Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = light hydrocarbon recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3474 KB  
Article
Process Design for Optimizing Small Particle Diameter Light Hydrocarbon Recovery from Tight Gas Fields
by Jianli Li and Lei Xing
Processes 2025, 13(12), 3884; https://doi.org/10.3390/pr13123884 - 1 Dec 2025
Viewed by 298
Abstract
To address the challenge of low separation efficiency for fine light hydrocarbons in tight gas fields, this study establishes a mathematical model correlating the structural parameters of a cyclonic coalescer with coalesced droplet size. The model was constructed using second-order polynomial basis functions [...] Read more.
To address the challenge of low separation efficiency for fine light hydrocarbons in tight gas fields, this study establishes a mathematical model correlating the structural parameters of a cyclonic coalescer with coalesced droplet size. The model was constructed using second-order polynomial basis functions through numerical simulation and response surface methodology. An optimized cyclonic coalescer configuration with enhanced fine droplet coalescence capability was subsequently designed. The performance of the optimized and original configurations was comparatively evaluated through numerical simulations and laboratory experiments. Simulation results indicated that with inlet droplet sizes ranging from 0.1 to 10 µm, the optimized configuration achieved a coalescence efficiency of 90.66% for outlet droplets larger than 100 µm. High-speed photographic analysis revealed that 5–10 µm inlet droplets were coalesced to 50–60 µm diameters, while 50–300 µm inlet droplets formed large-scale liquid flows of 300–500 µm. The optimized configuration exhibited significantly improved coalescence efficiency and operational applicability across varying inlet droplet sizes. This research provides practical insights for enhancing the recovery efficiency of fine light hydrocarbons in gas processing operations. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

14 pages, 3270 KB  
Article
Postprocedural Pyrolysis: A Feasibility Study on Chemical Recycling of Plastics Used During Surgery
by Nils Prinz, Anne Püllen, Dimitri Barski, Barbara Hermann, Christian Haessler and Thomas Otto
Surgeries 2025, 6(4), 100; https://doi.org/10.3390/surgeries6040100 - 20 Nov 2025
Viewed by 698
Abstract
Background: Hospitals generate large volumes of single-use plastic waste, which are predominantly incinerated. To improve sustainability, standardized procedure-specific surgical trays have been implemented, reducing waste and setup time. This early feasibility study investigated whether all residual plastics from surgical procedures could be recycled [...] Read more.
Background: Hospitals generate large volumes of single-use plastic waste, which are predominantly incinerated. To improve sustainability, standardized procedure-specific surgical trays have been implemented, reducing waste and setup time. This early feasibility study investigated whether all residual plastics from surgical procedures could be recycled via pyrolysis into high-quality oil for circular reuse in medical supply production. Methods: All residual plastics from five transurethral resection (TUR) trays were subjected to pyrolysis at 430–460 °C in a batch reactor. Condensable fractions were separated into heavy (HF) and light (LF) oils, while non-condensable gases and coke were quantified. Chemical analyses included the density, water content, heating value, and elemental composition. Results: From 1.102 kg of input material, the process yielded 78 weight percent (wt%) oil (HF 59.1%, LF 40.9%), 20.5 wt% gas, and 1.5 wt% coke. HF solidified at room temperature, whereas LF remained liquid, reflecting distinct hydrocarbon chain distributions. The oils exhibited densities of 767.0 kg/m3 (HF) and 748.9 kg/m3 (LF), heating values of 46.39–46.80 MJ/kg, low water contents (<0.05 wt%), and minimal contamination (silicone ≤ 193 mg/kg; chlorine ≤ 110 mg/kg). Conclusions: Pyrolysis of surgical tray plastics produces decontaminated high-energy oils comparable in quality to fossil fuels, with a material recovery rate exceeding 75% and potential CO2 savings of ~ 2.9 ton per t plastic compared with incineration. This process provides a technically and ecologically viable pathway toward a scalable circular economy in healthcare. Full article
Show Figures

Graphical abstract

20 pages, 4663 KB  
Article
Investigation on Imbibition Recovery Characteristics in Jimusar Shale Oil and White Mineral Oil by NMR
by Dunqing Liu, Chengzhi Jia and Keji Chen
Energies 2025, 18(15), 4111; https://doi.org/10.3390/en18154111 - 2 Aug 2025
Viewed by 690
Abstract
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in [...] Read more.
Recovering oil by fracturing fluid imbibition has demonstrated significant potential for enhanced oil recovery (EOR) in tight oil reservoirs. White mineral oil (WMO), kerosene, or saturated alkanes with matched apparent viscosity have been widely used as “crude oil” to investigate imbibition mechanisms in light shale oil or tight oil. However, the representativeness of these simulated oils for low-maturity crude oils with higher viscosity and greater content of resins and asphaltenes requires further research. In this study, imbibition experiments were conducted and T2 and T1T2 nuclear magnetic resonance (NMR) spectra were adopted to investigate the oil recovery characteristics among resin–asphaltene-rich Jimusar shale oil and two WMOs. The overall imbibition recovery rates, pore scale recovery characteristics, mobility variations among oils with different occurrence states, as well as key factors influencing imbibition efficiency were analyzed. The results show the following: (1) WMO, kerosene, or alkanes with matched apparent viscosity may not comprehensively replicate the imbibition behavior of resin–asphaltene-rich crude oils. These simplified systems fail to capture the pore-scale occurrence characteristics of resins/asphaltenes, their influence on pore wettability alteration, and may consequently overestimate the intrinsic imbibition displacement efficiency in reservoir formations. (2) Surfactant optimization must holistically address the intrinsic coupling between interfacial tension reduction, wettability modification, and pore-scale crude oil mobilization mechanisms. The alteration of overall wettability exhibits higher priority over interfacial tension in governing displacement dynamics. (3) Imbibition displacement exhibits selective mobilization characteristics for oil phases in pores. Specifically, when the oil phase contains complex hydrocarbon components, lighter fractions in larger pores are preferentially mobilized; when the oil composition is homogeneous, oil in smaller pores is mobilized first. Full article
(This article belongs to the Special Issue New Progress in Unconventional Oil and Gas Development: 2nd Edition)
Show Figures

Figure 1

16 pages, 7952 KB  
Article
Influence of Aging Conditions on the Dynamic Stiffness of EPDM and EVA Rail Pads
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(8), 4394; https://doi.org/10.3390/app15084394 - 16 Apr 2025
Cited by 2 | Viewed by 1207
Abstract
The railway sector plays a crucial role in sustainable transportation by reducing greenhouse gas emissions while supporting an increasing volume of freight and passenger transport. Rail pads, essential components in railway infrastructure, mitigate vibrations and distribute loads; however, their long-term performance is influenced [...] Read more.
The railway sector plays a crucial role in sustainable transportation by reducing greenhouse gas emissions while supporting an increasing volume of freight and passenger transport. Rail pads, essential components in railway infrastructure, mitigate vibrations and distribute loads; however, their long-term performance is influenced by environmental and mechanical degradation, affecting track durability and maintenance costs. Despite their significance, the degradation mechanisms impacting the dynamic stiffness of EPDM (Ethylene Propylene Diene Monomer) and EVA (Ethylene Vinyl Acetate) rail pads remain insufficiently characterized. This study examines the effects of mechanical and chemical aging on the stiffness of these materials through 864 dynamic stiffness tests, analyzing three types of rail pads under mechanical cycling (up to 2,000,000 cycles), UV (ultraviolet light) exposure (100–500 h), and hydrocarbon exposure (100–500 h). Mechanical aging increases stiffness across all pads, with Pad C (EVA) exhibiting the most pronounced increase (27%). The effects of UV exposure vary by material, leading to a stiffness reduction of up to 11.5% in Pad B (EPDM), whereas Pad C (EVA) experiences a 9.5% increase under prolonged exposure. Hydrocarbon exposure also presents material-dependent behavior, with Pad A (EPDM) experiencing an 11.5% stiffness reduction at low exposure but partial recovery at higher exposure, while Pad C (EVA) shows a 5% increase in stiffness under prolonged exposure. These findings offer valuable insights into the aging mechanisms of rail pads and underscore the importance of considering degradation effects in track maintenance strategies. Full article
(This article belongs to the Special Issue Vehicle-Track Interaction and Railway Dynamics)
Show Figures

Figure 1

22 pages, 3360 KB  
Article
Experimental Investigation of the Effect of Solvent Type and Its Concentration on the Performance of ES-SAGD
by Sajjad Esmaeili, Brij Maini, Zain Ul Abidin and Apostolos Kantzas
Methods Protoc. 2025, 8(2), 39; https://doi.org/10.3390/mps8020039 - 8 Apr 2025
Cited by 2 | Viewed by 1374
Abstract
Steam-assisted gravity drainage (SAGD) is a widely used thermal enhanced oil recovery (EOR) technique in North America, particularly in high-permeability oil sand reservoirs. While effective, its economic viability has declined due to low oil prices and high greenhouse gas (GHG) emissions from the [...] Read more.
Steam-assisted gravity drainage (SAGD) is a widely used thermal enhanced oil recovery (EOR) technique in North America, particularly in high-permeability oil sand reservoirs. While effective, its economic viability has declined due to low oil prices and high greenhouse gas (GHG) emissions from the steam generation. To improve cost-effectiveness and reduce emissions, solvent-assisted SAGD techniques have been explored. Expanding Solvent-SAGD (ES-SAGD) involves co-injecting light hydrocarbons like propane or butane with steam to enhance oil viscosity reduction. This approach lowers the steam–oil ratio by combining solvent dissolution effects with thermal effects. However, the high cost of solvents, particularly butane, challenges its commercial feasibility. Propane is cheaper but less effective, while butane improves performance but remains expensive. This research aims to optimize ES-SAGD by using a propane–butane mixture to achieve efficient performance at a lower cost than pure butane. A linear sand pack is used to evaluate different propane/butane compositions, maintaining constant operational conditions and a solvent concentration of 15 vol.%. Temperature monitoring provides insights into steam chamber growth. Results show that solvent injection significantly enhances ES-SAGD performance compared to conventional SAGD. Performance improves with increasing butane concentration, up to 80% butane in the C3–C4 mixture at the test pressure and ambient temperature. Propane alone results in the lowest system temperature, while conventional SAGD reaches the highest temperature. These findings highlight the potential of optimized solvent mixtures to improve ES-SAGD efficiency while reducing costs and GHG emissions. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

28 pages, 9979 KB  
Article
Occurrence Mechanism of Crude Oil Components in Tight Reservoirs: A Case Study of the Chang 7 Tight Oil in the Jiyuan Area, Ordos Basin, China
by Mengya Jiang, Dongxia Chen, Qiaochu Wang, Fuwei Wang, Xiujuan Wang, Kuiyou Ma, Yuchao Wang, Wenzhi Lei, Yuqi Wang, Zaiquan Yang, Renzeng Wanma and Lanxi Rong
Energies 2025, 18(6), 1440; https://doi.org/10.3390/en18061440 - 14 Mar 2025
Cited by 3 | Viewed by 999
Abstract
Tight oil is an important unconventional hydrocarbon resource. The differences in occurrence characteristics between light components (LCs) and heavy components (HCs) of tight oil profoundly affect its mobility and recovery. Current research has focused mainly on the rapid evaluation of the relative contents [...] Read more.
Tight oil is an important unconventional hydrocarbon resource. The differences in occurrence characteristics between light components (LCs) and heavy components (HCs) of tight oil profoundly affect its mobility and recovery. Current research has focused mainly on the rapid evaluation of the relative contents of LCs, whereas few studies have systematically analyzed the occurrence characteristics of LCs and HCs and their controlling factors. In this study, the differential occurrence characteristics between LCs and HCs are clarified on the basis of data from thin-section petrography, X-ray diffraction, nuclear magnetic resonance, confocal laser scanning microscopy, and reservoir pyrolysis analysis. An innovative quantitative characterization methodology for the relative occurrence volumes of LCs and HCs is proposed. On the basis of this method, the controlling factors that cause the different occurrence characteristics of LCs and HCs are elucidated. Furthermore, the occurrence characteristics of LCs and HCs in various source–reservoir combinations, physical properties, and development intensities of argillaceous laminae are summarized. Finally, an occurrence model of the crude oil components in the Chang 7 tight reservoir is established. The results show that LCs and HCs in the Chang 7 tight reservoir exhibit differences in occurrence volume, state, morphology, and pore size. These differences are primarily controlled by the hydrocarbon generation intensity of the source rock, the source-to-reservoir distance (SRD), and the content of oil-wet minerals in the reservoir. The source sandwich combination exhibits high physical properties, low hydrocarbon generation intensity, high SRD, and low oil-wet mineral content, resulting in relatively high LCs. The source–reservoir interbed and reservoir sandwich combinations feature a high content of argillaceous laminae, high hydrocarbon generation intensity, low SRD, and high oil-wet mineral content, resulting in relatively low LCs. There are three occurrence models of crude oil components in the Chang 7 tight reservoir: the charging force controlling model, the adsorption effect controlling model, and the argillaceous laminae controlling model. The results of this study provide significant guidance for predicting the fluidity of tight oil, accurately assessing the amount of recoverable tight oil resources, and achieving efficient extraction of tight oil. Full article
Show Figures

Figure 1

21 pages, 2664 KB  
Review
Review on Changes in Shale Oil Property During CO2 Injection
by Xiang Li, Songtao Wu, Yue Shen and Chanfei Wang
Energies 2025, 18(5), 1264; https://doi.org/10.3390/en18051264 - 4 Mar 2025
Cited by 2 | Viewed by 1642
Abstract
The influence of supercritical CO2 on the properties of petroleum has become the focus of academic and industrial attention internationally. CO2 has been shown in laboratory studies and in field applications of shale oil to be an effective oil displacement agent. [...] Read more.
The influence of supercritical CO2 on the properties of petroleum has become the focus of academic and industrial attention internationally. CO2 has been shown in laboratory studies and in field applications of shale oil to be an effective oil displacement agent. In this paper, the research progress of the interaction between CO2 and crude oil is investigated from three perspectives: (i) the research methods of the interaction experiment between CO2 and crude oil; (ii) the influence of CO2 on oil property and the primary controlling factors; and (iii) the cause, influence, and harm of CO2-induced asphaltene precipitation. Our current knowledge on this topic is as follows: (1) Physical simulation can investigate the effects of various variables on CO2 displacement, which is in situ and intuitive. Numerical simulation can investigate the displacement principle at the microscopic molecular level and also scale up the results of physical simulation to the macroscopic scale of oilfield production to explore the long-term large-scale injection rules; (2) after entering the formation, CO2 dissolves in crude oil, expands the volume of crude oil, reduces the viscosity, improves the oil–water mobility ratio, reduces the oil–water interfacial tension, and extracts light hydrocarbons to form a miscible displacement zone; (3) after CO2 is injected into the formation and dissolves in crude oil, it occupies the surface space of asphaltenes and causes asphaltenes to precipitate. Under the combined influence of internal and external factors, the precipitation of asphaltenes has a significant impact on the physical properties of the reservoir. Clarifying the influencing factors of CO2 on the property of crude oil has reference significance for understanding the reaction characteristics between supercritical CO2 and formation fluids, providing a theoretical basis for CO2 injection enhanced oil recovery technology, and has reference value for carbon storage research. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

14 pages, 1437 KB  
Article
Enhanced Oil Recovery Mechanism Mediated by Reduced Miscibility Pressure Using Hydrocarbon-Degrading Bacteria During CO2 Flooding in Tight Oil Reservoirs
by Chengjun Wang, Xinxin Li, Juan Xia, Jun Ni, Weibo Wang, Ge Jin and Kai Cui
Energies 2025, 18(5), 1123; https://doi.org/10.3390/en18051123 - 25 Feb 2025
Viewed by 1552
Abstract
CO2 flooding technology for tight oil reservoirs not only effectively addresses the challenge of low recovery rates, but also facilitates geological CO2 sequestration, thereby achieving the dual objective of enhanced CO2 utilization and secure storage. However, in the development of [...] Read more.
CO2 flooding technology for tight oil reservoirs not only effectively addresses the challenge of low recovery rates, but also facilitates geological CO2 sequestration, thereby achieving the dual objective of enhanced CO2 utilization and secure storage. However, in the development of continental sedimentary tight oil reservoirs, the high content of heavy hydrocarbons in crude oil leads to an elevated minimum miscibility pressure (MMP) between crude oil and CO2, thereby limiting the process to non-miscible flooding. Conventional physical and chemical methods, although effective in reducing MMP, are often associated with high costs, environmental concerns, and limited efficacy. To address these challenges, we propose a novel approach utilizing petroleum hydrocarbon-degrading bacteria (PHDB) to biodegrade heavy hydrocarbons in crude oil. This method alters the composition of crude oil, thereby lowering the MMP during CO2 flooding, facilitating the transition from non-miscible to miscible flooding, and enhancing oil recovery. Results demonstrated that, after 7 days of cultivation, the selected PHDB achieved a degradation efficiency of 56.4% in crude oil, significantly reducing the heavy hydrocarbon content. The relative content of light-saturated hydrocarbons increased by 15.6%, and the carbon atom molar percentage in crude oil decreased from C8 to C6. Following the biodegradation process, the MMP of the lightened crude oil was reduced by 20.9%. Core flood experiments indicated that CO2 flooding enhanced by PHDB improved oil recovery by 17.7% compared to conventional CO2 flooding. This research provides a novel technical approach for the green and cost-effective development of tight oil reservoirs with CO2 immiscible flooding. Full article
(This article belongs to the Special Issue Sustainable Energy Solutions Through Microbial Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 4820 KB  
Review
Research and Application of Oxygen-Reduced-Air-Assisted Gravity Drainage for Enhanced Oil Recovery
by Jiangfei Wei, Hongwei Yu, Ming Gao, Peifeng Yan, Kesheng Tan, Yutong Yan, Keqiang Wei, Mingyan Sun, Xianglong Yu, Zhihua Chen and Qiang Chen
Energies 2025, 18(3), 557; https://doi.org/10.3390/en18030557 - 24 Jan 2025
Cited by 1 | Viewed by 1403
Abstract
This paper summarizes the research progress and applications of oxygen-reduced-air-assisted gravity drainage (OAGD) in enhanced oil recovery (EOR). The fundamental principles and key technologies of OAGD are introduced, along with a review of domestic and international field trials. Factors influencing displacement performance, including [...] Read more.
This paper summarizes the research progress and applications of oxygen-reduced-air-assisted gravity drainage (OAGD) in enhanced oil recovery (EOR). The fundamental principles and key technologies of OAGD are introduced, along with a review of domestic and international field trials. Factors influencing displacement performance, including low-temperature oxidation reactions, injection rates, and reservoir dip angles, are discussed in detail. The findings reveal that low-temperature oxidation significantly improves the recovery efficiency through the dynamic balance of light hydrocarbon volatilization and fuel deposition, coupled with the synergistic optimization of the reservoir temperature, pressure, and oxygen concentration. Proper control of the injection rate stabilizes the oil–gas interface, expands the swept volume, and delays gas channeling. High-dip reservoirs, benefiting from enhanced gravity segregation, demonstrate superior displacement efficiency. Finally, the paper highlights future directions, including the optimization of injection parameters, deepening studies on reservoir chemical reaction mechanisms, and integrating intelligent gas injection technologies to enhance the effectiveness and economic viability of OAGD in complex reservoirs. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

37 pages, 19268 KB  
Review
From Waste to Worth: Upcycling Plastic into High-Value Carbon-Based Nanomaterials
by Ahmed M. Abdelfatah, Mohamed Hosny, Ahmed S. Elbay, Nourhan El-Maghrabi and Manal Fawzy
Polymers 2025, 17(1), 63; https://doi.org/10.3390/polym17010063 - 30 Dec 2024
Cited by 19 | Viewed by 8456
Abstract
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most [...] Read more.
Plastic waste (PW) presents a significant environmental challenge due to its persistent accumulation and harmful effects on ecosystems. According to the United Nations Environment Program (UNEP), global plastic production in 2024 is estimated to reach approximately 500 million tons. Without effective intervention, most of this plastic is expected to become waste, potentially resulting in billions of tons of accumulated PW by 2060. This study explores innovative approaches to convert PW into high-value carbon nanomaterials (CNMs) such as graphene, carbon nanotubes (CNTs), and other advanced carbon structures. Various methods including pyrolysis, arc discharge, catalytic degradation, and laser ablation have been investigated in transforming PW into CNMs. However, four primary methodologies are discussed herein: thermal decomposition, chemical vapor deposition (CVD), flash joule heating (FJH), and stepwise conversion. The scalability of the pathways discussed for industrial applications varies significantly. Thermal decomposition, particularly pyrolysis, is highly scalable due to its straightforward setup and cost-effective operation, making it suitable for large-scale waste processing plants. It also produces fuel byproducts that can be used as an alternative energy source, promoting the concept of energy recovery and circular economy. CVD, while producing high-quality carbon materials, is less scalable due to the high cost and required complex equipment, catalyst, high temperature, and pressure, which limits its use to specialized applications. FJH offers rapid synthesis of high-quality graphene using an economically viable technique that can also generate valuable products such as green hydrogen, carbon oligomers, and light hydrocarbons. However, it still requires optimization for industrial throughput. Stepwise conversion, involving multiple stages, can be challenging to scale due to higher operational complexity and cost, but it offers precise control over material properties for niche applications. This research demonstrates the growing potential of upcycling PW into valuable materials that align with global sustainability goals including industry, innovation, and infrastructure (Goal 9), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12). The findings underscore the need for enhanced recycling infrastructure and policy frameworks to support the shift toward a circular economy and mitigate the global plastic crisis. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

15 pages, 7235 KB  
Article
Molecular Dynamics of CO₂ Stripping Oil on Quartz Surfaces
by Yawen Tan, Yiqun Zhang, Hao Xiong, Shouceng Tian and Fei Wang
Processes 2024, 12(12), 2776; https://doi.org/10.3390/pr12122776 - 6 Dec 2024
Cited by 3 | Viewed by 1304
Abstract
The CO2-enhanced oil recovery (EOR) technology has the dual significance of enhancing oil recovery and realizing carbon storage in onshore and offshore oil and gas exploitation. This study investigates the adsorption of crude oil components on quartz surfaces and the microscopic [...] Read more.
The CO2-enhanced oil recovery (EOR) technology has the dual significance of enhancing oil recovery and realizing carbon storage in onshore and offshore oil and gas exploitation. This study investigates the adsorption of crude oil components on quartz surfaces and the microscopic mechanisms of CO2 stripping from crude oil using molecular dynamics simulations. A four-component model representing C6H14, benzene, resins, and asphaltenes was constructed to simulate the oil phase, while the quartz surface model was created using Materials Studio. Simulations were conducted under different temperature conditions to understand the distribution and adsorption behavior of crude oil components, as well as the impact of CO2 on the oil film at pressures up to 10 MPa. The results indicate that the resin–asphaltene interactions are significantly weakened at elevated temperatures, affecting the adsorption capacity. Furthermore, CO2 stripping primarily extracts light components such as C6H14 and aromatic hydrocarbons, while heavy components remain in the oil phase. The highest extraction efficiency and expansion effect of CO2 were observed at 35 °C, demonstrating optimal conditions for enhanced oil recovery through CO2 flooding. These findings provide insights into the effective use of CO2 for crude oil extraction and its interactions with oil components on a quartz substrate, which is crucial for optimizing CO2-enhanced oil recovery operations. Full article
Show Figures

Figure 1

23 pages, 7093 KB  
Article
Geochemical Characteristics of Mature to High-Maturity Shale Resources, Occurrence State of Shale Oil, and Sweet Spot Evaluation in the Qingshankou Formation, Gulong Sag, Songliao Basin
by Bo Gao, Zihui Feng, Jinglan Luo, Hongmei Shao, Yubin Bai, Jiping Wang, Yuxuan Zhang, Yongchao Wang and Min Yan
Energies 2024, 17(12), 2877; https://doi.org/10.3390/en17122877 - 12 Jun 2024
Cited by 4 | Viewed by 2124
Abstract
The exploration of continental shale oil in China has made a breakthrough in many basins, but the pure shale type has only been found in the Qingshankou Formation, Gulong Sag, Songliao Basin, and the evaluation of shale oil occurrence and sweet spot faces [...] Read more.
The exploration of continental shale oil in China has made a breakthrough in many basins, but the pure shale type has only been found in the Qingshankou Formation, Gulong Sag, Songliao Basin, and the evaluation of shale oil occurrence and sweet spot faces great challenges. Using information about the total organic carbon (TOC), Rock-Eval pyrolysis, vitrinite reflectance (Ro), kerogen elemental composition, carbon isotopes, gas chromatography (GC), bitumen extraction, and component separation, this paper systematically studies the organic geochemical characteristics and shale oil occurrence at the Qingshankou Formation. The G1 well, which was cored through the entire section of the Qingshankou Formation in the Gulong Sag, was the object of this study. On this basis, the favorable sweet spots for shale oil exploration are predicted. It is concluded that the shale of the Qingshankou Formation has high organic heterogeneity in terms of organic matter features. The TOC content of the source rocks in the Qingshankou Formation is enhanced with the increase in the burial depth, and the corresponding organic matter types gradually changed from Ⅱ2 and Ⅱ1 types to the Ⅰ type. The distribution of Ro ranges from 1.09% to 1.67%, and it is the mature to high-mature evolution stage that generates a large amount of normal crude oil and gas condensate. The high-quality source rocks of good to excellent grade are mainly distributed in the Qing 1 member and the lower part of the Qing 2 member. After the recovery of light hydrocarbons and the correction of pyrolytic heavy soluble hydrocarbons, it is concluded that the occurrence state of shale oil in the Qingshankou Formation is mainly the free-state form, with an average value of 6.9 mg/g, and there is four times as much free oil as adsorbed oil. The oil saturation index (OSI), mobile hydrocarbon content, Ro, and TOC were selected to establish the geochemical evaluation criteria for shale oil sweet spots in the Qingshankou Formation. The evaluation results show that interval 3 and interval 5 of the Qingshankou Formation in the G1 well are the most favorable sections for shale oil exploration. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

21 pages, 1400 KB  
Review
An Overview of the Non-Energetic Valorization Possibilities of Plastic Waste via Thermochemical Processes
by Kazem Moussa, Sary Awad, Patricia Krawczak, Ahmad Al Takash, Jalal Faraj and Mahmoud Khaled
Materials 2024, 17(7), 1460; https://doi.org/10.3390/ma17071460 - 22 Mar 2024
Cited by 4 | Viewed by 2338
Abstract
The recovery and recycling/upcycling of plastics and polymer-based materials is needed in order to reduce plastic waste accumulated over decades. Mechanical recycling processes have made a great contribution to the circularity of plastic materials, contributing to 99% of recycled thermoplastics. Challenges facing this [...] Read more.
The recovery and recycling/upcycling of plastics and polymer-based materials is needed in order to reduce plastic waste accumulated over decades. Mechanical recycling processes have made a great contribution to the circularity of plastic materials, contributing to 99% of recycled thermoplastics. Challenges facing this family of processes limit its outreach to 30% of plastic waste. Complementary pathways are needed to increase recycling rates. Chemical processes have the advantage of decomposing plastics into a variety of hydrocarbons that can cover a wide range of applications, such as monomers, lubricants, phase change materials, solvents, BTX (benzene, toluene, xylene), etc. The aim of the present work is to shed light on different chemical recycling pathways, with a special focus on thermochemicals. The study will cover the effects of feedstock, operating conditions, and processes used on the final products. Then, it will attempt to correlate these final products to some petrochemical feedstock being used today on a large scale. Full article
(This article belongs to the Special Issue Advances in the Circularity of Polymeric and Composite Materials)
Show Figures

Figure 1

14 pages, 7938 KB  
Article
Exploration of Oil/Water/Gas Occurrence State in Shale Reservoir by Molecular Dynamics Simulation
by Linghui Sun, Ninghong Jia, Chun Feng, Lu Wang, Siyuan Liu and Weifeng Lyu
Energies 2023, 16(21), 7253; https://doi.org/10.3390/en16217253 - 25 Oct 2023
Cited by 7 | Viewed by 2163
Abstract
The occurrence state of oil, gas, and water plays a crucial role in exploring shale reservoirs. In this study, molecular dynamics simulations were used to investigate the occurrence states of these fluids in shale nanopores. The results showed that when the alkane is [...] Read more.
The occurrence state of oil, gas, and water plays a crucial role in exploring shale reservoirs. In this study, molecular dynamics simulations were used to investigate the occurrence states of these fluids in shale nanopores. The results showed that when the alkane is light oil, in narrow pores with a width less than 3 nm, oil molecules exist only in an adsorbed state, whereas both adsorbed and free states exist in larger pores. Due to the stronger interaction of water with the rock surface, the adsorption of oil molecules near the rock is severely prohibited. Oil/water/gas occurrence characteristics in the water-containing pore study indicate that CO2 gas can drive free oil molecules out of the pore, break water bridges, and change the occurrence state of water. During displacement, the gas type affects the oil/gas occurrence state. CO2 has strong adsorption capacity, forming a 1.45 g/cm3 adsorption layer on the rock surface, higher than oil’s density peak of 1.29 g/cm3. Octane solubility in injected gases is CO2 (88.1%) > CH4 (76.8%) > N2 (75.4%), with N2 and CH4 having weak competitive adsorption on the rock. The investigation of different shale reservoir conditions suggests that at high temperature or low pressure, oil/gas molecules are more easily displaced, while at low temperature or high pressure, they are tightly adsorbed to the reservoir rock. These findings contribute to the understanding of fundamental mechanisms governing fluid behavior in shale reservoirs, which could help to develop proper hydrocarbon recovery methods from different oil reservoirs. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

73 pages, 7689 KB  
Review
Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization
by Sara Hooshmand, Panagiotis Kassanos, Meysam Keshavarz, Pelin Duru, Cemre Irmak Kayalan, İzzet Kale and Mustafa Kemal Bayazit
Sensors 2023, 23(20), 8648; https://doi.org/10.3390/s23208648 - 23 Oct 2023
Cited by 77 | Viewed by 18299
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate [...] Read more.
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges. Full article
(This article belongs to the Topic Advanced Nanomaterials for Sensing Applications)
Show Figures

Graphical abstract

Back to TopTop