Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = latitude lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 12319 KiB  
Article
The Poleward Shift of the Equatorial Ionization Anomaly During the Main Phase of the Superstorm on 10 May 2024
by Di Bai, Yijun Fu, Chunyong Yang, Kedeng Zhang and Yongqiang Cui
Remote Sens. 2025, 17(15), 2616; https://doi.org/10.3390/rs17152616 - 28 Jul 2025
Viewed by 230
Abstract
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), [...] Read more.
On 10 May 2024, a super geomagnetic storm with a minimum Dst index of less than −400 nT occurred. It has attracted a significant amount of attention in the literature. Using total electron content (TEC) observations from a global navigation satellite system (GNSS), in situ electron density data from the Swarm satellite, and corresponding simulations from the thermosphere–ionosphere–electrodynamics general circulation model (TIEGCM), the dynamic poleward shift of the equatorial ionization anomaly (EIA) during the main phase of the super geomagnetic storm has been explored. The results show that the EIA crests moved poleward from ±15° magnetic latitude (MLat) to ±20° MLat at around 19.6 UT, to ±25° MLat at 21.2 UT, and to ±31° MLat at 22.7 UT. This poleward shift was primarily driven by the enhanced eastward electric field, neutral winds, and ambipolar diffusion. Storm-induced meridional winds can move ionospheric plasma upward/downward along geomagnetic field lines, causing the poleward movement of EIA crests, with minor contributions from zonal winds. Ambipolar diffusion contributes/prevents the formation of EIA crests at most EIA latitudes/the equatorward edge. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

15 pages, 2790 KiB  
Article
Modelling the Climate of the Eemian in Europe Using an Interactive Physical Downscaling
by Frank Arthur, Anhelina Zapolska, Didier M. Roche, Huan Li and Hans Renssen
Quaternary 2025, 8(3), 33; https://doi.org/10.3390/quat8030033 - 27 Jun 2025
Viewed by 457
Abstract
The Eemian interglacial (~130–116 ka) is a period characterized by a significantly warmer climate than the pre-industrial era, providing a valuable opportunity to study natural climate variability and its implications for the future. We studied the Eemian climate in Europe by applying an [...] Read more.
The Eemian interglacial (~130–116 ka) is a period characterized by a significantly warmer climate than the pre-industrial era, providing a valuable opportunity to study natural climate variability and its implications for the future. We studied the Eemian climate in Europe by applying an interactive downscaling to our Earth system model (iLOVECLIM) to increase its horizontal atmospheric resolution from 5.56° to 0.25° latitude-longitude. A transient simulation was conducted for both the standard version of the model and with an interactive downscaling applied for the Eemian (127–116 ka). Our simulations suggest that the magnitude of temperature and precipitation varied across different regions of Europe, with some areas experiencing more pronounced warming and precipitation changes than others. The latitudinal pattern in our simulation during the Eemian shows that the warming in Europe was stronger at high latitudes than at mid-latitudes. Relative to the pre-industrial climate, our downscaling scheme simulates at 127 ka higher temperatures between 3–4 °C in the northern part of Europe and higher precipitation values between 150–300 mm/yr. Our results indicate that, in comparison to the standard model, the downscaled simulations offer spatial variability that is more in line with proxy-based reconstructions and other climate models. Full article
Show Figures

Figure 1

22 pages, 10230 KiB  
Article
Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus
by Daria Evdokimova, Anna Fedorova, Nikolay Ignatiev, Oleg Korablev, Franck Montmessin and Jean-Loup Bertaux
Atmosphere 2025, 16(6), 726; https://doi.org/10.3390/atmos16060726 - 15 Jun 2025
Cited by 1 | Viewed by 415
Abstract
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the [...] Read more.
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the first time, the H2O volume mixing ratio in the deep Venus atmosphere at about 10–16 km has been retrieved for the entire SPICAV IR dataset using a radiative transfer model with multiple scattering. The retrieved H2O volume mixing ratio is found to be sensitive to different approximations of the H2O and CO2 absorption lines’ far wings and assumed surface emissivity. The global average of the H2O abundance retrieved for different parameters ranges from 23.6 ± 1.0 ppmv to 27.7 ± 1.2 ppmv. The obtained values are consistent with recent studies of water vapor below the cloud layer, showing the H2O mixing ratio below 30 ppmv. Within the considered dataset, the zonal mean of the H2O mixing ratio does not vary significantly from 60° S to 75° N, except for a 2 ppmv decrease noted at high latitudes. The H2O local time distribution is also uniform. The 8-year observation period revealed no significant long-term trends or periodicities. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

19 pages, 22225 KiB  
Article
Integrated Correction of Nonlinear Dynamic Drift in Terrestrial Mobile Gravity Surveys: A Comparative Study Based on the Northeastern China Gravity Monitoring Network
by Zhaohui Chen and Jinzhao Liu
Remote Sens. 2025, 17(12), 2025; https://doi.org/10.3390/rs17122025 - 12 Jun 2025
Viewed by 429
Abstract
The Northeastern China Gravity Monitoring Network (NCGMN; 40–50°N), a pioneering time-variable gravity monitoring system in high-latitude cold-temperate environments, serves as a critical infrastructure for geodynamic investigations of the Songliao Basin, Changbai Mountain volcanic zone, and northern Tan-Lu Fault Zone. To address the data [...] Read more.
The Northeastern China Gravity Monitoring Network (NCGMN; 40–50°N), a pioneering time-variable gravity monitoring system in high-latitude cold-temperate environments, serves as a critical infrastructure for geodynamic investigations of the Songliao Basin, Changbai Mountain volcanic zone, and northern Tan-Lu Fault Zone. To address the data reliability challenges posed by nonlinear dynamic drifts in spring-type relative gravimeters during mobile surveys, this study quantifies—for the first time—the non-smooth normal distribution characteristics of such drifts using the inaugural 2015 dataset from two CG-5 instruments. Results demonstrate a 7–15% reduction in mean dynamic drift rates compared to static conditions, with spatiotemporal variability governed by multi-physics field coupling (terrain undulation, thermal fluctuation, and barometric perturbation). A comprehensive correction framework—integrating a gravimetric line drift rate computation, multi-model validation, and absolute datum cross-validation—reveals gravity value discrepancies up to ±10 μGal across models. The innovative hybrid scheme combines local drift preprocessing (initial-point modeling, line fitting, variance-sum optimization) with global adjustment optimization, achieving the significant suppression of nonlinear drift errors. The variance-sum optimal and Bayesian adjustment hybrid synergizes local variance minimization and global temporal correlation priors, delivering the following: (1) 34% and 29% reductions in segment self-difference standard deviations versus classical and Bayesian adjustments; (2) 24% and 14% decreases in segment residual standard deviations; (3) 12% and 6% improvements in absolute datum cross-validation precision. This study establishes a foundation for the reliable extraction of μGal-level gravity signals, advancing high-precision gravity monitoring of seismicity, volcanic unrest, and fault zone deformation in complex terrains. By harmonizing local-scale accuracy with network-wide consistency, the framework sets a new benchmark for time-variable gravity studies in challenging environments. Full article
Show Figures

Figure 1

27 pages, 1004 KiB  
Article
Satellite Constellation Optimization for Emitter Geolocalization Missions Based on Angle of Arrival Techniques
by Marcello Asciolla, Rodrigo Blázquez-García, Angela Cratere, Vittorio M. N. Passaro and Francesco Dell’Olio
Sensors 2025, 25(11), 3376; https://doi.org/10.3390/s25113376 - 27 May 2025
Cited by 1 | Viewed by 445
Abstract
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the [...] Read more.
The context of this study is the geolocation of signal emitters on the Earth’s surface through satellite platforms able to perform Angle of Arrival (AOA) measurements. This paper provides the theoretical framework to solve the optimization problem for the orbital deployment of the satellites minimizing the variance on the position error estimation with constraints on the line of sight (LOS). The problem is theoretically formulated for an arbitrary number of satellites in Low Earth Orbit (LEO) and target pointing attitude, focusing on minimizing the Position Dilution of Precision (PDOP) metric, providing a methodology for translating mission design requirements into problem formulation. An exemplary numerical application is presented for the operative case of the placement of a second satellite after a first one is launched. Simulation results are on angles of true anomaly, right ascension of the ascending node, and spacing angle, while accounting for orbital radius and emitter latitude. New insights on trends, parameter dependencies, and properties of symmetry and anti-symmetry are presented. The topic is of interest for new technological demonstrators based on CubeSats with AOA payload. Civil applications of interest are on interceptions of non-cooperative signals in activities of spectrum monitoring or search and rescue. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

16 pages, 3833 KiB  
Article
Cooling Efficiency of Two-Phase Closed Thermosyphon Installed in Cast-in-Place Pile Foundation for Overhead Transmission Lines in High-Latitude Permafrost Regions
by Lei Zhao, Yao Xiao, Yunhu Shang, Yan Lu and Xuyang Wu
Processes 2025, 13(4), 1080; https://doi.org/10.3390/pr13041080 - 3 Apr 2025
Viewed by 428
Abstract
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these [...] Read more.
Ground temperature conditions are key factors affecting the stability of cast-in-place pile foundations for transmission towers in permafrost regions. With global climate warming, the ground temperature environment in permafrost regions has undergone significant changes, leading to an increasing risk of disasters for these pile foundations. However, research on the prevention and control of pile foundation diseases caused by permafrost degradation is relatively limited, and engineering practices are insufficient. To address this, this study proposes embedding a two-phase closed thermosyphon (TPCT) inside a concrete pile foundation to create a composite structural system with both load-bearing and cooling functions. A mathematical model is developed to focus on the cooling performance and temperature control efficiency of the composite structure. The results indicate that: (1) The TPCT can alleviate, to some extent, the downward shift of the permafrost table around the transmission tower foundation due to climate warming. The cooling effect of the TPCT slows the rate of permafrost degradation, but its control effect on the permafrost table is limited. (2) The performance of the cast-in-place piles with an embedded TPCT is closely related to temperature, with an effective operational period from early October to late March each year. (3) This device effectively mitigates the impact of permafrost degradation due to climate change, significantly lowering the risk of foundation-related issues in transmission towers. The findings of this study are crucial for maintaining ground temperature stability in cast-in-place pile foundations for transmission projects in high-latitude permafrost areas, as well as enhancing the theoretical framework for pile foundation design. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

17 pages, 4458 KiB  
Article
Study on the Three-Dimensional Evolution of Ionospheric Disturbances in China During the Geomagnetic Storm on December 1, 2023
by Yifei Yang, Jian Kong, Xiangping Chen, Congcong Ling, Changzeng Tang, Yibin Yao and Zhaorong Zhu
Atmosphere 2025, 16(3), 341; https://doi.org/10.3390/atmos16030341 - 18 Mar 2025
Cited by 1 | Viewed by 444
Abstract
On 1 December 2023, a strong geomagnetic storm was triggered by an interplanetary shock caused by a coronal mass ejection (CME). This study used data from 193 Global Navigation Satellite System (GNSS) observation stations in China to study the three-dimensional morphological total electron [...] Read more.
On 1 December 2023, a strong geomagnetic storm was triggered by an interplanetary shock caused by a coronal mass ejection (CME). This study used data from 193 Global Navigation Satellite System (GNSS) observation stations in China to study the three-dimensional morphological total electron content (TEC) disturbances during this storm. By analyzing GNSS TEC data from 15 GNSS stations along the magnetic field lines, it was found that TEC disturbances spread from low to high latitudes, confirmed by ionosonde NmF2 data. The TEC disturbance first appeared at the LJHP station, (21.68° N) at 11:30 UT and propagated to the BJFS station (39.60° N) at 13:30 UT with a propagation speed of about 217 m/s and maximum amplitude of ±0.2 m. The TEC disturbance lasted the longest, approximately 4 h, between latitudes 25° N and 32° N. Additionally, this study investigated the ionosphere’s three-dimensional electron density distribution in the Guangxi region using an ionospheric tomography algorithm. Results showed that the TEC disturbances were mainly concentrated between 450 and 580 km in altitude. At 12:00 UT, the maximum change in electron density occurred at a 580 km height at 26° N, 112° E, increasing by 20.54 total electron content unit (TECU). During the main phase of the geomagnetic storm, the electron density expanded from higher to lower layers, while during the recovery phase, it recovered from the lower layers to the higher layers. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

18 pages, 6065 KiB  
Article
Risk Assessment of High-Voltage Power Grid Under Typhoon Disaster Based on Model-Driven and Data-Driven Methods
by Xiao Zhou and Jiang Li
Energies 2025, 18(4), 809; https://doi.org/10.3390/en18040809 - 9 Feb 2025
Cited by 1 | Viewed by 1218
Abstract
As global warming continues to intensify, typhoon disasters will more frequently occur in East and Southeast Asia, posing a high risk of causing large-scale power outages in the power system. To investigate the impact of typhoon disasters on high-voltage power grids, a comprehensive [...] Read more.
As global warming continues to intensify, typhoon disasters will more frequently occur in East and Southeast Asia, posing a high risk of causing large-scale power outages in the power system. To investigate the impact of typhoon disasters on high-voltage power grids, a comprehensive risk assessment method that integrates model-driven and data-driven approaches is proposed, which can predict power grid faults in advance and provide support for power grid operators to generate emergency dispatching plans. Firstly, by comparing actual loads with the design strengths of the transmission tower-line system and analyzing the geometric relationship between typhoon wind circles and the system, key variables, such as wind speed, longitude, latitude, and other pertinent factors, are screened. The Spearman correlation coefficient is employed to pinpoint the meteorological variables that exhibit a high degree of relevance, enhancing the accuracy and interpretability of our model. Secondly, addressing the lack of power grid fault samples, three data balancing methods—Borderline-SMOTE, ADASYN, and SMOTE-Tomek—are compared, with Borderline-SMOTE selected for its superior performance in enhancing the sample set. Additionally, a power grid failure risk assessment model is built based on Light Gradient Boosting Machine (LightGBM), and the Borderline-Smoothing Algorithm (BSA) is used for the modeling of power grid faults. The nonlinear mapping relationship between typhoon meteorological data and the power grid equipment failure rate is extracted through deep learning training. Subsequently, the Tree-structured Parzen Estimator (TPE) is leveraged to optimize the hyperparameters of the LightGBM model, thus enhancing its prediction accuracy. Finally, the actual power system data of a province in China under a strong typhoon are assessed, validating the proposed assessment method’s effectiveness. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 2875 KiB  
Article
Genome-Wide Analysis and Genomic Prediction of Chilling Tolerance of Maize During Germination Stage Using Genotyping-by-Sequencing SNPs
by Shiliang Cao, Tao Yu, Gengbin Yang, Wenyue Li, Xuena Ma and Jianguo Zhang
Agriculture 2024, 14(11), 2048; https://doi.org/10.3390/agriculture14112048 - 14 Nov 2024
Viewed by 859
Abstract
Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expressed in terms of the [...] Read more.
Chilling injury during the germination stage (CIGS) of maize significantly hinders production, particularly in middle- and high-latitude regions, leading to slow germination, seed decay, and increased susceptibility to pathogens. This study dissects the genetic architecture of CIGS resistance expressed in terms of the relative germination rate (RGR) in maize through association mapping using genotyping-by-sequencing (GBS) single-nucleotide polymorphisms (SNPs). A natural panel of 287 maize inbred lines was evaluated across multiple environments. The results revealed a broad-sense heritability of 0.68 for chilling tolerance, with 12 significant QTLs identified on chromosomes 1, 3, 5, 6, and 10. A genomic prediction analysis demonstrated that the rr-BLUP model outperformed other models in accuracy, achieving a moderate prediction accuracy of 0.44. This study highlights the potential of genomic selection (GS) to enhance chilling tolerance in maize, emphasizing the importance of training population size, marker density, and significant markers on prediction accuracy. These findings provide valuable insights for breeding programs aimed at improving chilling tolerance in maize. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 12404 KiB  
Article
Predicting Cyclist Speed in Urban Contexts: A Neural Network Approach
by Ricardo Montoya-Zamora, Luisa Ramírez-Granados, Teresa López-Lara, Juan Bosco Hernández-Zaragoza and Rosario Guzmán-Cruz
Modelling 2024, 5(4), 1601-1617; https://doi.org/10.3390/modelling5040084 - 5 Nov 2024
Viewed by 1240
Abstract
Bicycle use has become more important today, but more information and planning models are needed to implement bike lanes that encourage cycling. This study aimed to develop a methodology to predict the speed a cyclist can reach in an urban environment and to [...] Read more.
Bicycle use has become more important today, but more information and planning models are needed to implement bike lanes that encourage cycling. This study aimed to develop a methodology to predict the speed a cyclist can reach in an urban environment and to provide information for planning cycling infrastructure. The methodology consisted of obtaining GPS data on longitude, latitude, elevation, and time from a smartphone of two groups of cyclists to calculate the speeds and slopes through a model based on a recurrent short-term memory (LSTM) type neural network. The model was trained on 70% of the dataset, with the remaining 30% used for validation and varying training epochs (100, 200, 300, and 600). The effectiveness of recurrent neural networks in predicting the speed of a cyclist in an urban environment is shown with determination coefficients from 0.77 to 0.96. Average cyclist speeds ranged from 6.1 to 20.62 km/h. This provides a new methodology that offers valuable information for various applications in urban transportation and bicycle line planning. A limitation can be the variability in GPS device accuracy, which could affect speed measurements and the generalizability of the findings. Full article
Show Figures

Figure 1

16 pages, 5570 KiB  
Article
Determining the Axial Orientations of a Large Number of Flux Transfer Events Sequentially Observed by Cluster during a High-Latitude Magnetopause Crossing
by Zhaoyu Li, Tao Chen and Lei Li
Atmosphere 2024, 15(10), 1215; https://doi.org/10.3390/atmos15101215 - 11 Oct 2024
Viewed by 784
Abstract
Flux transfer events (FTEs) are magnetic structures generally believed to originate from time-varying magnetic reconnection at the Earth’s magnetopause. Despite years of research, the mechanism of how FTEs are formed through reconnection remains controversial. In various models, FTEs exhibit different global configurations. Studying [...] Read more.
Flux transfer events (FTEs) are magnetic structures generally believed to originate from time-varying magnetic reconnection at the Earth’s magnetopause. Despite years of research, the mechanism of how FTEs are formed through reconnection remains controversial. In various models, FTEs exhibit different global configurations. Studying the FTE axial orientation can provide insights into their global shape, thereby helping to distinguish the generation mechanisms. In this paper, taking advantage of the orbital characteristics of the four Cluster spacecraft, we devised a multi-spacecraft timing method to determine the axes of a total of 57 FTEs observed sequentially by Cluster during a high-latitude duskside magnetopause crossing. During the nearly five-hour observation, the interplanetary magnetic field (IMF) experienced a large rotation, leading to a substantial rotation of the magnetosheath magnetic field. The analysis results show two new features of the FTE axis that have not been reported before: (1) the axes of the FTEs gradually rotate in response to the turning of the IMF and the magnetosheath magnetic field; (2) the axes of the FTEs vary between the direction of the magnetosheath magnetic field and the direction of the reconnection X-line. These features indicate that FTEs may have a more complex global configuration than depicted by traditional FTE models. Full article
(This article belongs to the Special Issue Research and Space-Based Exploration on Space Plasma)
Show Figures

Figure 1

15 pages, 5496 KiB  
Article
A Study on the Impact of Vertical Grid Parameter Perturbations in the Regional Ocean Modeling System
by Lei Wang, Feng Zhang, Chongwei Zheng, Yaozhao Zhong, Tianxiu Lu, Shaoping Shang, Siyu Pu, Guodong Xia, Huafei Chen and Wei Leng
J. Mar. Sci. Eng. 2024, 12(9), 1675; https://doi.org/10.3390/jmse12091675 - 19 Sep 2024
Viewed by 956
Abstract
In this study, the Regional Ocean Modeling System (ROMS) is employed to construct a three-dimensional barotropic ocean model with a monodirectional upper boundary and homogeneous and steady wind covering the entire computation area. Eight perturbation experiments are designed to determine the vertical grid [...] Read more.
In this study, the Regional Ocean Modeling System (ROMS) is employed to construct a three-dimensional barotropic ocean model with a monodirectional upper boundary and homogeneous and steady wind covering the entire computation area. Eight perturbation experiments are designed to determine the vertical grid distribution difference with high resolution at the surface and bottom. Two types are considered in the model, including removing the Coriolis force (type 1) and employing a different Coriolis force (type 2). According to the experiments, the velocity of the current in type 1 yields uncertainty, and wind energy could penetrate the upper ocean and reach the abyss. The surface velocity in type 2 is fundamentally compatible with the empirical relationship constructed by Ekman, and the curved lines of the vertical distribution of horizontal currents nearly match. For type 1, the velocity is very strong from the sea surface to the bottom. When comparing type 1 and type 2 cases, the Coriolis force obstructs the wind energy transfer into the deep ocean. In addition, the European Centre for Medium-Range Weather Forecasts (ECMWF)’s global surface wind distribution indicates that the realistic ocean upper wind boundary is similar to the numerical experiment in the Pacific and Atlantic oceans, where the wind direction is along the latitude line at the equator. In order to make the experimental situation as close as possible to the real ocean, validation experiments are conducted in this study to consider the uncertainty in the current profile at the equator. The simulation results of type 1 differ significantly from the data obtained from the real ocean. This uncertainty may transfer the signal to higher latitudes, causing incorrect simulation results, especially in the critical region. Overall, this research not only makes discoveries in physical ocean theory but also guides predictive and forecasting techniques for ocean modeling. Full article
Show Figures

Figure 1

8 pages, 1101 KiB  
Article
Albinism and Blood Cell Profile: The Peculiar Case of Asinara Donkeys
by Maria Grazia Cappai, Alice Senes and Giovannantonio Pilo
Animals 2024, 14(18), 2641; https://doi.org/10.3390/ani14182641 - 11 Sep 2024
Viewed by 1512
Abstract
The complete blood cell count (CBC) was screened in a group of 15 donkeys, of which 8 were of Asinara breed (oculocutaneous albinism type 1, OCA1) and 7 of Sardo breed (gray coat). All donkeys were kept under same management and dietary conditions [...] Read more.
The complete blood cell count (CBC) was screened in a group of 15 donkeys, of which 8 were of Asinara breed (oculocutaneous albinism type 1, OCA1) and 7 of Sardo breed (gray coat). All donkeys were kept under same management and dietary conditions and underwent periodic health monitoring in the month of June 2024, at the peak of the positive photoperiod, at Mediterranean latitudes. One aliquot of whole blood, drawn from each individual into K2-EDTA containing tubes, was analyzed for the complete blood cell count through an automatic analyzer, within two hours of sampling. Data were analyzed and compared by one-way ANOVA, where the breed was an independent variable. All animals appeared clinically healthy, though mild eosinophilia was observed in Sardo donkeys. The red blood cell line showed peculiar traits for Asinara donkeys, which displayed significantly higher circulating red blood cell numbers than gray coat Sardo donkeys (RBC, 5.19 vs. 3.80 1012/mL ± 0.98 pooled-St. Dev, respectively; p = 0.017). RBCs also exhibited a smaller diameter and higher degree of anisocytosis in Asinara donkeys, along with lower hematocrit value, albeit within physiological ranges. Taken all together, such hematological profile depicts a peculiar trait of the red blood cell line in albino donkeys during the positive photoperiod. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Figure 1

22 pages, 7001 KiB  
Article
Green Flashes Observed in Optical and Infrared during an Extreme Electric Storm
by Gilbert Green and Naomi Watanabe
Appl. Sci. 2024, 14(16), 6938; https://doi.org/10.3390/app14166938 - 8 Aug 2024
Cited by 1 | Viewed by 1138
Abstract
A strong and fast-moving electrical storm occurred in the Southwest Florida region overnight, from 01:00 UTC on 17 April to 07:00 UTC on 17 April 2023. Video recordings were conducted in the region at Latitude N 26.34° and Longitude W 81.79° for 5 [...] Read more.
A strong and fast-moving electrical storm occurred in the Southwest Florida region overnight, from 01:00 UTC on 17 April to 07:00 UTC on 17 April 2023. Video recordings were conducted in the region at Latitude N 26.34° and Longitude W 81.79° for 5 h and 15 min, from 01:45 UTC to 07:00 UTC. The camera captured the flashes transforming from pinkish, violet, blue, and then emerald green in the sky twice: the first colored flash lasted 2.0 s, and the second one lasted 0.5 s. The characteristics of the flashes were analyzed using video images integrated with lightning flash data from the Geostationary Lightning Mapper (GLM). To gain deeper insights into the associated atmospheric conditions, the Advanced Baseline Imager (ABI) was also used to help understand the spectral anomalies. Both events had similarities: the same pattern of changing luminous colors in the optical images and the trajectory of the lightning discharges, showing clusters and horizontal distributions. Event 1 occurred mainly over the ocean and featured more intense storms, heavier rain, and denser, higher cloud-tops compared to Event 2, which occurred inland and involved dissipating storms. Moreover, the group energy detected in Event 1 was an order of magnitude higher than in Event 2. We attribute the wavelength of the recorded colored luminosity to varying atmospheric molecular concentrations, which ultimately contributed to the unique spectral line. In this study, we explore the correlation between colored flashes and specific atmospheric concentrations. Full article
(This article belongs to the Special Issue Lightning Electromagnetic Fields Research)
Show Figures

Figure 1

16 pages, 3732 KiB  
Technical Note
Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022
by Pengfei Hu, Gang Chen, Chunxiao Yan, Shaodong Zhang, Guotao Yang, Qiang Zhang, Wanlin Gong and Zhiqiu He
Remote Sens. 2024, 16(15), 2738; https://doi.org/10.3390/rs16152738 - 26 Jul 2024
Viewed by 973
Abstract
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low [...] Read more.
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low Doppler velocities and narrow spectral widths. These characteristics indicated that they drifted along the magnetic field lines without apparent zonal velocity to low latitudes. Combining the observations of the ICON satellite and the Hainan Digisonde, we derived the movement trails of these daytime irregularities. We attributed their generation to the rapid ascent of the F-layer due to the fluctuation of IMF Bz during the quiet geomagnetic conditions. Subsequently, the influence of the substorm on the low-latitude ionosphere was investigated and simulated. The substorm caused the intense Joule heating that enhanced the southward neutral winds, carrying the neutral compositional disturbances to low latitudes and resulting in a negative storm effect in Southeast Asia. The negative storm formed a low-density circumstance and slowed the dissipation of the daytime FAIs. These results may provide new insights into the generation of post-midnight irregularities and their relationship with daytime fossil structures. Full article
Show Figures

Figure 1

Back to TopTop