |
Absorptance | 73.97 ± 0.11 | 80.91 ± 0.06 | 86.25 ± 0.03 | |
600–700 | Reflectance | 8.31 ± 0.06 | 6.88 ± 0.05 | 4.64 ± 0.03 |
Transmittance | 6.58 ± 0.25 | 4.53 ± 0.12 | 5.02 ± 0.06 | |
Absorptance | 85.11 ± 0.10 | 88.59 ± 0.04 | 90.34 ± 0.01 |
Variable | Position | Equation | R2 |
---|---|---|---|
Photosynthetic rate | Upper | 0.953 | |
Middle | 0.987 | ||
Bottom | 0.951 | ||
Transpiration rate | Upper | 0.939 | |
Middle | 0.986 | ||
Bottom | 0.995 | ||
Stomatal conductance | Upper | 0.839 | |
Middle | 0.969 | ||
Bottom | 0.985 |
Variable | Leaf Position | Equation | R2 |
---|---|---|---|
Photosynthetic rate | Upper | 0.992 | |
Middle | 0.998 | ||
Bottom | 0.986 | ||
Transpiration rate | Upper | 0.006 | |
Middle | 0.426 | ||
Bottom | 0.696 | ||
Stomatal conductance | Upper | 0.163 | |
Middle | 0.626 | ||
Bottom | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goo, H.; Roh, Y.; Lee, J.; Park, K.S. Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period. Horticulturae 2024, 10, 646. https://doi.org/10.3390/horticulturae10060646
Goo H, Roh Y, Lee J, Park KS. Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period. Horticulturae. 2024; 10(6):646. https://doi.org/10.3390/horticulturae10060646
Chicago/Turabian StyleGoo, Heewoong, Yongseung Roh, Joonwoo Lee, and Kyoung Sub Park. 2024. "Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period" Horticulturae 10, no. 6: 646. https://doi.org/10.3390/horticulturae10060646
APA StyleGoo, H., Roh, Y., Lee, J., & Park, K. S. (2024). Analysis of Bell Pepper (Capsicum annuum L.) Leaf Spectral Properties and Photosynthesis According to Growth Period. Horticulturae, 10(6), 646. https://doi.org/10.3390/horticulturae10060646