Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,150)

Search Parameters:
Keywords = life cycling cost analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1855 KiB  
Article
Sustainable Investments in Construction: Cost–Benefit Analysis Between Rehabilitation and New Building in Romania
by Tudor Panfil Toader, Marta-Ioana Moldoveanu, Daniela-Mihaiela Boca, Raluca Iștoan, Lidia Maria Lupan, Aurelia Bradu, Andreea Hegyi and Ana Boga
Buildings 2025, 15(15), 2770; https://doi.org/10.3390/buildings15152770 - 6 Aug 2025
Abstract
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show [...] Read more.
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show that both scenarios generate negative Net Present Values (NPVs) due to the social nature of the project, but the new NZEB building presents superior performance (NPV: USD –2.61 million vs. USD –3.05 million for rehabilitation) and lower operational costs (USD 1.49 million vs. USD 1.92 million over 30 years). Key financial indicators (IRR, CBR), sensitivity analysis, and discount rate variation support the conclusion that the NZEB scenario ensures greater economic resilience. This study highlights the relevance of extended LCCBA in guiding sustainable investment decisions in social infrastructure. Full article
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 353
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

16 pages, 1043 KiB  
Article
Sustainable Packaging Design: Packaging Optimization and Material Reduction for Environmental Protection and Economic Benefits to Industry and Society
by Elias D. Georgakoudis, Georgia G. Pechlivanidou and Nicoleta S. Tipi
Appl. Sci. 2025, 15(15), 8289; https://doi.org/10.3390/app15158289 - 25 Jul 2025
Viewed by 283
Abstract
This paper analyzes the concept of packaging redesign, with the primary objective of improving material utilization. It further examines the potential environmental and economic benefits that may result from effective packaging redesign for both industry and society. The research is based on a [...] Read more.
This paper analyzes the concept of packaging redesign, with the primary objective of improving material utilization. It further examines the potential environmental and economic benefits that may result from effective packaging redesign for both industry and society. The research is based on a specific case study comparing two alternative bottle designs with identical capacity, focusing on shape, material usage, and space efficiency. A detailed numerical comparison highlights the advantages and disadvantages of each option. The analysis demonstrates that an optimized bottle design can lead to substantial material savings and waste reduction. For example, an 8% reduction in bottle weight could eliminate approximately 1.6 million tons of material annually, potentially translating into economic savings exceeding 3 billion U.S. dollars per year. The study underscores how strategic packaging redesign can yield significant benefits in terms of material efficiency and cost savings for companies. It also contributes to the field of Life Cycle Analysis by linking packaging design innovation to key environmental and economic outcomes, while ensuring that packaging continues to protect products and meet the needs of the end consumer. Full article
Show Figures

Figure 1

20 pages, 2497 KiB  
Article
Sustainable Solar Desalination: Experimental Predictive Control with Integrated LCA and Techno-Economic Evaluation
by Mishal Alsehli
Processes 2025, 13(8), 2364; https://doi.org/10.3390/pr13082364 - 25 Jul 2025
Viewed by 302
Abstract
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial [...] Read more.
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial sustainability, the study integrates this control logic with a full Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA). Field testing in a high-temperature, arid region demonstrated strong performance, achieving a Global Warming Potential (GWP) of 1.80 kg CO2-eq/m3 and a Levelized Cost of Water (LCOW) of $0.88/m3. Environmental impacts were quantified using OpenLCA and ecoinvent datasets, covering climate change, acidification, and eutrophication categories. The TEA confirmed economic feasibility, reporting a positive Net Present Value (NPV) and an Internal Rate of Return (IRR) exceeding 11.5% over a 20-year lifespan. Sensitivity analysis showed that forecast precision and TES design strongly influence both environmental and economic outcomes. The integration of intelligent control with simplified thermal storage offers a scalable, cost-effective solution for off-grid freshwater production in solar-rich regions. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Graphical abstract

34 pages, 2842 KiB  
Review
Systematic Analysis of the Hydrogen Value Chain from Production to Utilization
by Miguel Simão Coelho, Guilherme Gaspar, Elena Surra, Pedro Jorge Coelho and Ana Filipa Ferreira
Appl. Sci. 2025, 15(15), 8242; https://doi.org/10.3390/app15158242 - 24 Jul 2025
Viewed by 450
Abstract
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is [...] Read more.
Hydrogen produced from renewable sources has the potential to tackle various energy challenges, from allowing cost-effective transportation of renewable energy from production to consumption regions to decarbonizing intensive energy consumption industries. Due to its application versatility and non-greenhouse gaseous emissions characteristics, it is expected that hydrogen will play an important role in the decarbonization strategies set out for 2050. Currently, there are some barriers and challenges that need to be addressed to fully take advantage of the opportunities associated with hydrogen. The present work aims to characterize the state of the art of different hydrogen production, storage, transport, and distribution technologies, which compose the hydrogen value chain. Based on the information collected it was possible to conclude the following: (i) Electrolysis is the frontrunner to produce green hydrogen at a large scale (efficiency up to 80%) since some of the production technologies under this category have already achieved a commercially available state; (ii) in the storage phase, various technologies may be suitable based on specific conditions and purposes. Technologies of the physical-based type are the ones mostly used in real applications; (iii) transportation and distribution options should be viewed as complementary rather than competitive, as the most suitable option varies based on transportation distance and hydrogen quantity; and (iv) a single value chain configuration cannot be universally applied. Therefore, each case requires a comprehensive analysis of the entire value chain. Methodologies, like life cycle assessment, should be utilized to support the decision-making process. Full article
(This article belongs to the Special Issue The Present and the Future of Hydrogen Energy)
Show Figures

Figure 1

19 pages, 6349 KiB  
Article
From Theory to Practice: Assessing the Open Building Movement’s Role in Egypt’s Housing Market over Four Decades
by Rania Nasreldin and Dalia Abdelfattah
Buildings 2025, 15(15), 2600; https://doi.org/10.3390/buildings15152600 - 23 Jul 2025
Viewed by 451
Abstract
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation [...] Read more.
This research explores the concept of open building (OB) in the context of low-cost housing, focusing on its historical applications in Egypt during the 1980s. By evaluating past experiences, the study aims to extract key lessons that can inform the design and implementation of contemporary social housing projects. The goal is to foster resilience and diversity in housing typologies to ensure they align with the evolving needs of residents. To achieve these objectives, the research employed a multi-dimensional strategy, beginning with a comprehensive literature review of the open building movement (OB); then, the study traced the evolution of the OB movement in Egypt using a qualitative analysis approach, which involved analyzing its implementation in low-cost housing projects over the past four decades. Through this historical lens, the study identifies design principles and strategies that can enhance social housing projects by applying OB. Considering the life cycle cost, OB enables an incremental process that would align with users’ financial capacities. The research revealed the substantial capacity of open building (OB) to address Egypt’s social housing challenges, primarily by fostering user-driven flexibility in housing unit design and area selection. This empowers occupants to choose spaces perfectly suited to their family’s evolving needs. Moreover, the findings provide a roadmap for revitalizing the OB movement by analyzing and overcoming past implementation difficulties, consequently balancing the initial cost and long-term economics for citizens and significantly reducing the governmental sector’s expenditure. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 4943 KiB  
Article
Evaluation of Optimum Thermal Insulation for Mass Walls in Severe Solar Climates of Northern Chile
by Konstantin Verichev, Carmen Díaz-López, Gerardo Loncomilla Huenupán and Andrés García-Ruiz
Buildings 2025, 15(14), 2580; https://doi.org/10.3390/buildings15142580 - 21 Jul 2025
Viewed by 220
Abstract
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, [...] Read more.
The Life Cycle Cost Assessment (LCCA) methodology is widely used to determine the optimal thickness of thermal insulation for walls and roofs. The results depend on several factors, such as the degree day calculations method, the ambient or sol–air temperature, base temperature variations, and the heat capacity of the thermal envelope elements. This study aims to analyze the impact of solar radiation on mass walls with different orientations in five cities in northern Chile, which have severe solar climates. The goal is to determine the optimal thickness of expanded polystyrene insulation using the LCCA method, considering solar radiation, a varying base temperature, and validating results by analyzing the energy demand for heating and cooling of a typical house. The findings show that excluding solar radiation in the LCCA methodology can lead to an underestimation of the optimal insulation thickness by 21–39% for walls in northern Chile. It was also found that using variable monthly threshold temperatures for heating and cooling based on the adaptive thermal comfort model results in a slight underestimation (1–3%) of the optimal thickness compared to a constant annual temperature. An energy simulation of a typical house in five cities in northern Chile showed that neglecting the effect of solar radiation when determining the thermal insulation thickness for the studied wall can lead to a minor increase in heating and cooling energy demand, ranging from approximately 1% to 9%. However, this study emphasizes the importance of applying optimal insulation thickness for cities with more continental climates like Santiago and Calama, where the heating demand is higher than cooling. Full article
Show Figures

Figure 1

40 pages, 1777 KiB  
Review
Nanomaterials for Direct Air Capture of CO2: Current State of the Art, Challenges and Future Perspectives
by Cataldo Simari
Molecules 2025, 30(14), 3048; https://doi.org/10.3390/molecules30143048 - 21 Jul 2025
Viewed by 439
Abstract
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent [...] Read more.
Direct Air Capture (DAC) is emerging as a critical climate change mitigation strategy, offering a pathway to actively remove atmospheric CO2. This comprehensive review synthesizes advancements in DAC technologies, with a particular emphasis on the pivotal role of nanostructured solid sorbent materials. The work critically evaluates the characteristics, performance, and limitations of key nanomaterial classes, including metal–organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, amine-functionalized polymers, porous carbons, and layered double hydroxides (LDHs), alongside solid-supported ionic liquids, highlighting their varied CO2 uptake capacities, regeneration energy requirements, and crucial water sensitivities. Beyond traditional temperature/pressure swing adsorption, the review delves into innovative DAC methodologies such as Moisture Swing Adsorption (MSA), Electro Swing Adsorption (ESA), Passive DAC, and CO2-Binding Organic Liquids (CO2 BOLs), detailing their unique mechanisms and potential for reduced energy footprints. Despite significant progress, the widespread deployment of DAC faces formidable challenges, notably high capital and operational costs (currently USD 300–USD 1000/tCO2), substantial energy demands (1500–2400 kWh/tCO2), water interference, scalability hurdles, and sorbent degradation. Furthermore, this review comprehensively examines the burgeoning global DAC market, its diverse applications, and the critical socio-economic barriers to adoption, particularly in developing countries. A comparative analysis of DAC within the broader carbon removal landscape (e.g., CCS, BECCS, afforestation) is also provided, alongside an address to the essential, often overlooked, environmental considerations for the sustainable production, regeneration, and disposal of spent nanomaterials, including insights from Life Cycle Assessments. The nuanced techno-economic landscape has been thoroughly summarized, highlighting that commercial viability is a multi-faceted challenge involving material performance, synthesis cost, regeneration energy, scalability, and long-term stability. It has been reiterated that no single ‘best’ material exists, but rather a portfolio of technologies will be necessary, with the ultimate success dependent on system-level integration and the availability of low-carbon energy. The review paper contributes to a holistic understanding of cutting-edge DAC technologies, bridging material science innovations with real-world implementation challenges and opportunities, thereby identifying critical knowledge gaps and pathways toward a net-zero carbon future. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

21 pages, 5122 KiB  
Article
Comparative Life Cycle Assessment of Solar Thermal, Solar PV, and Biogas Energy Systems: Insights from Case Studies
by Somil Thakur, Deepak Singh, Umair Najeeb Mughal, Vishal Kumar and Rajnish Kaur Calay
Appl. Sci. 2025, 15(14), 8082; https://doi.org/10.3390/app15148082 - 21 Jul 2025
Viewed by 932
Abstract
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a [...] Read more.
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a common basis of 1 kWh of useful energy using SimaPro, the ReCiPe 2016 methodology (both midpoint and endpoint indicators), and cumulative energy demand (CED) analysis. This study is the first to evaluate co-located solar PV, solar thermal compound parabolic concentrator (CPC) and biogas combined heat and power (CHP) systems with in situ data collected under identical climatic and operational conditions. The project costs yield levelized costs of electricity (LCOE) of INR 2.4/kWh for PV, 3.3/kWh for the solar thermal dish and 4.1/kWh for biogas. However, the collaborated findings indicate that neither solar-based systems nor biogas technology uniformly outperform the others; rather, their effectiveness hinges on contextual factors, including resource availability and local policy incentives. These insights will prove critical for policymakers, industry stakeholders, and local communities seeking to develop effective, context-sensitive strategies for sustainable energy deployment, emissions reduction, and robust resource management. Full article
Show Figures

Figure 1

77 pages, 2935 KiB  
Review
Assessment Methods for Building Energy Retrofits with Emphasis on Financial Evaluation: A Systematic Literature Review
by Maria D. Papangelopoulou, Konstantinos Alexakis and Dimitris Askounis
Buildings 2025, 15(14), 2562; https://doi.org/10.3390/buildings15142562 - 20 Jul 2025
Viewed by 429
Abstract
The building sector remains one of the largest contributors to global energy consumption and CO2 emissions, yet selecting optimal retrofit strategies is often hindered by inconsistent evaluation practices and limited integration of environmental and social impacts. This review addresses that gap by [...] Read more.
The building sector remains one of the largest contributors to global energy consumption and CO2 emissions, yet selecting optimal retrofit strategies is often hindered by inconsistent evaluation practices and limited integration of environmental and social impacts. This review addresses that gap by systematically analyzing how various assessment methods are applied to building retrofits, particularly from a financial and environmental perspective. A structured literature review was conducted across four major scientific databases using predefined keywords, filters, and inclusion/exclusion criteria, resulting in a final sample of 50 studies (green colored citations of this paper). The review focuses on the application of Life Cycle Cost Analysis (LCCA), Cost–Benefit Analysis (CBA), and Life Cycle Assessment (LCA), as well as additional indicators that quantify energy and sustainability performance. Results show that LCCA is the most frequently used method, applied in over 60% of the studies, often in combination with LCA (particularly for long time horizons). CBA appears in fewer than 25% of cases. More than 50% of studies are based in Europe, and over 60% of case studies involve residential buildings. EnergyPlus and DesignBuilder were the most common simulation tools, used in 28% and 16% of the cases, respectively. Risk and uncertainty were typically addressed through Monte Carlo simulations (22%) and sensitivity analysis. Comfort and social impact indicators were underrepresented, with thermal comfort included in only 12% of studies and no formal use of tools like Social-LCA or SROI. The findings highlight the growing sophistication of retrofit assessments post-2020, but also reveal gaps such as geographic imbalance (absence of African case studies), inconsistent treatment of discount rates, and limited integration of social indicators. The study concludes that future research should develop standardized, multidimensional evaluation frameworks that incorporate social equity, stakeholder values, and long-term resilience alongside cost and carbon metrics. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 721 KiB  
Article
What Drives Cost System Sophistication? Empirical Evidence from the Greek Hotel Industry
by Ioannis E. Diavastis
J. Risk Financial Manag. 2025, 18(7), 401; https://doi.org/10.3390/jrfm18070401 - 19 Jul 2025
Viewed by 431
Abstract
The increasing complexity of the hotel industry necessitates the implementation of sophisticated cost systems capable of delivering accurate and relevant cost information to support managerial decision-making. Investigating the determinants of cost system design is crucial, given that no single accounting system is universally [...] Read more.
The increasing complexity of the hotel industry necessitates the implementation of sophisticated cost systems capable of delivering accurate and relevant cost information to support managerial decision-making. Investigating the determinants of cost system design is crucial, given that no single accounting system is universally applicable across all business contexts. This study addresses a critical gap by examining the key drivers of cost system sophistication through the theoretical frameworks of contingency and upper echelons theories, focusing specifically on the Greek hotel sector. Employing multiple regression analysis, the findings reveal that firm size, cost structure, the importance of cost information in decision-making, and the integration of information technology significantly influence the complexity of cost systems. Conversely, factors such as competition, service diversity, business strategy, organizational life cycle, and executive characteristics showed no statistically significant impact. These findings contribute to management accounting and hospitality literature by integrating theoretical perspectives and identifying key determinants of cost system sophistication. Moreover, the study offers practical insights for designing cost systems that meet the specific needs of the hotel industry. Full article
(This article belongs to the Special Issue Innovations and Challenges in Management Accounting)
Show Figures

Figure 1

33 pages, 4942 KiB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Viewed by 480
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

18 pages, 1869 KiB  
Article
Cost Efficiency Evaluation of Ceramic Fiber, Glass Fiber, and Basalt Fiber-Reinforced Asphalt Mixtures
by Mohammad Fahad and Nagy Richard
Appl. Sci. 2025, 15(14), 7919; https://doi.org/10.3390/app15147919 - 16 Jul 2025
Viewed by 273
Abstract
The performance of SBS (Styrene Butadiene Styrene) modified asphalt mixtures can be enhanced through the addition of fibers including basalt, ceramic, and glass. This study investigates whether a reduced SBS content of 3%, combined with 0.3% fiber reinforcement can match or exceed the [...] Read more.
The performance of SBS (Styrene Butadiene Styrene) modified asphalt mixtures can be enhanced through the addition of fibers including basalt, ceramic, and glass. This study investigates whether a reduced SBS content of 3%, combined with 0.3% fiber reinforcement can match or exceed the performance of a traditional 7% SBS mixture. A comparative analysis was carried out by examining both performance efficiency and life cycle costs across ceramic, basalt, and glass fiber-reinforced mixtures. Maintenance requirements for each scenario were factored into the life cycle analysis. To assess structural integrity, 3D finite element simulations were conducted using the Burger’s logit model while focusing on fatigue and rutting damage. Findings indicate that basalt and ceramic fiber mixtures deliver better asphalt mixtures, thereby outperforming the 7% SBS mix by requiring fewer maintenance interventions. However, due to the higher cost of ceramic fiber mixtures at 831 Eur/m3, basalt fiber emerges as the more cost-effective option, achieving a performance efficiency gain of 20% with reduced costs at 532 Eur/m3. Among the fiber-reinforced variants, glass fiber showed the least improvement in performance, with a difference in 11% and 13% when compared to ceramic fiber and basal fiber, respectively. Full article
Show Figures

Figure 1

35 pages, 3537 KiB  
Review
Sustainable Aviation Fuels: A Comprehensive Review of Production Pathways, Environmental Impacts, Lifecycle Assessment, and Certification Frameworks
by Weronika Klimczyk, Remigiusz Jasiński, Jakub Niklas, Maciej Siedlecki and Andrzej Ziółkowski
Energies 2025, 18(14), 3705; https://doi.org/10.3390/en18143705 - 14 Jul 2025
Viewed by 1102
Abstract
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of [...] Read more.
Sustainable aviation fuels (SAFs) are currently considered a key element in the decarbonization of the aviation sector, offering a feasible solution to reduce life cycle greenhouse gas emissions without requiring fundamental changes in aircraft or infrastructure. This article provides a comprehensive overview of the current state of SAFs, including their classification, production technologies, economic aspects, and environmental performance. The analysis covers both currently certified SAF pathways, such as HEFA and FT-SPK, and emerging technologies like alcohol-to-jet and power-to-liquid, assessing their technological maturity, feedstock availability, and scalability. Economic challenges related to high production costs, investment risks, and policy dependencies are discussed, alongside potential mechanisms to support market deployment. Furthermore, the article reviews SAFs’ emission performance, including CO2 and non-CO2 effects, based on existing life cycle assessment (LCA) studies, with an emphasis on variability caused by feedstock type and production method. The findings highlight that, while SAFs can significantly reduce aviation-related emissions compared to fossil jet fuels, the magnitude of benefits depends strongly on supply chain design and sustainability criteria. There are various certified pathways for SAF production, as well as new technologies that can further contribute to the development of the industry. Properly selected biomass sources and production technologies can reduce greenhouse gas emissions by more than 70% compared to conventional fuels. The implementation of SAFs faces obstacles related to cost, infrastructure, and regulations, which hinder its widespread adoption. The study concludes that although SAFs represent a promising pathway for aviation climate mitigation, substantial scaling efforts, regulatory support, and continued technological innovation are essential to achieve their full potential. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop