Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = leucine aminopeptidase inhibitor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4889 KB  
Article
Inhibition of Insulin-Regulated Aminopeptidase by Imidazo [1,5-α]pyridines—Synthesis and Evaluation
by Karin Engen, Thomas Lundbäck, Anubha Yadav, Sharathna Puthiyaparambath, Ulrika Rosenström, Johan Gising, Annika Jenmalm-Jensen, Mathias Hallberg and Mats Larhed
Int. J. Mol. Sci. 2024, 25(5), 2516; https://doi.org/10.3390/ijms25052516 - 21 Feb 2024
Cited by 7 | Viewed by 2801
Abstract
Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on [...] Read more.
Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound’s metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding. Full article
(This article belongs to the Special Issue The Biology and Therapeutic Potential of Metalloproteases)
Show Figures

Graphical abstract

18 pages, 1104 KB  
Review
Autophagy Dysregulation in Metabolic Associated Fatty Liver Disease: A New Therapeutic Target
by Chun-Liang Chen and Yu-Cheng Lin
Int. J. Mol. Sci. 2022, 23(17), 10055; https://doi.org/10.3390/ijms231710055 - 2 Sep 2022
Cited by 44 | Viewed by 8685
Abstract
Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal [...] Read more.
Metabolic associated fatty liver disease (MAFLD) is one of the most common causes of chronic liver disease worldwide. To date, there is no FDA-approved treatment, so there is an urgent need to determine its pathophysiology and underlying molecular mechanisms. Autophagy is a lysosomal degradation pathway that removes damaged organelles and misfolded proteins after cell injury through endoplasmic reticulum stress or starvation, which inhibits apoptosis and promotes cell survival. Recent studies have shown that autophagy plays an important role in removing lipid droplets from hepatocytes. Autophagy has also been reported to inhibit the production of pro-inflammatory cytokines and provide energy for the hepatic stellate cells activation during liver fibrosis. Thyroid hormone, irisin, melatonin, hydrogen sulfide, sulforaphane, DA-1241, vacuole membrane protein 1, nuclear factor erythroid 2-related factor 2, sodium-glucose co-transporter type-2 inhibitors, immunity-related GTPase M, and autophagy-related gene 7 have been reported to ameliorate MAFLD via autophagic induction. Lipid receptor CD36, SARS-CoV-2 Spike protein and leucine aminopeptidase 3 play a negative role in the autophagic function. This review summarizes recent advances in the role of autophagy in MAFLD. Autophagy modulates major pathological changes, including hepatic lipid metabolism, inflammation, and fibrosis, suggesting the potential of modulating autophagy for the treatment of MAFLD. Full article
(This article belongs to the Special Issue Molecular Advances in MAFLD)
Show Figures

Figure 1

27 pages, 6654 KB  
Article
Phosphinotripeptidic Inhibitors of Leucylaminopeptidases
by Michał Jewgiński, Kinga Haremza, Jesús M. de los Santos, Zouhair Es Sbai, Bartosz Oszywa, Małgorzata Pawełczak, Francisco Palacios and Rafał Latajka
Int. J. Mol. Sci. 2021, 22(10), 5090; https://doi.org/10.3390/ijms22105090 - 11 May 2021
Cited by 4 | Viewed by 2960
Abstract
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, [...] Read more.
Phosphinate pseudopeptide are analogs of peptides containing phosphinate moiety in a place of the amide bond. Due to this, the organophosphorus fragment resembles the tetrahedral transition state of the amide bond hydrolysis. Additionally, it is also capable of coordinating metal ions, for example, zinc or magnesium ions. These two properties of phosphinate pseudopeptides make them an ideal candidate for metal-related protease inhibitors. This research investigates the influence of additional residue in the P2 position on the inhibitory properties of phosphinopeptides. The synthetic strategy is proposed, based on retrosynthetic analysis. The N-C-P bond formation in the desired compounds is conveniently available from the three-component condensation of appropriate amino components, aldehydes, and hypophosphorous acid. One of the crucial synthetic steps is the careful selection of the protecting groups for all the functionals. Determination of the inhibitor activity of the obtained compounds has been done using UV-Vis spectroscopy and standard substrate L-Leu-p-nitroanilide toward the enzymes isolated from the porcine kidney (SsLAP, Sus scrofa Leucine aminopeptidase) and barley seeds (HvLAP, Hordeum vulgare Leucine aminopeptidase). An efficient procedure for the preparation of phosphinotripeptides has been performed. Activity test shown that introduction of additional residue into P2 position obtains the micromolar range inhibitors of SsLAP and HvLAP. Moreover, careful selection of the residue in the P2 position should improve its selectivity toward mammalian and plant leucyl aminopeptidases. Full article
(This article belongs to the Special Issue Kinase Signal Transduction 3.0)
Show Figures

Figure 1

14 pages, 5105 KB  
Article
N-Benzyl Residues as the P1′ Substituents in Phosphorus-Containing Extended Transition State Analog Inhibitors of Metalloaminopeptidases
by Kamila Janiszewska, Michał Talma, Bartosz Oszywa, Małgorzata Pawełczak, Paweł Kafarski and Artur Mucha
Molecules 2020, 25(18), 4334; https://doi.org/10.3390/molecules25184334 - 22 Sep 2020
Cited by 2 | Viewed by 3484
Abstract
Peptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH2-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, [...] Read more.
Peptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH2-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, however, limited by hydrolytic instability, which is particularly restricting for dipeptide analogs. Extension of phosphonamidates by addition of the methylene group produces a P-C-N system fully resistant in water conditions. In the current work, we present a versatile synthetic approach to such modified dipeptides, based on the three-component phospha-Mannich condensation of phosphinic acids, formaldehyde, and N-benzylglycines. The last-mentioned component allowed for simple and versatile introduction of functionalized P1′ residues located on the tertiary amino group. The products demonstrated moderate inhibitory activity towards porcine and plant metalloaminopeptidases, while selected derivatives appeared very potent with human alanyl aminopeptidase (Ki = 102 nM for 6a). Analysis of ligand-protein complexes obtained by molecular modelling revealed canonical modes of interactions for mono-metallic alanyl aminopeptidases, and distorted modes for di-metallic leucine aminopeptidases (with C-terminal carboxylate, not phosphinate, involved in metal coordination). In general, the method can be dedicated to examine P1′-S1′ complementarity in searching for non-evident structures of specific residues as the key fragments of perspective ligands. Full article
Show Figures

Graphical abstract

16 pages, 4139 KB  
Article
In Silico Screening for Novel Leucine Aminopeptidase Inhibitors with 3,4-Dihydroisoquinoline Scaffold
by Joanna Ziemska, Jolanta Solecka and Małgorzata Jarończyk
Molecules 2020, 25(7), 1753; https://doi.org/10.3390/molecules25071753 - 10 Apr 2020
Cited by 10 | Viewed by 5679
Abstract
Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On [...] Read more.
Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski’s “rule of five,” and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies. Full article
(This article belongs to the Special Issue Structure-Based Design of Biologically Active Compounds)
Show Figures

Figure 1

12 pages, 5926 KB  
Article
Phosphonic Acid Analogues of Phenylglycine as Inhibitors of Aminopeptidases: Comparison of Porcine Aminopeptidase N, Bovine Leucine Aminopeptidase, Tomato Acidic Leucine Aminopeptidase and Aminopeptidase from Barley Seeds
by Weronika Wanat, Michał Talma, Małgorzata Pawełczak and Paweł Kafarski
Pharmaceuticals 2019, 12(3), 139; https://doi.org/10.3390/ph12030139 - 17 Sep 2019
Cited by 9 | Viewed by 4987
Abstract
The inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data [...] Read more.
The inhibitory activity of 14 racemic phosphonic acid analogs of phenylglycine, substituted in aromatic rings, towards porcine aminopeptidase N (pAPN) and barley seed aminopeptidase was determined experimentally. The obtained patterns of the inhibitory activity against the two enzymes were similar. The obtained data served as a basis for studying the binding modes of these inhibitors by pAPN using molecular modeling. It was found that their aminophosphonate fragments were bound in a highly uniform manner and that the difference in their affinities most likely resulted from the mode of substitution of their phenyl rings. The obtained binding modes towards pAPN were compared, with these predicted for bovine lens leucine aminopeptidase (blLAP) and tomato acidic leucine aminopeptidase (tLAPA). The performed studies indicated that the binding manner of the phenylglycine analogs to biLAP and tLAPA are significantly similar and differ slightly from that predicted for pAPN. Full article
(This article belongs to the Special Issue Design of Enzyme Inhibitors as Potential Drugs)
Show Figures

Graphical abstract

13 pages, 3813 KB  
Article
Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption
by Jian-Ming Huang, Chen-Chieh Liao, Chung-Ching Kuo, Lih-Ren Chen, Lynn L. H. Huang, Jyh-Wei Shin and Wei-Chen Lin
Molecules 2017, 22(12), 2263; https://doi.org/10.3390/molecules22122263 - 18 Dec 2017
Cited by 23 | Viewed by 6533
Abstract
Acanthamoeba is free-living protist pathogen capable of causing a blinding keratitis and granulomatous encephalitis. However, the mechanisms of Acanthamoeba pathogenesis are still not clear. Here, our results show that cells co-cultured with pathogenic Acanthamoeba would be spherical and floated, even without contacting the [...] Read more.
Acanthamoeba is free-living protist pathogen capable of causing a blinding keratitis and granulomatous encephalitis. However, the mechanisms of Acanthamoeba pathogenesis are still not clear. Here, our results show that cells co-cultured with pathogenic Acanthamoeba would be spherical and floated, even without contacting the protists. Then, the Acanthamoeba protists would contact and engulf these cells. In order to clarify the contact-independent pathogenesis mechanism in Acanthamoeba, we collected the Acanthamoeba-secreted proteins (Asp) to incubate with cells for identifying the extracellular virulent factors and investigating the cytotoxicity process. The Asps of pathogenic Acanthamoeba express protease activity to reactive Leu amino acid in ECM and induce cell-losing adhesion ability. The M20/M25/M40 superfamily aminopeptidase protein (ACA1_264610), an aminopeptidase be found in Asp, is upregulated after Acanthamoeba and C6 cell co-culturing for 6 h. Pre-treating the Asp with leucine aminopeptidase inhibitor and the specific antibodies of Acanthamoeba M20/M25/M40 superfamily aminopeptidase could reduce the cell damage during Asp and cell co-incubation. These results suggest an important functional role of the Acanthamoeba secreted extracellular aminopeptidases in the Acanthamoeba pathogenesis process. This study provides information regarding clinically pathogenic isolates to target specific molecules and design combined drugs. Full article
(This article belongs to the Special Issue Protein Modifications and Bioconjugation)
Show Figures

Graphical abstract

11 pages, 3583 KB  
Article
Synthesis, Characterization and In Vitro Evaluation of a Novel Glycol Chitosan-EDTA Conjugate to Inhibit Aminopeptidase-Mediated Degradation of Thymopoietin Oligopeptides
by Jiao Feng, Yan Chen, Feng Li, Lili Cui, Nianqiu Shi, Wei Kong and Yong Zhang
Molecules 2017, 22(8), 1253; https://doi.org/10.3390/molecules22081253 - 26 Jul 2017
Cited by 17 | Viewed by 6698
Abstract
In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three [...] Read more.
In this study, a novel conjugate consisting of glycol chitosan (GCS) and ethylene diamine tetraacetic acid (EDTA) was synthesized and characterized in terms of conjugation and heavy metal ion chelating capacity. Moreover, its potential application as a metalloenzyme inhibitor was evaluated with three thymopoietin oligopeptides in the presence of leucine aminopeptidase. The results from FTIR and NMR spectra revealed that the covalent attachment of EDTA to GCS was achieved by the formation of amide bonds between the carboxylic acid group of EDTA and amino groups of GCS. The conjugated EDTA lost part of its chelating capacity to cobalt ions compared with free EDTA as evidenced by the results of cobalt ion chelation-mediated fluorescence recovery of calcein. However, further investigation confirmed that GCS-EDTA at low concentrations significantly inhibited leucine aminopeptidase-mediated degradation of all thymopoietin oligopeptides. Full article
Show Figures

Figure 1

Back to TopTop