Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = leptomycin B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2519 KB  
Article
The Effect of FSH-Induced Nuclear Exclusion of FOXO3/4 on Granulosa Cell Proliferation and Apoptosis of Hen Ovarian Follicles
by Jinghua Zhao, Yuhan Sun, Simushi Liswaniso, Hengsong Wu, Xue Sun, Chunchi Yan, Ning Qin and Rifu Xu
Genes 2025, 16(5), 500; https://doi.org/10.3390/genes16050500 - 27 Apr 2025
Viewed by 729
Abstract
Background: Follicle stimulating hormone (FSH) is key regulator for follicular development, differentiation, and maturation, and the effects involve various intra follicular factors, such as members of the forkhead box O (FOXO) subfamily. However, the specific role and mechanism of FOXO3 and FOXO4 in [...] Read more.
Background: Follicle stimulating hormone (FSH) is key regulator for follicular development, differentiation, and maturation, and the effects involve various intra follicular factors, such as members of the forkhead box O (FOXO) subfamily. However, the specific role and mechanism of FOXO3 and FOXO4 in growth and development of hen follicles by affecting granulosa cell (GC) division and FSH response function are still unclear. Method: This study selected GCs from 6–8 mm chicken follicles, and immunofluorescence and Western blot methods were used to detect FSH-induced FOXO3/4 phosphorylation and nuclear exclusion. Quantitative real-time PCR and flow cytometry were used to investigate the regulatory effects of FSH-induced FOXO3/4 phosphorylation and nuclear exclusion on follicular GC proliferation, differentiation, and apoptosis. Results: This study found that the level of p-FOXO3/4 protein significantly increased in cells treated with FSH for 12 h, while the expression level of non-phosphorylated FOXO3/4 significantly decreased. After co-treatment with 10 ng/mL Leptomycin B (LMB), FOXO3/4 phosphorylation was effectively prevented. The immunofluorescence results showed that FOXO3 and FOXO4 were originally distributed in the GC nucleus and cytoplasm, whereas they were almost accumulated in cytoplasm when treated with FSH for 12 h. Conversely, FOXO3/4 nuclear translocation was blocked by LMB. Moreover, RT-qPCR and flow cytometry results showed that FSH treatment significantly increased proliferation and differentiation of cells but significantly reduced GCs apoptosis. However, LMB also eliminated these stimulating or inhibitory effects on cell proliferation. Conclusion: These findings provide new evidence that FSH-induced FOXO3/4 nuclear exclusion promotes GCs proliferation and reduces GCs apoptosis during hen follicular development. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 9927 KB  
Article
The Disruption of a Nuclear Export Signal in the C-Terminus of the Herpes Simplex Virus 1 Determinant of Pathogenicity UL24 Protein Leads to a Syncytial Plaque Phenotype
by Carmen Elena Gonzalez, Nawel Ben Abdeljelil and Angela Pearson
Viruses 2023, 15(9), 1971; https://doi.org/10.3390/v15091971 - 21 Sep 2023
Cited by 3 | Viewed by 2075
Abstract
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the [...] Read more.
UL24 of herpes simplex virus 1 (HSV-1) has been shown to be a determinant of pathogenesis in mouse models of infection. The N-terminus of UL24 localizes to the nucleus and drives the redistribution of nucleolin and B23. In contrast, when expressed alone, the C-terminal domain of UL24 accumulates in the Golgi apparatus; its importance during infection is unknown. We generated a series of mammalian expression vectors encoding UL24 with nested deletions in the C-terminal domain. Interestingly, enhanced nuclear staining was observed for several UL24-deleted forms in transient transfection assays. The substitution of a threonine phosphorylation site had no effect on UL24 localization or viral titers in cell culture. In contrast, mutations targeting a predicted nuclear export signal (NES) significantly enhanced nuclear localization, indicating that UL24 is able to shuttle between the nucleus and the cytoplasm. Recombinant viruses that encode UL24-harboring substitutions in the NES led to the accumulation of UL24 in the nucleus. Treatment with the CRM-1-specific inhibitor leptomycin B blocked the nuclear export of UL24 in transfected cells but not in the context of infection. Viruses encoding UL24 with NES mutations resulted in a syncytial phenotype, but viral yield was unaffected. These results are consistent with a role for HSV-1 UL24 in late cytoplasmic events in HSV-1 replication. Full article
(This article belongs to the Special Issue Advances in HSV Research)
Show Figures

Figure 1

20 pages, 7115 KB  
Article
Rescue of Mitochondrial Function in Hutchinson-Gilford Progeria Syndrome by the Pharmacological Modulation of Exportin CRM1
by Feliciano Monterrubio-Ledezma, Fernando Navarro-García, Lourdes Massieu, Ricardo Mondragón-Flores, Luz Adriana Soto-Ponce, Jonathan J. Magaña and Bulmaro Cisneros
Cells 2023, 12(2), 275; https://doi.org/10.3390/cells12020275 - 10 Jan 2023
Cited by 12 | Viewed by 5073
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder caused by the expression of progerin, a mutant variant of Lamin A. Recently, HGPS studies have gained relevance because unraveling its underlying mechanism would help to understand physiological aging. We previously reported that [...] Read more.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder caused by the expression of progerin, a mutant variant of Lamin A. Recently, HGPS studies have gained relevance because unraveling its underlying mechanism would help to understand physiological aging. We previously reported that the CRM1-mediated nuclear protein export pathway is exacerbated in HGPS cells, provoking the mislocalization of numerous protein targets of CRM1. We showed that normalization of this mechanism by pharmacologically inhibiting CRM1 with LMB (specific CRM1 inhibitor), mitigates the senescent phenotype of HGPS cells. Since mitochondrial dysfunction is a hallmark of HGPS, in this study we analyze the effect of LMB on mitochondrial function. Remarkably, LMB treatment induced the recovery of mitochondrial function in HGPS cells, as shown by the improvement in mitochondrial morphology, mitochondrial membrane potential, and ATP levels, which consequently impeded the accumulation of ROS but not mitochondrial superoxide. We provide evidence that the beneficial effect of LMB is mechanistically based on a combinatory effect on mitochondrial biogenesis via upregulation of PGC-1α expression (master transcription cofactor of mitochondrial genes), and mitophagy through the recovery of lysosomal content. The use of exportin CRM1 inhibitors constitutes a promising strategy to treat HGPS and other diseases characterized by mitochondrial impairment. Full article
Show Figures

Graphical abstract

11 pages, 2672 KB  
Article
RvD1n-3 DPA Downregulates the Transcription of Pro-Inflammatory Genes in Oral Epithelial Cells and Reverses Nuclear Translocation of Transcription Factor p65 after TNF-α Stimulation
by Maria G. Balta, Olav Schreurs, Rashi Halder, Thomas M. Küntziger, Frank Saetre, Inger Johanne S. Blix, Espen S. Baekkevold, Enrico Glaab and Karl Schenck
Int. J. Mol. Sci. 2022, 23(23), 14878; https://doi.org/10.3390/ijms232314878 - 28 Nov 2022
Cited by 6 | Viewed by 2450
Abstract
Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1n-3 DPA and that cultured OECs respond to RvD1n-3 DPA addition [...] Read more.
Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that participate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs) express receptors of the SPM resolvin RvD1n-3 DPA and that cultured OECs respond to RvD1n-3 DPA addition by intracellular calcium release, nuclear receptor translocation and transcription of genes coding for antimicrobial peptides. The aim of the present study was to assess the functional outcome of RvD1n-3 DPA–signaling in OECs under inflammatory conditions. To this end, we performed transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1n-3 DPA and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target genes. Further bioinformatics analyses showed that RvD1n-3 DPA inhibited the expression of several genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of RvD1n-3 DPA to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1n-3 DPA increases nuclear export of p65. Taken together, our observations suggest that SPMs also have the potential to be used as a therapeutic aid when inflammation is established. Full article
Show Figures

Figure 1

20 pages, 1815 KB  
Article
Inhibition of XPO-1 Mediated Nuclear Export through the Michael-Acceptor Character of Chalcones
by Marta Gargantilla, José López-Fernández, Maria-Jose Camarasa, Leentje Persoons, Dirk Daelemans, Eva-Maria Priego and María-Jesús Pérez-Pérez
Pharmaceuticals 2021, 14(11), 1131; https://doi.org/10.3390/ph14111131 - 6 Nov 2021
Cited by 13 | Viewed by 5320
Abstract
The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and [...] Read more.
The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock. Full article
(This article belongs to the Special Issue Anticancer Drugs 2021)
Show Figures

Graphical abstract

15 pages, 2289 KB  
Article
JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL)
by Chella Krishna Vadivel, Maria Gluud, Sara Torres-Rusillo, Lasse Boding, Andreas Willerslev-Olsen, Terkild B. Buus, Tea Kirkegaard Nielsen, Jenny L. Persson, Charlotte M. Bonefeld, Carsten Geisler, Thorbjorn Krejsgaard, Anja T. Fuglsang, Niels Odum and Anders Woetmann
Cancers 2021, 13(2), 280; https://doi.org/10.3390/cancers13020280 - 14 Jan 2021
Cited by 22 | Viewed by 4605
Abstract
Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed [...] Read more.
Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro—an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL. Full article
(This article belongs to the Special Issue Cutaneous T-Cell Lymphoma)
Show Figures

Figure 1

15 pages, 3425 KB  
Article
HP1γ Sensitizes Cervical Cancer Cells to Cisplatin through the Suppression of UBE2L3
by Sang Ah Yi, Go Woon Kim, Jung Yoo, Jeung-Whan Han and So Hee Kwon
Int. J. Mol. Sci. 2020, 21(17), 5976; https://doi.org/10.3390/ijms21175976 - 19 Aug 2020
Cited by 17 | Viewed by 4127
Abstract
Cisplatin is the most frequently used agent for chemotherapy against cervical cancer. However, recurrent use of cisplatin induces resistance, representing a major hurdle in the treatment of cervical cancer. Our previous study revealed that HP1γ suppresses UBE2L3, an E2 ubiquitin conjugating enzyme, thereby [...] Read more.
Cisplatin is the most frequently used agent for chemotherapy against cervical cancer. However, recurrent use of cisplatin induces resistance, representing a major hurdle in the treatment of cervical cancer. Our previous study revealed that HP1γ suppresses UBE2L3, an E2 ubiquitin conjugating enzyme, thereby enhancing the stability of tumor suppressor p53 specifically in cervical cancer cells. As a follow-up study of our previous findings, here we have identified that the pharmacological substances, leptomycin B and doxorubicin, can improve the sensitivity of cervical cancer cells to cisplatin inducing HP1γ-mediated elevation of p53. Leptomycin B, which inhibits the nuclear export of HP1γ, increased cisplatin-dependent apoptosis induction by promoting the activation of p53 signaling. We also found that doxorubicin, which induces the DNA damage response, promotes HP1γ-mediated silencing of UBE2L3 and increases p53 stability. These effects resulted from the nuclear translocation and binding of HP1γ on the UBE2L3 promoter. Doxorubicin sensitized the cisplatin-resistant cervical cancer cells, enhancing their p53 levels and rate of apoptosis when administered together with cisplatin. Our findings reveal a therapeutic strategy to target a specific molecular pathway that contributes to p53 degradation for the treatment of patients with cervical cancer, particularly with cisplatin resistance. Full article
(This article belongs to the Special Issue Cisplatin in Cancer Therapy: Molecular Mechanisms of Action 2.0)
Show Figures

Figure 1

17 pages, 3579 KB  
Article
Targeting Nuclear Exporter Protein XPO1/CRM1 in Gastric Cancer
by Rachel Sexton, Zaid Mahdi, Rahman Chaudhury, Rafic Beydoun, Amro Aboukameel, Husain Y. Khan, Erkan Baloglu, William Senapedis, Yosef Landesman, Anteneh Tesfaye, Steve Kim, Philip A. Philip and Asfar S. Azmi
Int. J. Mol. Sci. 2019, 20(19), 4826; https://doi.org/10.3390/ijms20194826 - 28 Sep 2019
Cited by 31 | Viewed by 5527
Abstract
Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant [...] Read more.
Gastric cancer remains an unmet clinical problem in urgent need of newer and effective treatments. Here we show that the nuclear export protein, Exportin 1 (XPO1, chromosome region maintenance 1 or CRM1), is a promising molecular target in gastric cancer. We demonstrate significant overexpression of XPO1 in a cohort of histologically diverse gastric cancer patients with primary and metastatic disease. XPO1 RNA interference suppressed gastric cancer cell growth. Anti-tumor activity was observed with specific inhibitor of nuclear export (SINE) compounds (selinexor/XPOVIO), second-generation compound KPT-8602/eltanexor, KPT-185 and +ve control Leptomycin B in three distinct gastric cancer cell lines. SINE compounds inhibited gastric cancer cell proliferation, disrupted spheroid formation, induced apoptosis and halted cell cycle progression at the G1/S phase. Anti-tumor activity was concurrent with nuclear retention of tumor suppressor proteins and inhibition of colony formation. In combination studies, SINE compounds enhanced the efficacy of nab-paclitaxel in vitro and in vivo. More significantly, using non-coding RNA sequencing studies, we demonstrate for the first time that SINE compounds can alter the expression of non-coding RNAs (microRNAs and piwiRNAs). SINE treatment caused statistically significant downregulation of oncogenic miR-33b-3p in two distinct cell lines. These studies demonstrate the therapeutic significance of XPO1 in gastric cancer that warrants further clinical investigation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

24 pages, 3062 KB  
Article
TRAIL Induces Nuclear Translocation and Chromatin Localization of TRAIL Death Receptors
by Ufuk Mert, Alshaimaa Adawy, Elisabeth Scharff, Pierre Teichmann, Anna Willms, Verena Haselmann, Cynthia Colmorgen, Johannes Lemke, Silvia von Karstedt, Jürgen Fritsch and Anna Trauzold
Cancers 2019, 11(8), 1167; https://doi.org/10.3390/cancers11081167 - 14 Aug 2019
Cited by 17 | Viewed by 4878
Abstract
Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells [...] Read more.
Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects. Intriguingly, recent studies uncovered specific functions of long ignored intracellular TRAIL-R1/-R2, with tumor-promoting functions of nuclear (n)TRAIL-R2 as the regulator of let-7-maturation. As nuclear trafficking of TRAIL-Rs is not well understood, we addressed this issue in our present study. Cell surface biotinylation and tracking of biotinylated proteins in intracellular compartments revealed that nTRAIL-Rs originate from the plasma membrane. Nuclear TRAIL-Rs-trafficking is a fast process, requiring clathrin-dependent endocytosis and it is TRAIL-dependent. Immunoprecipitation and immunofluorescence approaches revealed an interaction of nTRAIL-R2 with the nucleo-cytoplasmic shuttle protein Exportin-1/CRM-1. Mutation of a putative nuclear export sequence (NES) in TRAIL-R2 or the inhibition of CRM-1 by Leptomycin-B resulted in the nuclear accumulation of TRAIL-R2. In addition, TRAIL-R1 and TRAIL-R2 constitutively localize to chromatin, which is strongly enhanced by TRAIL-treatment. Our data highlight the novel role for surface-activated TRAIL-Rs by direct trafficking and signaling into the nucleus, a previously unknown signaling principle for cell surface receptors that belong to the TNF-superfamily. Full article
(This article belongs to the Special Issue TRAIL Signaling in Cancer Cells)
Show Figures

Figure 1

31 pages, 3878 KB  
Review
Structural Basis of Targeting the Exportin CRM1 in Cancer
by Achim Dickmanns, Thomas Monecke and Ralf Ficner
Cells 2015, 4(3), 538-568; https://doi.org/10.3390/cells4030538 - 21 Sep 2015
Cited by 54 | Viewed by 13098
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the [...] Read more.
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects. Full article
(This article belongs to the Special Issue Nucleocytoplasmic Transport)
Show Figures

Figure 1

Back to TopTop