Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = leucine-rich repeat receptor-like kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2123 KiB  
Article
Exploring Cloned Disease Resistance Gene Homologues and Resistance Gene Analogues in Brassica nigra, Sinapis arvensis, and Sinapis alba: Identification, Characterisation, Distribution, and Evolution
by Aria Dolatabadian, Junrey C. Amas, William J. W. Thomas, Mohammad Sayari, Hawlader Abdullah Al-Mamun, David Edwards and Jacqueline Batley
Genes 2025, 16(8), 849; https://doi.org/10.3390/genes16080849 - 22 Jul 2025
Viewed by 271
Abstract
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins [...] Read more.
This study identifies and classifies resistance gene analogues (RGAs) in the genomes of Brassica nigra, Sinapis arvensis and Sinapis alba using the RGAugury pipeline. RGAs were categorised into four main classes: receptor-like kinases (RLKs), receptor-like proteins (RLPs), nucleotide-binding leucine-rich repeat (NLR) proteins and transmembrane-coiled-coil (TM-CC) genes. A total of 4499 candidate RGAs were detected, with species-specific proportions. RLKs were the most abundant across all genomes, followed by TM-CCs and RLPs. The sub-classification of RLKs and RLPs identified LRR-RLKs, LRR-RLPs, LysM-RLKs, and LysM-RLPs. Atypical NLRs were more frequent than typical ones in all species. Atypical NLRs were more frequent than typical ones in all species. We explored the relationship between chromosome size and RGA count using regression analysis. In B. nigra and S. arvensis, larger chromosomes generally harboured more RGAs, while S. alba displayed the opposite trend. Exceptions were observed in all species, where some larger chromosomes contained fewer RGAs in B. nigra and S. arvensis, or more RGAs in S. alba. The distribution and density of RGAs across chromosomes were examined. RGA distribution was skewed towards chromosomal ends, with patterns differing across RGA types. Sequence hierarchical pairwise similarity analysis revealed distinct gene clusters, suggesting evolutionary relationships. The study also identified homologous genes among RGAs and non-RGAs in each species, providing insights into disease resistance mechanisms. Finally, RLKs and RLPs were co-localised with reported disease resistance loci in Brassica, indicating significant associations. Phylogenetic analysis of cloned RGAs and QTL-mapped RLKs and RLPs identified distinct clusters, enhancing our understanding of their evolutionary trajectories. These findings provide a comprehensive view of RGA diversity and genomics in these Brassicaceae species, providing valuable insights for future research in plant disease resistance and crop improvement. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2694 KiB  
Review
Advances in ERECTA Family Regulation of Female Gametophyte Development in Arabidopsis thaliana
by Han Su, Xiaohu Jiang, Yanfen Liu, Zhuangyuan Cao, Ziqi Liu, Yuan Qin, Qing He and Hanyang Cai
Plants 2025, 14(13), 1900; https://doi.org/10.3390/plants14131900 - 20 Jun 2025
Viewed by 599
Abstract
The female gametophyte is central to the reproductive success of flowering plants, with its development being tightly controlled by an intricate network of genes and signaling pathways. A deeper understanding of these regulatory mechanisms is essential for uncovering the complexities of plant growth [...] Read more.
The female gametophyte is central to the reproductive success of flowering plants, with its development being tightly controlled by an intricate network of genes and signaling pathways. A deeper understanding of these regulatory mechanisms is essential for uncovering the complexities of plant growth and development. Recent studies have shed light on various aspects of female gametophyte development, highlighting the role of specific gene and signaling networks. Among these, the ERECTA family of leucine-rich repeat receptor-like kinase (RLK) in Arabidopsis thaliana has emerged as a key player, influencing multiple biological processes, particularly those governing reproductive development of the female gametophyte. This review focuses on the significant progress made in understanding the ERECTA family’s involvement in germline cell development, emphasizing its functional roles and signaling mechanisms in female gametophyte development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
Role of Tyrosine Phosphorylation in PEP1 Receptor 1(PEPR1) in Arabidopsis thaliana
by Jae-Han Choi and Man-Ho Oh
Plants 2025, 14(10), 1515; https://doi.org/10.3390/plants14101515 - 19 May 2025
Viewed by 511
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, [...] Read more.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, to understand the role of tyrosine phosphorylation. PEPR1-CD (cytoplasmic domain) recombinant protein exhibited strong tyrosine autophosphorylation, including threonine autophosphorylation. We subjected all tyrosine residues in PEPR1-CD to site-directed mutagenesis. The recombinant proteins were purified along with PEPR1-CD, and Western blotting was performed using a tyrosine-specific antibody. Among the 13 tyrosine residues in PEPR1-CD, the PEPR1(Y995F)-CD recombinant protein showed significantly reduced tyrosine autophosphorylation intensity compared to PEPR1-CD and other tyrosine mutants, despite little change in threonine autophosphorylation. To confirm the autophosphorylation site, we generated a phospho-specific peptide Ab, pY995. As a result, Tyr-995 of PEPR1-CD was a major tyrosine autophosphorylation site in vitro. To understand the function of tyrosine phosphorylation in vivo, we generated transgenic plants, expressing PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag in a pepr1/2 double mutant background. Interestingly, the root growths of PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag were not inhibited by pep1 peptide treatment, compared to Col-0 and PEPR1-Flag (pepr1/2) transgenic plants. Also, we analyzed downstream components, which included PROPEP1, MPK3, WRKY33, and RBOHD gene expressions in four different genotypes (Col-0, PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag) of plants in the presence of the pep1 peptide. Interestingly, the expressions of PROPEP1, MPK3, WRKY33, and RBOHD were not regulated by pep1 peptide treatment in PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag transgenic plants, in contrast to Col-0 and PEPR1-Flag. These results suggest that specific tyrosine residues play an important role in vivo in the plant receptor function. Full article
(This article belongs to the Special Issue Mechanisms of Plant Defense Against Abiotic Stresses)
Show Figures

Figure 1

10 pages, 2006 KiB  
Article
RiceReceptor: The Cell-Surface and Intracellular Immune Receptors of the Oryza Genus
by Baihui Jin, Jian Dong, Xiaolong Hu, Na Li, Xiaohua Li, Dawei Long and Xiaoni Wu
Genes 2025, 16(5), 597; https://doi.org/10.3390/genes16050597 - 18 May 2025
Viewed by 574
Abstract
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species ( [...] Read more.
Introduction: Rice, a cornerstone of global food security, faces escalating demands for enhanced yield and disease resistance. We collected 300 high-quality genomes, representing both cultivated (Oryza sativa indica, O. sativa japonica, and O. sativa aus) and wild species (O. rufipogon, O. glaberrima, and O. barthii). Methods: Leveraging HMMER, NLR-Annotator, and OrthoFinder, we systematically identified 148,077 leucine-rich repeat (LRR) and 143,459 nucleotide-binding leucine-rich repeat (NLR) genes, with LRR receptor-like kinases (LRR-RLKs) dominating immune receptor proportions, followed by coiled-coil domain containing (CNL)-type NLRs and LRR receptor-like proteins (LRR-RLPs). Results: Benchmarking Universal Single-Copy Orthologs (BUSCO) assessments confirmed robust genome quality (average score: 94.78). Strikingly, 454 TIR-NB-LRR (TNL) genes—typically rare in monocots—were detected, challenging prior assumptions. Phylogenetic analysis with Arabidopsis TNLs highlighted five O. glaberrima genes clustering with dicot TNLs; these genes featured truncated PLN03210 motifs fused to nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC) and LRR domains. Conclusions: By bridging structural genomics, evolutionary dynamics, and domestication-driven adaptation, this work provides a foundation for targeted breeding strategies and advances functional studies of plant immunity in rice. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4592 KiB  
Article
Genome-Wide Identification and Functional Prediction of LRR-RLK Family Genes in Foxtail Millet (Setaria italica) in Response to Stress
by Zhijiang Li, Xinmiao Kang, Miaomiao Song, Xiaojie Dong, Jinfeng Ma, Jinhai Yu, Xiangyu Li, Yalu Zheng, Guangquan Sun, Xianmin Diao and Xiaotong Liu
Int. J. Mol. Sci. 2025, 26(10), 4576; https://doi.org/10.3390/ijms26104576 - 10 May 2025
Viewed by 541
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are involved in the regulation of various biological processes, including plant growth, development, and responses to biotic and abiotic stresses. Foxtail millet (Setaria italica), an important cereal crop, has been extensively studied for its stress tolerance [...] Read more.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) are involved in the regulation of various biological processes, including plant growth, development, and responses to biotic and abiotic stresses. Foxtail millet (Setaria italica), an important cereal crop, has been extensively studied for its stress tolerance mechanisms. In this study, we performed a comprehensive phylogenetic analysis and chromosomal mapping of LRR-RLK genes in Setaria italica. A total of 285 SiLRR-RLK genes were identified and classified into 12 subfamilies based on phylogenetic relationships. Chromosome localization analysis revealed that SiLRR-RLK genes are unevenly distributed across the chromosomes, with certain regions showing gene clusters. Functional analysis of these genes under biotic and abiotic stress conditions suggested that several SiLRR-RLK family members are involved in key stress response pathways. Expression profiling indicated differential expression patterns of SiLRR-RLK genes in response to various stresses, including drought, salinity, and pathogen infection, highlighting their potential roles in stress adaptation. In conclusion, the phylogenetic and functional analysis of the SiLRR-RLK gene family in Setaria italica provides valuable insights into their roles in stress responses and lays the groundwork for future studies aimed at enhancing stress tolerance in foxtail millet. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

18 pages, 22371 KiB  
Article
LRR Receptor-like Protein in Rapeseed Confers Resistance to Sclerotinia sclerotiorum Infection via a Conserved SsNEP2 Peptide
by Chenghuizi Yang, Weiping Zhong, Wei Li, Yunong Xia, Lei Qin, Xianyu Tang and Shitou Xia
Int. J. Mol. Sci. 2025, 26(10), 4569; https://doi.org/10.3390/ijms26104569 - 10 May 2025
Viewed by 445
Abstract
Brassica napus is one of the most extensively cultivated oilseed crops in China, but its yield is significantly impacted by stem rot caused by Sclerotinia sclerotiorum. Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) play essential roles in plant–pathogen interactions; however, their regulatory [...] Read more.
Brassica napus is one of the most extensively cultivated oilseed crops in China, but its yield is significantly impacted by stem rot caused by Sclerotinia sclerotiorum. Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) play essential roles in plant–pathogen interactions; however, their regulatory mechanisms remain largely unknown in B. napus. In this study, we investigated the function of the leucine-rich repeat receptor-like protein BnaRLP-G13-1 in Brassica napus immunity. Previous observations indicated that B. napus plants expressing BnaRLP-G13-1 exhibited enhanced resistance to Sclerotinia sclerotiorum. We hypothesized that BnaRLP-G13-1 mediates pathogen recognition and immune signaling. To test this, we employed mitogen-activated protein kinase (MAPK) activity assays, transgenic overexpression analyses, and pathogen infection assays. Our results demonstrated that BnaRLP-G13-1 recognizes the conserved necrosis- and ethylene-inducing peptide Ssnlp24SsNEP2 derived from S. sclerotiorum, triggering MAPK cascades and subsequent immune responses. Furthermore, protein interaction studies revealed that BnaRLP-G13-1 physically interacts with the receptor-like kinase BnaSOBIR1, which is essential for full antifungal defense activation. These results elucidate the molecular basis of BnaRLP-G13-1-mediated immunity, providing insights into improving disease resistance in oilseed crops. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 39464 KiB  
Article
Genome-Wide Identification of Rubber Tree LRR-RLK Genes and Functional Characterization of HbPSKR2 (HbLRR-RLK174)
by Xiaoyu Du, Jie Jin, Shaohua Wu, Xiaomin Deng, Shuguang Yang, Minjing Shi and Jinquan Chao
Forests 2025, 16(3), 552; https://doi.org/10.3390/f16030552 - 20 Mar 2025
Viewed by 410
Abstract
As one of the largest gene families in plants, the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) genes are involved in important biological processes, such as plant growth and development and response to bio-/abiotic stresses. The rubber tree (Hevea brasiliensis Müll. Arg.) [...] Read more.
As one of the largest gene families in plants, the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) genes are involved in important biological processes, such as plant growth and development and response to bio-/abiotic stresses. The rubber tree (Hevea brasiliensis Müll. Arg.) is the primary commercial source of natural rubber globally. In this study, 274 LRR-RLK genes were comprehensively identified and classified into 21 subclades of the rubber tree genome. Members belonging to the same subclade exhibited comparable gene structures and possessed conserved protein motifs. Gene duplication analysis detected 35 tandem duplication genes and 81 segmental duplication genes. Cis-element analysis of HbLRR-RLK promoters identified light, hormone, stress, and development-related cis-elements. Tissue-specific expression profiling revealed that 73% (200/274) of HbLRR-RLKs were expressed in at least one of seven analyzed tissues. Protein–protein interaction (PPI) network identified 584 potential interactions among the HbLRR-RLKs. Additionally, subcellular localization analysis suggested that HbPSKR2 (HbLRR-RLK174) is a plasma membrane-localized receptor, and the gene could restore the short-root phenotype of the atpskr mutant in Arabidopsis. These results provide a comprehensive structure to facilitate analysis of the evolution and functional diversification of LRR-RLKs in the rubber tree. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 2157 KiB  
Article
Antioxidant, Osteogenic, and Neuroprotective Effects of Homotaurine in Aging and Parkinson’s Disease Models
by Arianna Minoia, Francesca Cristiana Piritore, Silvia Bolognin, João Pessoa, Bruno Bernardes de Jesus, Natascia Tiso, Maria Grazia Romanelli, Jens Christian Schwamborn, Luca Dalle Carbonare and Maria Teresa Valenti
Antioxidants 2025, 14(3), 249; https://doi.org/10.3390/antiox14030249 - 21 Feb 2025
Cited by 1 | Viewed by 1176
Abstract
Aging is associated with the accumulation of cellular damage due to oxidative stress and chronic low-grade inflammation, collectively referred to as “inflammaging”. This contributes to the functional decline in various tissues, including the brain and skeletal system, which closely interplay. Mesenchymal stem cells [...] Read more.
Aging is associated with the accumulation of cellular damage due to oxidative stress and chronic low-grade inflammation, collectively referred to as “inflammaging”. This contributes to the functional decline in various tissues, including the brain and skeletal system, which closely interplay. Mesenchymal stem cells (MSCs), known for their regenerative potential and ability to modulate inflammation, offer a promising therapeutic approach to counteract aging-related declines. In this study, we investigated the effects of homotaurine (a small molecule with neuroprotective properties) on MSCs and its effects on osteogenesis. We found that homotaurine treatment significantly reduced reactive oxygen species (ROS) levels, improved MSC viability, and modulated key stress response pathways, including the sestrin 1 and p21 proteins. Furthermore, homotaurine promoted osteogenesis and angiogenesis in zebrafish models by enhancing the expression of critical osteogenesis-associated genes, such as those coding for β-catenin and Runt-related transcription factor 2 (Runx2), and increasing the levels of the kinase insert domain receptor-like angiogenesis marker in aged zebrafish. In Parkinson’s disease models using patient-specific midbrain organoids with the leucine-rich repeat kinase 2 G2019S mutation, homotaurine treatment enhanced β-catenin expression and reduced ROS levels, highlighting its potential to counteract the oxidative stress and dysfunctional signaling pathways associated with neurodegeneration. Our findings suggest that homotaurine not only offers neuroprotective benefits but also holds promise as a dual-target therapeutic strategy for enhancing both neuronal and bone homeostasis in aging and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Oxidative Stress in Age-Related Diseases)
Show Figures

Figure 1

28 pages, 30710 KiB  
Article
Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress
by Hang Li, Li Liu, Xianhui Kong, Xuwen Wang, Aijun Si, Fuxiang Zhao, Qian Huang, Yu Yu and Zhiwen Chen
Int. J. Mol. Sci. 2025, 26(1), 329; https://doi.org/10.3390/ijms26010329 - 2 Jan 2025
Cited by 3 | Viewed by 1404
Abstract
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian [...] Read more.
Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress. The expression of genes related to aquaporins, kinases, reactive oxygen species (ROS) scavenging, trehalose biosynthesis, and phytohormone biosynthesis and signaling that include ethylene (ET), gibberellin (GA), abscisic acid (ABA), jasmonic acid (JA), and brassinosteroid (BR) were systematically investigated between the cultivars. Despite the involvement of these genes in cotton’s response to salt stress in positive or negative ways, their expression levels were mostly similar in both genotypes. Interestingly, a PXC2 gene (Ghir_D08G025150) was identified, which encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). This gene showed an induced expression pattern after salt stress treatment in salt-tolerant cv Jin-mian 25 but not salt-sensitive cv Su-mian 3. Our multifaceted transcriptome approach illustrated a differential response to salt stress between salt-tolerant and salt-sensitive cotton. Full article
Show Figures

Figure 1

24 pages, 6764 KiB  
Article
Salicylic Acid-Induced Expression Profiles of LRR and LRR-RLK Candidate Genes Modulate Mungbean Yellow Mosaic India Virus Resistance in Blackgram and Its Two Wild Non-Progenitors
by Mansi Shukla, Priyanka Kaundal, Shalini Purwar, Mukul Kumar, Chandragupt Maurya, Chirag, Awdhesh Kumar Mishra, Kwang-Hyun Baek and Chandra Mohan Singh
Plants 2024, 13(24), 3601; https://doi.org/10.3390/plants13243601 - 23 Dec 2024
Viewed by 951
Abstract
Blackgram is an important short-duration grain legume, but its yield is highly affected by various stresses. Among biotic stresses, yellow mosaic disease (YMD) is known as a devastating disease that leads to 100% yield loss under severe conditions. The cultivated lines possess resistance, [...] Read more.
Blackgram is an important short-duration grain legume, but its yield is highly affected by various stresses. Among biotic stresses, yellow mosaic disease (YMD) is known as a devastating disease that leads to 100% yield loss under severe conditions. The cultivated lines possess resistance, but exploring more diverse sources of resistance may be useful for pyramiding to improve the durability of said resistance. Some wild Vigna species have potentially demonstrated a high level of resistance. R-genes, including gene families of leucine-rich repeats (LRRs) and leucine-rich repeat receptor-like kinases (LRR-RLKs), are known for modulating the resistance in plants against various biotic stresses. The first comprehensive analysis of the LRR and LRR-RLK gene families in mungbean is reported in the present study. A total of forty-six candidate genes were identified and grouped into eight clades. Protein motif analysis showed that the “Pkinase domain” and “LRR domains” were conserved in most of the R-proteins. The expression of candidate genes viz. VrNBS_TNLRR-8, VrLRR_RLK-20, VrLRR_RLK-17, and VrLRR_RLK-19 demonstrated significantly up-regulated expression upon YMD infection in control and salicylic acid-primed (SA-primed) plants. The analysis provides insight into the diversity and robust candidate genes for functional studies modulating YMD resistance altered by salicylic acid. Full article
(This article belongs to the Special Issue Breeding and Cultivation Management of Legumes, Volume II)
Show Figures

Figure 1

25 pages, 1647 KiB  
Review
Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications
by Yangdong Ye, Shangye Xiong, Xin Guan, Tianxin Tang, Zhihong Zhu, Xiao Zhu, Jie Hu, Jianguo Wu and Shuai Zhang
Int. J. Mol. Sci. 2024, 25(24), 13397; https://doi.org/10.3390/ijms252413397 - 13 Dec 2024
Cited by 3 | Viewed by 1933
Abstract
This review provides a comprehensive overview of the current understanding of rice resistance to the brown planthopper (BPH), a major pest that poses significant threats to rice production through direct feeding damage and by transmitting viruses such as Rice grassy stunt virus (RGSV) [...] Read more.
This review provides a comprehensive overview of the current understanding of rice resistance to the brown planthopper (BPH), a major pest that poses significant threats to rice production through direct feeding damage and by transmitting viruses such as Rice grassy stunt virus (RGSV) and Rice ragged stunt virus (RRSV). We highlight the emergence of various BPH biotypes that have overcome specific resistance genes in rice. Advances in genetic mapping and cloning have identified 17 BPH resistance genes, classified into typical R genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins and atypical R genes such as lectin receptor kinases and proteins affecting cell wall composition. The molecular mechanisms of these genes involve the activation of plant defense pathways mediated by phytohormones like jasmonic acid (JA), salicylic acid (SA), and ethylene, as well as the production of defensive metabolites. We also examine the complex interactions between BPH salivary proteins and rice defense responses, noting how salivary effectors can both suppress and trigger plant immunity. The development and improvement of BPH-resistant rice varieties through conventional breeding and molecular marker-assisted selection are discussed, including strategies like gene pyramiding to enhance resistance durability. Finally, we outline the challenges and future directions in breeding for durable BPH resistance, emphasizing the need for continued research on resistance mechanisms and the development of rice varieties with broad-spectrum and long-lasting resistance. Full article
(This article belongs to the Special Issue Molecular and Structural Research Advances in Model Plants)
Show Figures

Figure 1

38 pages, 9947 KiB  
Review
Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses
by Michel Leiva-Mora, Yanelis Capdesuñer, Ariel Villalobos-Olivera, Roberto Moya-Jiménez, Luis Rodrigo Saa and Marcos Edel Martínez-Montero
J. Fungi 2024, 10(9), 635; https://doi.org/10.3390/jof10090635 - 5 Sep 2024
Cited by 7 | Viewed by 4394
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant–pathogen interactions. Pathogen-produced effector [...] Read more.
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant–pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management. Full article
(This article belongs to the Special Issue The Role of Fungi in Plant Defense Mechanisms 2.0)
Show Figures

Figure 1

14 pages, 3209 KiB  
Article
Therapeutic Effect of Padina arborescens Extract on a Cell System Model for Parkinson’s Disease
by Dong Hwan Ho, Hyejung Kim, Daleum Nam, Mi Kyoung Seo, Sung Woo Park, Dong-Kyu Kim and Ilhong Son
NeuroSci 2024, 5(3), 301-314; https://doi.org/10.3390/neurosci5030024 - 30 Aug 2024
Viewed by 1904
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are involved in the pathogenesis of Parkinson’s disease. The activity of LRRK2 in microglial cells is associated with neuroinflammation, and LRRK2 inhibitors are crucial for alleviating this neuroinflammatory response. α-synuclein contributes to oxidative stress in the [...] Read more.
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are involved in the pathogenesis of Parkinson’s disease. The activity of LRRK2 in microglial cells is associated with neuroinflammation, and LRRK2 inhibitors are crucial for alleviating this neuroinflammatory response. α-synuclein contributes to oxidative stress in the dopaminergic neuron and neuroinflammation through Toll-like receptors in microglia. In this study, we investigated the effect of the marine alga Padina arborescens on neuroinflammation by examining LRRK2 activation and the aggregation of α-synuclein. P. arborescens extract inhibits LRRK2 activity in vitro and decreases lipopolysaccharide (LPS)-induced LRRK2 upregulation in BV2, a mouse microglial cell line. Treatment with P. arborescens extract decreased tumor necrosis factor-α (TNF-α) gene expression by LPS through LRRK2 inhibition in BV2. It also attenuated TNF-α gene expression, inducible nitric oxide synthase, and the release of TNF-α and cellular nitric oxide in rat primary microglia. Furthermore, P. arborescens extract prevented rotenone (RTN)-induced oxidative stress in primary rat astrocytes and inhibited α-synuclein fibrilization in an in vitro assay using recombinant α-synuclein and in the differentiated human dopaminergic neuronal cell line SH-SY5Y (dSH). The extract increased lysosomal activity in dSH cells. In addition, P. arborescens extract slightly prolonged the lifespan of Caenorhabditis elegans, which was reduced by RTN treatment. Full article
Show Figures

Figure 1

15 pages, 7252 KiB  
Article
Characterization of Strubbelig-Receptor Family (SRF) Related to Drought and Heat Stress Tolerance in Upland Cotton (Gossypium hirsutum L.)
by Furqan Ahmad, Shoaib Ur Rehman, Muhammad Habib Ur Rahman, Saghir Ahmad and Zulqurnain Khan
Agronomy 2024, 14(9), 1933; https://doi.org/10.3390/agronomy14091933 - 28 Aug 2024
Viewed by 1201
Abstract
Cotton is one of the world’s leading fiber crops, but climate change, drought, heat, and salinity have significantly decreased its production, consequently affecting the textile industries globally. To acclimate to these environmental challenges, a number of gene families involved in various molecular, physiological, [...] Read more.
Cotton is one of the world’s leading fiber crops, but climate change, drought, heat, and salinity have significantly decreased its production, consequently affecting the textile industries globally. To acclimate to these environmental challenges, a number of gene families involved in various molecular, physiological, and hormonal mechanisms play crucial roles in improving plants response to various abiotic stresses. One such gene family is the GhSRF, a Strubbelig-Receptor family (SRF), and member of the leucine-rich repeat (LRR-V) group. This family encodes leucine-rich repeat transmembrane receptor-like kinases (LRR-RLKs) and have not yet been explored in cotton. Arabidopsis thaliana Strubbelig-Receptor gene sequences were used as queries to identify the homologs in cotton, with subsequent support from the literature and functional prediction through online data. In the current study, a comprehensive genome-wide analysis of cotton was conducted, identifying 22 SRF putative proteins encoded by 22 genes. We performed the detailed analysis of these proteins, including phylogeny, motif and gene structure characterization, promoter analysis, gene mapping on chromosomes, gene duplication events, and chromosomal sub-cellular localization. Expression analysis of putative genes was performed under drought and heat stress conditions using publicly available RNAseq data. The qRT-PCR results showed elevated expression of GhSRF2, GhSRF3, GhSRF4, GhSRF10, and GhSRF22 under drought and heat stress. So, it could be speculated that these genes may play a role in drought and heat tolerance in cotton. These findings could be helpful in cotton breeding programs for the development of climate-resilient cultivars. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

21 pages, 8397 KiB  
Article
Comparative Proteomic Analysis of Floral Buds before and after Opening in Walnut (Juglans regia L.)
by Haoxian Li, Lina Chen, Ruitao Liu, Shangyin Cao and Zhenhua Lu
Int. J. Mol. Sci. 2024, 25(14), 7878; https://doi.org/10.3390/ijms25147878 - 18 Jul 2024
Cited by 3 | Viewed by 1546
Abstract
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield [...] Read more.
The walnut (Juglans regia L.) is a typical and an economically important tree species for nut production with heterodichogamy. The absence of female and male flowering periods seriously affects both the pollination and fruit setting rates of walnuts, thereby affecting the yield and quality. Therefore, studying the characteristics and processes of flower bud differentiation helps in gaining a deeper understanding of the regularity of the mechanism of heterodichogamy in walnuts. In this study, a total of 3540 proteins were detected in walnut and 885 unique differentially expressed proteins (DEPs) were identified using the isobaric tags for the relative and absolute quantitation (iTRAQ)-labeling method. Among all DEPs, 12 common proteins were detected in all four of the obtained contrasts. GO and KEGG analyses of 12 common DEPs showed that their functions are distributed in the cytoplasm metabolic pathways, photosynthesis, glyoxylate and dicarboxylate metabolism, and the biosynthesis of secondary metabolites, which are involved in energy production and conversion, synthesis, and the breakdown of proteomes. In addition, a function analysis was performed, whereby the DEPs were classified as involved in photosynthesis, morphogenesis, metabolism, or the stress response. A total of eight proteins were identified as associated with the morphogenesis of stamen development, such as stamen-specific protein FIL1-like (XP_018830780.1), putative leucine-rich repeat receptor-like serine/threonine-protein kinase At2g24130 (XP_018822513.1), cytochrome P450 704B1-like isoform X2 (XP_018845266.1), ervatamin-B-like (XP_018824181.1), probable glucan endo-1,3-beta-glucosidase A6 (XP_018844051.1), pathogenesis-related protein 5-like (XP_018835774.1), GDSL esterase/lipase At5g22810-like (XP_018833146.1), and fatty acyl-CoA reductase 2 (XP_018848853.1). Our results predict several crucial proteins and deepen the understanding of the biochemical mechanism that regulates the formation of male and female flower buds in walnuts. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

Back to TopTop