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Abstract: Specialized pro-resolving mediators (SPMs) are multifunctional lipid mediators that partic-
ipate in the resolution of inflammation. We have recently described that oral epithelial cells (OECs)
express receptors of the SPM resolvin RvD1n-3 DPA and that cultured OECs respond to RvD1n-3 DPA

addition by intracellular calcium release, nuclear receptor translocation and transcription of genes
coding for antimicrobial peptides. The aim of the present study was to assess the functional out-
come of RvD1n-3 DPA–signaling in OECs under inflammatory conditions. To this end, we performed
transcriptomic analyses of TNF-α-stimulated cells that were subsequently treated with RvD1n-3 DPA

and found significant downregulation of pro-inflammatory nuclear factor kappa B (NF-κB) target
genes. Further bioinformatics analyses showed that RvD1n-3 DPA inhibited the expression of several
genes involved in the NF-κB activation pathway. Confocal microscopy revealed that addition of
RvD1n-3 DPA to OECs reversed TNF-α-induced nuclear translocation of NF-κB p65. Co-treatment
of the cells with the exportin 1 inhibitor leptomycin B indicated that RvD1n-3 DPA increases nuclear
export of p65. Taken together, our observations suggest that SPMs also have the potential to be used
as a therapeutic aid when inflammation is established.

Keywords: resolvin; specialized pro-resolving mediators; oral epithelium; gingival; oral inflammation;
periodontitis; p65; NF-κB

1. Introduction

The epithelial lining of the oral cavity represents a critical component of the host
defense. Apart from shaping a passive physical barrier, oral epithelial cells (OECs) serve as
a direct line of communication between the immune system and the external environment
by generating and secreting cytokines, chemokines and other factors [1].

Acute inflammation aims to protect the host from microbial invasion or tissue injury.
In a state of ‘immune fitness’, the inflammatory response remains contained in time and
space, and is designed to resolve [2]. Although previously considered as a passive process,
the resolution of acute inflammation is now recognized as an active host response, which is
activated temporally after an acute challenge. Resolution is in part mediated by a range of
specialized pro-resolving lipid mediators (SPMs), including lipoxins, resolvins, marezins
and protectins [3]. Failure of the pro-resolving mechanisms prolongs pro-inflammatory
activity, leading to chronic inflammation which may underlie the pathogenesis of chronic
diseases [2,4]. In the oral cavity for example, the inability of the host to successfully control
and resolve inflammation within the gingival tissues may contribute to the development
of chronic periodontitis [4]. Therefore, understanding and controlling the activity of pro-
resolving pathways may pave the way for the design of novel host-modulatory therapies.
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Over the last few decades, SPMs have emerged as possible candidates for ther-
apy and a number of studies have shown the anti-inflammatory and wound healing
actions of SPMs on leukocytes, fibroblasts and bone cells [5–10]. Recently, their role on
epithelial tissues has gained more attention [11,12]. Focus has primarily been on epider-
mal tissues, but we have previously described that the recently identified SPM, resolvin
D1n-3 DPA (RvD1n-3 DPA), can induce responses in primary OECs derived from oral mucosa,
including intracellular calcium release, nuclear receptor translocation and transcription of
genes coding for antimicrobial peptides [13].

Many cell cultural studies on SPMs investigated their role in dampening inflammation
where the SPMs were added at the same time or before an inflammatory stimulus was
introduced [14–16]. By contrast, in the present study, we aimed at testing the hypothesis
that addition of RvD1n-3 DPA to cell cultures of OECs after conditioning the cells with a pro-
inflammatory stimulus (TNF-α addition) also could modulate the OECs’ response. First, we
used mRNA sequencing (mRNAseq) to examine the effect on the gene expression profile of
the differently treated cells and found a similar anti-inflammatory profile of RvD1n-3 DPA
as seen for other SPMs. Follow-up analysis of the RNA-seq results by bioinformatics
and confocal microscopy showed that the anti-inflammatory effects of RvD1n-3 DPA can be
explained at least partly by reversal of the nuclear translocation of transcription factor p65.

2. Results
2.1. mRNA-seq Analysis

To investigate the effect of the newly identified SPM RvD1n-3 DPA in an experimen-
tal setting associated with the presence of established inflammation, we analyzed by
RNA-sequencing the gene expression profile of primary OECs without or with pre-stimulation
with TNF-α and without or with addition of RvD1n-3 DPA (Figure 1). The percentage of mapped
reads varied between 97.1 and 98.7. Subsequent analysis identified 701 genes as differentially
expressed (DEGs) between OECs treated with TNF-α versus vehicle (data not shown).

Figure 1. Experimental setup used for mRNA sequencing. Primary oral epithelial cells were incubated
for 30 min with TNF-α or vehicle. After washing, RvD1n-3 DPA or vehicle was added for 5 h. The
cells were then harvested and processed for mRNA sequencing. Part of the figure was created
with Biorender.com.

Furthermore, a total of 28 genes were filtered as differentially expressed genes (DEGs)
between OECs treated with TNF-α + RvD1n-3 DPA versus TNF-α (Figure 2A, B). All 28 DEGs
found to be downregulated in cells treated with TNF-α + RvD1n-3 DPA versus TNF-α alone
(blue; Figure 2A) were transcripts that were significantly upregulated in primary OECs
treated with TNF-α versus control (red; Figure 2A) and many of them with association to
immune defenses.
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Figure 2. Differentially expressed genes in TNF-α-activated oral epithelial cells treated with
RvD1n-3 DPA. (A) Based on FDR, 28 genes were differentially expressed between oral epithelial
cells treated with TNF-α + RvD1n-3 DPA versus TNF-α alone (blue). All genes were down-regulated.
In red, the expression of the same genes is shown when TNF-α addition is compared with control
(vehicle). (B) Volcano plot of the differentially expressed genes when TNF-α + RvD1n-3 DPA and
TNF-α addition were compared.

2.2. GO Biological Process and KEGG Pathway Enrichment Analyses

Next, pathway enrichment analyses were performed using the Gene Ontology (GO)
database and the KEGG database. The top 10 GO terms based on the 28 input DEGs
are illustrated in Figure 3A and the top 50 GO terms are shown in Table S1. Ten genes
were associated with inflammatory response (NFKBIA, CHST2, IL36G, TNFAIP3, B4GALT1,
ICAM1, CXCL1, TNIP1, IRAK2 and TNF), nine DEGs were associated with response to
molecule of bacterial origin and to bacterium (NFKBIA, NFKB2, IL36G, TNFAIP3, INAVA,
ICAM1/CXCL1, IRAK2 and TNF), eight genes were associated with IkappaB kinase (IKK)
signaling (NFKBIA, IL36G, TNFAIP3, INAVA, CANT1, TNIP1, IRAK2 and TNF), and five and
three genes were associated with positive and negative regulation of Nuclear Factor-kappa
B (NF-κB) signaling, respectively. Cellular response to lipid, intracellular receptor signaling
pathway and negative regulation of DNA-binding transcription factor activity were also
included among the significantly enriched biological processes (Table S1).

The KEGG pathway analysis highlighted that the “NOD-like receptor signaling pathway”
and “apoptosis” were the top significantly enriched pathways among the 28 downregulated
genes for TNF-α + RvD1n-3 DPA versus TNF-α alone (Figure 3B).

NF-κB signaling is crucial for the expression of a variety of genes amplifying inflam-
mation, and this was among the statistically significant pathways that we found to be
transcriptionally regulated by RvD1n-3 DPA. We therefore interrogated this pathway in
more detail. Figure 4A summarizes the transcriptional changes within the canonical NF-κB
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signaling pathway in TNF-α-stimulated oral epithelial cells with or without subsequent in-
cubation with RvD1n-3 DPA. TNF-α up-regulated 19 genes (red arrows) and down-regulated
IL1RA and RvD1n-3 DPA down-regulated 11 genes (blue arrows). RvD1n-3 DPA counteracted
transcription of many genes that were increased by TNF-α.

Figure 3. Gene ontology (GO) biological process and KEGG pathway enrichment analysis.
(A) GO and (B) KEGG pathway enrichment analysis of biological processes on the 28 differentially
expressed genes in oral epithelial cells when TNF-α + RvD1n-3 DPA and TNF-α addition were compared.

Figure 4. RvD1n-3 DPA downregulates the NF-κB canonical pathway in TNF-α-activated oral ep-
ithelial cells. (A) The canonical pathway of NF-κB activation. Red arrows indicate transcriptional
changes after TNF-α addition. Blue arrows show changes after addition of TNF-α + RvD1n-3 DPA.
(B) Causal network analysis centered on RELA, showing that RELA regulates a variety of downstream
pro-inflammatory targets for which RvD1n-3 DPA appears to partly or fully reverse TNF-α-induced
expression changes (based on TNF-α + RvD1n-3 DPA and TNF-α comparison).
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2.3. Causal Network Analysis (Causal Reasoning)

We used the entire human protein–protein interactions set with known direction
and type of interaction (i.e., activating or inhibiting) from the STRING database for a
causal network analysis [17] to identify key upstream regulatory genes/proteins, whose
alterations can explain many of the downstream differential expression changes in their
target genes/proteins.

After ranking according to significance level (Table S2), the top 50 key upstream genes
identified included genes coding for 19 nuclear pore complex proteins (nucleoproteins), in
addition to TPR, NDC1, POM121 and POM121C which also code for structural constituents
of the nuclear pore. AAAS, RANBP2 and RAE1, coding for components that modulate the
nuclear export and nucleocytoplasmic pathways were also among the 50 highest ranked
genes. XPO1 (coding for exportin 1), an important protein mediating nuclear export, was
also highly ranked (nr. 59) and statistically significant in terms of expression changes
controlled by this gene. This suggests that nucleocytoplasmic shuttling in the OECs is
modulated after incubation of TNF-α-stimulated cells with RvD1n−3 DPA as compared to
TNF-α alone.

Using the protein–protein interactions from STRING, we also created a network
visualization for RELA, the gene coding for the transcription factor p65, a major functional
component of the NF-κB complex. The causal reasoning analysis identified RELA among
the significant candidate regulatory genes indicating the potential role of p65 in regulating
the genes for which RvD1n-3 DPA appears to partly or fully reverse TNF-α-induced changes.
Figure 4B shows the network of RELA transcriptional target changes whose expression in
the TNF-α + RvD1n-3 DPA versus TNF-α comparison changed in a manner that is consistent
with the decreased expression of RELA and the regulation type (activating or inhibiting).
This indicates that regulation by transcription factor p65 is a key component in the induction
of responses seen in the OECs after incubation of TNF-α-stimulated cells with RvD1n-3 DPA
as compared to TNF-α alone.

2.4. Nuclear Localization of p65

The causal network analyses above indicated that (1) nucleocytoplasmic shuttling in
the OECs is modulated after incubation of TNF-α-stimulated cells with RvD1n-3 DPA as
compared to TNF-α alone, and that (2) regulation by transcription factor p65 can be a key
component in the induction of responses seen in the OECs after this treatment. We therefore
examined the effect of RvD1n-3 DPA on the localization of p65 within the OECs after TNF-α
stimulation (Figure 5A). In untreated OECs, p65 was mainly localized in the cytoplasm
(Figure 5Bi). In cells treated with TNF-α, p65 translocated to the nucleus (Figure 5Bii,C).
However, when the cells were subsequently treated with RvD1n-3 DPA, nuclear translocation
was abolished and p65 accumulated in the perinuclear region (Figure 5Biii,C). We then
compared these observations with experiments using the same conditions, but where
OECs were first treated with leptomycin B to inhibit nuclear export via inhibition of
chromosomal region maintenance (CRM1)/exportin 1 (XPO1). Exportin 1 is required for
nuclear export of proteins containing a nuclear export sequence (NES). Leptomycin B
addition led to increased p65 nuclear staining compared to untreated cells as expected,
but cytoplasmic staining remained visible (Figure 5Biv,C). Exposure to TNF-α increased
p65 nuclear translocation (Figure 5Bv,C) but leptomycin B treatment inhibited the nuclear
efflux that was seen after RvD1n-3 DPA addition (compare Figure 5Biii,vi,C). This shows that
RvD1n-3 DPA is no longer able to reverse nuclear translocation of p65 when CRM1/XPO1-
mediated nuclear export is impaired.
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Figure 5. RvD1n-3 DPA inhibits p65 translocation to the cell nucleus. (A) Experimental setup. Primary
oral epithelial cells were treated for 1 h with leptomycin B or left untreated. Then, the cells were
washed and incubated for 15 min with TNF-α or left untreated. After a final washing, RvD1n-3 DPA

or vehicle was added for 15 min after which the cover slips with the cells were processed for
immunocytofluorescence and analysis with CellProfiler (see Material and Methods). (B) Microscopic
pictures of p65 immunocytofluorescence (green) of cells as described in (A). Stainings combined
with DAPI are displayed in Figure S1. Original magnification ×20. (C) Distribution of p65 in oral
epithelial cells treated as indicated on the x-axis. The y-axis shows the ratio of nuclear/cytoplasmic
p65 staining. Part of Figure 5A was created with BioRender.com. ** Statistically significant differences
(p < 0.05) as assayed by repeated measures ANOVA with adjustment for multiple comparisons based
on False Discovery Rate (FDR).

3. Discussion

Specialized pro-resolving mediators (SPMs) can exert anti-inflammatory and wound
healing-promoting actions on leukocytes, fibroblasts and bone cells [5–10]. Specifically,
the recently characterized resolvin RvD1n-3 DPA exhibits potent anti-inflammatory effects
on human neutrophils and endothelial cells and has been shown to be produced by
polymorphonuclear granulocytes and monocyte/macrophages [18–20]. To date, two
G-protein coupled receptors for RvD1n-3 DPA have been described: the formyl peptide
receptor 2 (FPR2/ALX) and the G protein-coupled receptor 32 (DRV1/GPR32) [19].
We have recently described that oral epithelial cells (OECs) express these receptors
and that cultured OECs respond to RvD1n-3 DPA addition by intracellular calcium
release, receptor translocation to the nucleus and transcription of genes coding for
antimicrobial peptides [13].

Here, we wanted to explore the broader response of TNF-α-stimulated OECs to
RvD1n-3 DPA. To this end, we carried out mRNA sequencing of cultured TNF-α-activated
OECs, subsequently exposed to RvD1n-3 DPA or to vehicle. In many studies, SPMs are added
before or together with an inflammatory stimulus [6,14,21–23]. In contrast, our model
consisted of first stimulating the cultured cells with TNF-α, after which RvD1n-3 DPA was
added (Figure 1). This means that the cells were brought into an inflammation-resembling
state at the moment when they were exposed to RvD1n-3 DPA and that our model therefore
can indicate whether RvD1n-3 DPA can reverse an inflammatory response, not only prevent it.

Based on mRNA sequencing, Gene Ontology and KEGG pathway analyses of the
transcription data, comparing OECs treated with TNF-α + RvD1n-3 DPA versus TNF-α alone
showed that RvD1n-3 DPA addition affected immune and inflammatory responses, including
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NF-κB signaling, NOD signaling, lipopolysaccharide signaling, MAPK signaling, natural
killer cell mediated cytotoxicity and apoptosis. Such responses have also been described for
other SPMs. For example, RvD3 and aspirin-triggered RvD3 downregulate the expression
of the NF-κB protein and induce the expression of the NF-κB inhibitor protein in lung
epithelial cells upon binding to ALX/FPR2 receptor [24]. Aspirin-triggered RvD3 also
inhibits TNF-α–induced NF-κB activation in an in vivo model of acute lung injury [15]. Sim-
ilarly, RvE1 treatment blocks the activation of the mitogen-activated protein kinase (MAPK)
and nuclear factor (NF)-κB signaling pathways, and this inhibition contributes to the
improvement in the inflammatory response induced by lipopolysaccharide (LPS) in the
myocardial tissue of mice with LPS-induced myocardial injury [16]. In peritoneal
macrophages, RvD1 and RvD2 attenuate the activation of nucleotide-binding domain
leucine-rich repeat-containing protein 3 (NLRP3) inflammasome induced by LPS and
palmitate [25]. Taken together, this indicates that RvD1n-3 DPA has effects that also have
been described for other SPMs.

To identify genes and processes that were affected by RvD1n-3 DPA treatment the net-
work causal reasoning analysis of known and predicted protein–protein interactions from
the STRING database was then applied to the mRNA-seq data. After ranking according
to significance level, more than half of the top 50 genes included genes that code for pro-
teins involved in nucleocytoplasmic transport. Therefore, we decided to examine this
process in the context of translocation of the transcription factor NF-κB p65 in response
to TNF-α. NF-kB p65 is one of the main functional components of the NF-κB signaling
pathway [26] which additionally—based on our mRNAseq data—was found to be affected
by RvD1n-3 DPA treatment. Causal reasoning analysis confirmed that RELA (coding for p65)
is a significant candidate gene that could regulate the genes which RvD1n-3 DPA appeared
to affect after TNF-α challenge.

The complex between p65 and p50 is the most common heterodimer among the NF-κB
dimers and is the functional component participating in nuclear translocation and activity
of NF-κB. The p65/p50 complex translocates to the nucleus where it binds to response
elements on the DNA [26]. In our setup, OECs were first treated for 15 min with TNF-α.
This resulted in nuclear translocation of p65. When the cells thereafter were incubated
with RvD1n-3 DPA for 15 min, the p65 was shuttled back to the cytoplasm. This was not
seen when RvD1n-3 DPA was substituted by vehicle. The ability to reside in the nucleus
is essential for transcription factor (TF) activity and cytoplasmic TF re-localization can
serve as an inactivation mechanism. This suggests that RvD1n-3 DPA, by reversing the
TNF-α–induced translocation of p65, can attenuate NF-κB activity.

To probe into the mechanism of the nuclear translocation reversal of p65 by RvD1n-3 DPA,
we used leptomycin B, a known irreversible inhibitor of nuclear export protein exportin 1
(coded by XPO1/CRM1) [27]. When OECs were pre-incubated with leptomycin B, nuclear
translocation was still seen after TNF-α addition, but it was not reversed when RvD1n-3 DPA
was added subsequently. This strongly suggests that the effect of RvD1n-3 DPA on the
reversed nuclear localization of p65 is achieved through increased nuclear export of p65.

Diseases driven by chronic inflammation, e.g., chronic infections such as periodontitis,
allergies and autoimmune diseases, need improved treatment options such as modulation
of chronic inflammation without causing immunosuppression. Over the last few decades,
SPMs have emerged as promising therapeutic alternatives because they can provide anti-
inflammatory and pro-resolving actions without being immunosuppressive [10]. In this
respect, RvD1n-3 DPA can be a promising candidate.

The present inductive study is an in vitro assessment of primary OECs, first exposed
to a pro-inflammatory and then to an anti-inflammatory stimulus. The complex dynamic
milieu shaped upon microbial–host interactions and the possible modifying complexity
of various inflammatory stimuli in vivo is lacking. In vivo studies in animals and then
humans are therefore required to validate the effect of RvD1n-3 DPA on chronic inflammation.
Experimentally induced (in animals) or natural (in humans) forms of periodontitis can
constitute valid study models [23]. Further studies will also address in more detail the
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mechanisms behind the reversal by RvD1n-3 DPA of NF-κB nuclear translocation in OECs
and potentially also in other cell types.

Taken together, RvD1n-3 DPA acts as an SPM on oral epithelial cells. When applied after
TNF-α stimulation, RvD1n-3 DPA reverses nuclear translocation of the transcription factor
p65. This indicates that RvD1n-3 DPA has the potential to be used as a therapeutic aid after
inflammation is established, not only as a preventive measure.

4. Material and Methods
4.1. Biopsy Material

Biopsies for cell culture were obtained from the healthy buccal gingiva in volunteers
undergoing tooth extractions (n = 4, mean age ± SD = 35.3 ± 12 years, 2 females and 2 males).
Probing depth at the biopsy sites was <5 mm, clinical attachment loss was ≤2 mm, and
there was no bleeding on probing. The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Regional Committee for Medical Research
Ethics in South-East Norway (nr. 2017/2196). Informed consent was obtained from all
subjects involved in the study.

4.2. Isolation of Primary Oral Epithelial Cells

OECs were isolated from biopsies as described previously [28]. Briefly, biopsies
were transferred to Dulbecco’s modified Eagle medium with 1.25 mg/mL dispase
(GIBCO, Thermo Fisher Scientific, Waltham, MA, USA) and incubated over night
at 4 ◦C. The epithelial sheets were peeled off, cut into small pieces and incubated in
10X trypsin EDTA (Sigma-Aldrich, St Louis, MO, USA) for 7 min at 37 ◦C. A Pasteur pipette
was used to loosen the cells and enzymatic treatment was stopped by the addition of fetal calf
serum (FCS). The cells were then cultured in keratinocyte serum-free medium (KSFM, GIBCO),
supplemented with 25 µg/mL bovine pituitary extract (BPE; GIBCO), 1 ng/mL epidermal
growth factor (EGF) and 1% Antibiotic-Antimycotic (GIBCO), in a humidified atmosphere
of 5% CO2 in air at 37 ◦C. For all experiments, the cells were seeded at a density of
500,000 cells per well in 6-well plates, incubated overnight and then grown in KSFM with-
out addition of BPE and EGF 24 h before stimulation. All the cells used in the experiments
were between passage 3 and passage 6 and they were 80–90% confluent at the time of
the experiment.

4.3. Resolvin

RvD1n-3 DPA was prepared by total organic synthesis [19]. The structural integrity of
RvD1n-3 DPA was monitored using UV tandem LC-MS/MS and matched against authentic
material of RvD1n-3 DPA. Before use, RvD1n-3 DPA, diluted in pure ethanol, was resuspended
in phosphate-buffered saline to a dilution of 1:100.

4.4. RNA High-Throughput Sequencing and Data Processing

Primary OECs were isolated from gingival biopsies and cultured in KSFM (5% CO2,
37 ◦C). Cells seeded at a density of 2 × 106 cells in T25 flasks were stimulated with TNF-α
or vehicle (KSFM, containing <0.1% ethanol) for 30 min (5% CO2, 37 ◦C), washed twice with
PBS and then incubated with RvD1n-3 DPA (0.1 nM) or vehicle (KSFM, containing <0.1% ethanol)
for 5 h (5% CO2, 37 ◦C) (Figure 1). Cells were washed twice with PBS before lysis in RLT
buffer (Qiagen, Kista, Sweden) supplemented with 1% β-mercaptoethanol (Sigma-Aldrich).
Total RNA was extracted using the QIAcube and the QIAcube standard RNeasy mini kit
(Qiagen) using the DNase digestion protocol, RNA libraries were generated and paired-end
sequencing was performed using a read length of 150 bp. The experimental profiling
analyses were followed by computational data quality control, pre-processing and analysis,
as outlined below.

The raw RNA-seq fastq files were quality-checked using the FastQC software [29],
and the data were pre-processed using the software package Rsubread (version 1.32.2,
Developers: Wei Shi et al., University of Melbourne, Parkville, Victoria, Australia) [30].
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Gene-level differential expression analysis was conducted in the R statistical programming
software (version 3.5.1, Developers: R Core Team, Vienna, Austria) [31] using the software
package edgeR [32], and filtering out genes with low expression counts using the filter
ByExpr-function with default parameters. Normalization factors to scale the raw library size
were determined using the calcNormFactors-function with default settings, and posterior
dispersion estimates were obtained by applying the estimateDisp-function with the robust-
parameter set to true in order to robustify the estimation against outliers.

Pathway enrichment analyses were implemented using the R software package cluster-
Profiler [33] and gene set collections for the KEGG and Gene Ontology databases obtained
from the MSigDB repository [34]. As input for the enrichment analyses using Fisher’s Exact
test, the gene-level differential expression analysis results obtained with edgeR workflow
were used, filtering the significant differential genes to include only those with a false-
discovery rate (FDR) below 0.05. Similarly, p-value significance scores for the pathway
over-representation analysis were also adjusted to obtain final FDR scores according to the
method by Benjamini and Hochberg [35].

Next, a causal network analysis (causal reasoning analysis) [17] was also applied to
the differentially expressed genes derived from the edgeR analysis, using direct activating
and inhibiting human protein–protein interactions obtained from the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) [36]. STRING is a biological database
that collects, scores and integrates publicly available sources of protein–protein interaction
information and complements these with computational predictions of potential associa-
tions. This resource was used to assemble a comprehensive and objective global protein
interaction network, covering direct (physical) interactions in humans. Specifically, the
current full collection of human activating or inhibiting protein–protein interactions was
downloaded from the STRING database (v11.5) and provided as input to the network
causal reasoning analysis, together with the differentially expressed genes. The causal
reasoning analysis identifies key upstream regulatory genes/proteins, whose alterations
and known activating and inhibiting interactions can explain many of the downstream
differential expression changes in their direct target genes [17].

The data discussed in this publication have been deposited in NCBI’s Gene Expression
Omnibus and are accessible through GEO Series accession.

4.5. Immunocytofluorescence and Fluorescence Intensity Analysis

Primary OECs were seeded on glass coverslips at a density of 250,000 cells per well
in a 24-well culture plate. For the nuclear export experiments, half of the coverslips were
incubated with leptomycin B (20 ng/mL; Sigma-Aldrich) for 1 h and washed twice with
PBS. The other half were incubated with vehicle and used as negative controls. Then,
cells were exposed to TNF-α (final concentration 50 ng/mL; PeproTech, Thermo Fisher
Scientific, Waltham, MA, USA) or vehicle (KSFM) for 15 min. The medium was removed,
and the cells were then incubated with KSFM containing RvD1n-3 DPA (0.1 nM) or vehicle
(KSFM, containing <0.1% ethanol) for 15 min. The incubations were performed in a
humidified atmosphere of 5% CO2 in air at 37 ◦C. The cells were washed briefly with PBS
and fixed in 4% formaldehyde for 10 min at room temperature. After washing, the cells
were stained and examined as described below.

Coverslips were treated with 0.1% Triton-X100 in 0.1% sodium citrate (w/v) before
staining to permeabilize the attached cells. Then, coverslips were immersed in 5% normal
horse serum and incubated overnight with 1 µg/mL unlabeled mouse anti-p65 at 4 ◦C
(Santa Cruz Biotechnology, Dallas, TX, USA). After washing, coverslips were incubated with
biotinylated horse anti-mouse IgG (Vectorlabs, Kirtlington, UK) and with Cy2-conjugated
streptavidin (GE LifeSciences, Ctiva, Marlborough, MA, USA). Nuclei were stained with
4′,6-diamidino-2-phenylindole (DAPI, ThermoFisher Scientific). Images were taken using
using a SuperApochromat 603/1.35 oil objective on an Olympus Fluoview FV1000 laser
scanning confocal microscope and image overlays mounted using Adobe Photoshop CS5.
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Mean fluorescence intensity in the nucleus versus intensity in the cytoplasm of
primary OECs treated as mentioned above was analyzed using the CellProfiler v 3.1.0
(https://cellprofiler.org/about, accessed on September 2020) and R-software and graphs
were constructed using GraphPad Prism v8.0. (GraphPad Software) (Figure S1).

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232314878/s1.
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