Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = lateral flow immunochromatographic assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2325 KB  
Article
Double Lateral Flow Test System for Simultaneous Immunodetection of Enantiomeric Forms of Antibiotics: An Ofloxacin Case Study
by Olga D. Hendrickson, Nadezhda A. Byzova, Anatoly V. Zherdev and Boris B. Dzantiev
Biosensors 2025, 15(12), 765; https://doi.org/10.3390/bios15120765 - 21 Nov 2025
Viewed by 679
Abstract
Antibiotic stereoisomers as components of medicines are typically characterized by different biological activities. Because pharmaceuticals can include a racemic mixture of stereoisomers, monitoring of all forms is required. One contaminant of food products, antibiotic ofloxacin (OFL), as a chiral compound, has two enantiomers—the [...] Read more.
Antibiotic stereoisomers as components of medicines are typically characterized by different biological activities. Because pharmaceuticals can include a racemic mixture of stereoisomers, monitoring of all forms is required. One contaminant of food products, antibiotic ofloxacin (OFL), as a chiral compound, has two enantiomers—the biologically active S-isomer and less active R-isomer. In this study, a sensitive immunochromatographic test system for simultaneous enantiospeсific detection of the two OFL isomers was developed for the first time. For this, polyclonal antibodies were produced, and conditions for a double lateral flow immunoassay (LFIA) were selected and optimized so that the cross-reactivity with another enantiomer was negligible. The LFIA was performed in a competitive format with gold nanoparticles as a label for secondary antibodies. The achieved LODs/cutoffs were 0.001/10 and 0.007/30 ng/mL for S-OFL and R-OFL detection, respectively; the assay procedure took only 15 min. A double LFIA was performed to detect S-OFL and R-OFL in milk with minimal sample pretreatment; the recoveries were 85–95%. The developed test system is an effective tool for the selective detection of both isomers of OFL, allowing for the avoidance of false negative results. This immunochromatographic approach can be promising for the control of other optically active food toxicants. Full article
Show Figures

Figure 1

21 pages, 549 KB  
Article
Optimisation of a One-Step Reusable Immuno-Affinity Purification Method for the Analysis and Detection of Fumonisin Mycotoxins in Foods and Feeds
by Christian Kosisochukwu Anumudu
Toxins 2025, 17(11), 538; https://doi.org/10.3390/toxins17110538 - 30 Oct 2025
Viewed by 895
Abstract
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the [...] Read more.
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the development of reliable, sensitive, and matrix–robust analytical methods remain a priority for routine monitoring in both food and feed systems. In this study, a reusable immuno-affinity purification methodology for the quantitative determination of fumonisin mycotoxins (FB1, FB2 and FB3) in foods and feeds (maize matrix) was developed. A single extraction protocol using 2% formic acid in water was employed, followed by cleanup with an immuno-affinity purification column and toxin elution by methanol/PBS (1:1, v/v). Detection and quantification of the mycotoxins was achieved by a normal phase ultra-high performance liquid chromatography coupled with electrospray ionisation triple quadrupole mass spectrometry (UHPLC/ESI-MS/MS). The chromatographic mobile phase utilised was a linear gradient of methanol/water containing 0.1% formic acid. The developed method has a limit of detection of 2.5 ng/g and a limit of quantification of 5 ng/g, all well below the European commission’s guidance values of 1000 ng/g for corn destined for human consumption and 800 ng/g for maize-based breakfast cereals and snacks. While the recovery rates of the method in this study ranged from 65–70% for the three fumonisin analogues in solutions, when tested in maize matrix, recoveries were markedly lower (~30%) due to pronounced matrix suppression. Good repeatability (standard deviation <10%) was achieved for all the fumonisin analogues. The developed method, although quick and effective in solvent systems, suffered limitations to its practical usage due to matrix suppression of the extracts derived from the immuno-affinity purification column, thus significantly reducing the application of the method in measuring fumonisin mycotoxins in food and feed samples. Overall, the method was effective in quantification of fumonisin mycotoxins in solvent solutions but not in food and feed matrices, thus necessitating further optimisation for practical usage. The performance of the developed method was compared to a commercial lateral flow immunochromatographic assay which proved to be better than the developed method in the quantification of toxins in food matrices, as the commercial lateral flow immunochromatographic assay outperformed the developed method in maize matrices. These findings highlight the need for matrix-based validation and further refinement of antibody stability to ensure robust application in regulatory monitoring of fumonisins using immunoaffinity purification methods. Full article
Show Figures

Figure 1

13 pages, 574 KB  
Article
Comparison of Two Lateral Flow Immunochromatographic Assays for Rapid Detection of KPC, NDM, IMP, VIM and OXA-48 Carbapenemases in Gram-Negatives
by Clara Morales Dominguez, Saoussen Oueslati, Nahed Al Laham, Réva Nermont, Hervé Volland and Thierry Naas
Microorganisms 2025, 13(9), 2140; https://doi.org/10.3390/microorganisms13092140 - 12 Sep 2025
Viewed by 1256
Abstract
The spread of carbapenemase-producing Gram-negative bacteria poses a significant clinical challenge due to their association with severe Difficult-to-Treat nosocomial infections, as available therapies are drastically reduced. Rapid and accurate detection of carbapenemase-producing Gram-negative bacteria is critical for effective patient management, guiding appropriate antibiotic [...] Read more.
The spread of carbapenemase-producing Gram-negative bacteria poses a significant clinical challenge due to their association with severe Difficult-to-Treat nosocomial infections, as available therapies are drastically reduced. Rapid and accurate detection of carbapenemase-producing Gram-negative bacteria is critical for effective patient management, guiding appropriate antibiotic therapy, and implementing infection control measures to limit their dissemination within healthcare settings. Lateral flow immunoassays that detect the five main carbapenemases have become cornerstones in the fight against carbapenemase-producing Gram-negative bacteria. Carbapenemases evolve in response to antibiotic exposure, and therefore regular evaluation of these lateral flow immunoassays is crucial. Here, we have evaluated a novel assay, the KINVO assay (Medomics Medical Technology) and compared it to the Gold Standard of LFIAs for carbapenemase detection, the NG-TEST CARBA 5 assay (NG-Biotech) on a large panel of carbapenemase variants. The comparison between the two assays highlighted that both share key advantages such as rapidity and simplicity. However, NG-Test CARBA 5 demonstrated superior performance overall, particularly in accurately detecting IMP-type carbapenemases and the OXA-48 variant OXA-505. In contrast, the KINVO assay was more effective at detecting a broader range of KPC variants, including some that have lost carbapenem-hydrolyzing activity but gained resistance to ceftazidime/avibactam. If we consider these variants no longer as carbapenemases, and thus that they should not be detected, the NG-Test CARBA 5 performed better for KPC carbapenemase detection. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 2683 KB  
Article
Aptamer-CRISPR/Cas12a-Based Lateral Flow Technique for Visualized Rapid Detection of Endogenous Damage Factor Neu5Gc in Red Meat
by Yuxi Guo, Honglin Ren, Han Wang, Xuepeng Duan, Shuaihao Qi, Xi Yang, Chunyi Shangguan, Haosong Li, Yansong Li, Pan Hu, Qiang Lu and Shiying Lu
Foods 2025, 14(16), 2879; https://doi.org/10.3390/foods14162879 - 19 Aug 2025
Cited by 1 | Viewed by 1538
Abstract
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response [...] Read more.
The N-glycolylneuraminic acid (Neu5Gc), a major salivary acid molecule found on the cell surface of animals such as pigs, cows, and sheep, can be metabolically incorporated into the body through consumption of animal-derived foods like red meat. This leads to an immune response and chronic inflammation in individuals who do not naturally produce Neu5Gc, including humans and poultry, further increasing the risk of cancer. The trans-cleavage activity of Cas12a is activated by the recognition of the target aptamer by the crRNA, resulting in the cleavage of the dual-labeled probe. By combining this with immunochromatographic techniques, we established a chromatographic test strip assay that allows immediate on-site detection of Neu5Gc contamination in non-red meat samples devoid of Neu5Gc. Further optimization enabled specific detection within 25 min with a minimum detectable limit of 10 ng/mL. These analyses successfully detected the spiked samples and actual samples containing Neu5Gc. The developed lateral flow test strips based on aptamer-Cas12a can be utilized for detecting Neu5Gc contamination in non-red meat food products, animal bioproducts, and poultry feeds. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

20 pages, 869 KB  
Article
Clinical Impact of New Delhi Metallo-Beta-Lactamase-Producing Enterobacterales in Critically Ill Patients: Are We Ready to Face the Challenge?
by Giorgia Montrucchio, Silvia Corcione, Lara Rodigari, Denisa Barganou, Chiara Risso, Riccardo Traversi, Gabriele Sales, Marco Ellena, Andrea Costamagna, Nour Shbaklo, Cecilia Grosso, Carlo Silvestre, Anna Chiara Trompeo, Vito Fanelli, Antonio Curtoni, Cristina Costa, Francesco Giuseppe De Rosa and Luca Brazzi
J. Clin. Med. 2025, 14(16), 5688; https://doi.org/10.3390/jcm14165688 - 12 Aug 2025
Viewed by 1390
Abstract
Background: Carbapenem-resistant Enterobacterales infections are frequent in critically ill patients. Outbreaks caused by carbapenemase-producing Enterobacterales, in particular the New Delhi Metallo-beta-lactamase (NDM)-type carbapenemase-producing phenotype, are increasing in Italy. Unfortunately, the clinical impact of this new microorganism is still being defined, as well [...] Read more.
Background: Carbapenem-resistant Enterobacterales infections are frequent in critically ill patients. Outbreaks caused by carbapenemase-producing Enterobacterales, in particular the New Delhi Metallo-beta-lactamase (NDM)-type carbapenemase-producing phenotype, are increasing in Italy. Unfortunately, the clinical impact of this new microorganism is still being defined, as well as the correlation between colonization and invasive infections. The aim of the study is to analyze factors related to the development of NDM infections in colonized patients and to evaluate their impact on patients’ outcome in high-complexity ICUs. Methods: All patients admitted to the General and Cardiac ICUs of ‘Città della Salute e della Scienza’ University Hospital in Turin (Italy) between January and August 2023 were enrolled. Microorganisms were examined by lateral flow immunochromatographic assays or molecular assays on weekly surveillance or clinically requested cultures. Antimicrobial susceptibility was determined by broth microdilution methods and interpreted according to EUCAST breakpoints. Results: Out of a total of 915 patients, 46 (5%) were positive for NDM-producing Enterobacterales and, among them, 13 (28%) developed an invasive infection. All patients were critical (SAPS II 40+/−13). The median times between ICU admission and colonization or infection were 6 and 16 days, respectively. Significant disparities emerged between colonized and infected patients regarding days of mechanical ventilation (1 vs. 28), ICU (7 vs. 39 days), and in-hospital (21 vs. 71 days) length of stay. Renal replacement treatment (OR 8.2461, p = 0.0173, 95% CI [1.3636–65.9114]) and surgery (OR 22.8747, p = 0.0149, CI95% [1.5986–1447.743]) seemed to impact the risk of developing infection. Six patients with invasive infection were treated with Cefiderocol and five with Ceftazidime/Avibactam and Aztreonam. In absence of early identification and appropriate treatment, patients may be at increased risk of colonization spread and potentially worse clinical outcomes. Conclusions: Early identification of the carbapenemase type is clinically relevant in critically ill patients with confirmed or suspected infection, as NDM production necessitates the use of specific agents for effective treatment. Full article
(This article belongs to the Special Issue Key Advances in the Treatment of the Critically Ill: 3rd Edition)
Show Figures

Figure 1

10 pages, 1491 KB  
Article
Development of a Point-of-Care Immunochromatographic Lateral Flow Strip Assay for the Detection of Nipah and Hendra Viruses
by Jianjun Jia, Wenjun Zhu, Guodong Liu, Sandra Diederich, Bradley Pickering, Logan Banadyga and Ming Yang
Viruses 2025, 17(7), 1021; https://doi.org/10.3390/v17071021 - 21 Jul 2025
Cited by 1 | Viewed by 1152
Abstract
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases [...] Read more.
Nipah virus (NiV) and Hendra virus (HeV), which both belong to the genus henipavirus, are zoonotic pathogens that cause severe systemic, neurological, and/or respiratory disease in humans and a variety of mammals. Therefore, monitoring viral prevalence in natural reservoirs and rapidly diagnosing cases of henipavirus infection are critical to limiting the spread of these viruses. Current laboratory methods for detecting NiV and HeV include virus isolation, reverse transcription quantitative real-time PCR (RT-qPCR), and antigen detection via an enzyme-linked immunosorbent assay (ELISA), all of which require highly trained personnel and specialized equipment. Here, we describe the development of a point-of-care customized immunochromatographic lateral flow (ILF) assay that uses recombinant human ephrin B2 as a capture ligand on the test line and a NiV-specific monoclonal antibody (mAb) on the conjugate pad to detect NiV and HeV. The ILF assay detects NiV and HeV with a diagnostic specificity of 94.4% and has no cross-reactivity with other viruses. This rapid test may be suitable for field testing and in countries with limited laboratory resources. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

20 pages, 4875 KB  
Article
From Conjugation to Detection: Development of Lateral Flow Assay for Zearalenone
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
ChemEngineering 2025, 9(3), 54; https://doi.org/10.3390/chemengineering9030054 - 26 May 2025
Viewed by 2785
Abstract
The development of rapid, sensitive and cost-effective lateral flow assays is crucial for the detection of mycotoxins, ideally at the point-of-care level. This study presents the design and optimization of a competitive lateral flow assay based on gold nanoparticles (AuNPs) for the detection [...] Read more.
The development of rapid, sensitive and cost-effective lateral flow assays is crucial for the detection of mycotoxins, ideally at the point-of-care level. This study presents the design and optimization of a competitive lateral flow assay based on gold nanoparticles (AuNPs) for the detection of zearalenone in food samples. Beginning with the synthesis and functionalization of gold nanoparticles, it proceeds to compare the immobilization of antibodies using chemical conjugation and physical adsorption binding strategies, upon optimizing parameters including the pH, antibody concentration and blocking conditions to enhance the stability of the prepared bioconjugates. The bioconjugates are characterized using UV–visible absorption spectroscopy and dynamic light scattering to monitor changes in the spectra and hydrodynamic size of AuNPs upon the addition of antibodies. The assessment of these bioconjugates is based on their ability to bind and manifest a color, developed due to nanoparticle binding with the test zone on the strip with the toxin–protein conjugate. The lateral flow immunochromatographic assay (LFIA) strips are then prepared by dispensing a control line (IgG) and test line (toxin–protein conjugate) on a nitrocellulose membrane using a lateral flow strip dispenser. The sensitivity of the LFIA strips is evaluated after standardizing the conditions by varying the concentration of zearalenone in the spiked samples and optimizing the running buffer solution. The limit of detection and limit of quantification under optimized conditions are determined to be 0.7 ng/mL and 2.37 ng for zearalenone-spiked samples. Furthermore, the mean pixel intensity and RGB values are plotted against the concentration of zearalenone, which can be used in a colorimetric smartphone-based application for the quantification of the amount of mycotoxin in the sample. Full article
Show Figures

Figure 1

23 pages, 3203 KB  
Article
Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label
by Olga D. Hendrickson, Nadezhda A. Byzova, Vasily G. Panferov, Elena A. Zvereva, Shen Xing, Anatoly V. Zherdev, Juewen Liu, Hongtao Lei and Boris B. Dzantiev
Biosensors 2024, 14(12), 598; https://doi.org/10.3390/bios14120598 - 6 Dec 2024
Cited by 8 | Viewed by 2153
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay [...] Read more.
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such “chemical enhancement” allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1–114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors for Detection)
Show Figures

Figure 1

12 pages, 1883 KB  
Article
Mycotoxin Prevalence and Microbiological Characteristics of Locally Produced Elected Freekeh Products
by Samer Mudalal
Toxins 2024, 16(11), 499; https://doi.org/10.3390/toxins16110499 - 20 Nov 2024
Cited by 1 | Viewed by 1601
Abstract
Freekeh is produced from roasted, immature wheat grains. It is very popular in Middle Eastern and North African nations. This study aimed to evaluate the occurrence of different types of mycotoxins, physical impurities, and microbiological contamination in local freekeh products. Lateral flow competitive [...] Read more.
Freekeh is produced from roasted, immature wheat grains. It is very popular in Middle Eastern and North African nations. This study aimed to evaluate the occurrence of different types of mycotoxins, physical impurities, and microbiological contamination in local freekeh products. Lateral flow competitive immunochromatographic assay was used to evaluate the occurrence of mycotoxins. It was found that physical impurities for some tested products exceeded the permitted limit (>2% of straw and foreign grains). Moreover, our findings showed that total aerobic bacterial and fungal counts in Freekeh products varied from 1 to 4 logs and from 1.39 to 4.3 logs, respectively. The incidence ranges of aflatoxins and ochratoxin were 3.17–3.33 ppb and 4.63–8.17 ppb, respectively. The levels of deoxynivalenol (DON) and T2/HT2 (trichothecene T2 and deacetylated form HT2) were less than the limit of detection. More than 78% of Freekeh samples tested had aflatoxin and ochratoxin contents higher than the limit permitted by the European Commission (4 and 5 ppb). In conclusion, gaining knowledge about the quality, safety, and labeling of freekeh products can help increase their commercial potential. Further investigations are needed to evaluate the factors affecting contamination levels within the freekeh supply chain. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

11 pages, 4423 KB  
Article
Proposal of a Rapid Detection System Using Image Analysis for ELISA with an Autonomous Centrifugal Microfluidic System
by Shunya Okamoto, Yuto Mori, Shota Nakamura, Yusuke Kanai, Yoshiaki Ukita, Moeto Nagai and Takayuki Shibata
Micromachines 2024, 15(11), 1387; https://doi.org/10.3390/mi15111387 - 16 Nov 2024
Cited by 1 | Viewed by 1660
Abstract
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be [...] Read more.
In this study, with the aim of adapting an enzyme-linked immunosorbent assay (ELISA) system for point-of-care testing (POCT), we propose an image analysis method for ELISAs using a centrifugal microfluidic device that automatically executes the assay. The developed image analysis method can be used to quantify the color development reaction on a TMB (3,3′,5,5′-tetramethylbenzidine) substrate. In a conventional ELISA, reaction stopping reagents are required at the end of the TMB reaction. In contrast, the developed image analysis method can analyze color in the color-developing reaction without a reaction stopping reagent. This contributes to a reduction in total assay time. The microfluidic devices used in this study could execute reagent control for ELISAs by steady rotation. In the demonstration of the assay and image analysis, a calibration curve for mouse IgG detection was successfully prepared, and it was confirmed that the image analysis method had the same performance as the conventional analysis method. Moreover, the changes in the amount of color over time confirmed that a calibration curve equal to the endpoint analysis was obtained within 2 min from the start of the TMB reaction. As the assay time before the TMB reaction was approximately 7.5 min, the developed ELISA system could detect TMB in just 10 min. In conventional methods using a plate reader, the assay required a time of 90 min for manual handling using microwell plates, and in the case of using automatic microfluidic devices, 30 min were required. The time of 10 min realized by this proposed method is equal to the time required for detection in an immunochromatographic assay with a lateral flow assay; therefore, it is expected that ELISAs can be performed sufficiently to adapt to POCT. Full article
(This article belongs to the Section B4: Point-of-Care Devices)
Show Figures

Figure 1

20 pages, 3768 KB  
Article
A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats
by Manyu Zhang, Qi Liu, Ruifang Li, Wei Jiang, Hongjin Zhao, Wenwei Sheng, Luming Xia, Zengqiang Li, Qing Sun, Jingying Du, Lei Lei and Quan Wang
Pathogens 2024, 13(11), 931; https://doi.org/10.3390/pathogens13110931 - 25 Oct 2024
Viewed by 1741
Abstract
Toxoplasma gondii (T. gondii) is an important zoonotic pathogen which induces both acute and chronic toxoplasmosis. Timely diagnosis of T. gondii is crucial for effective disease management. Here, we present a pioneering approach using europium (III)-chelated nanoparticles (EuNPs) in a rapid [...] Read more.
Toxoplasma gondii (T. gondii) is an important zoonotic pathogen which induces both acute and chronic toxoplasmosis. Timely diagnosis of T. gondii is crucial for effective disease management. Here, we present a pioneering approach using europium (III)-chelated nanoparticles (EuNPs) in a rapid lateral flow immunochromatographic test strip (ICTS) for detecting T. gondii antibodies in serum samples. By conjugating EuNPs with Staphylococcus aureus protein A, we efficiently captured T. gondii-specific antibodies, which bound to T. gondii antigens on the test line (T-line), generating a distinct fluorescent signal. Employing this novel method, we conducted an extensive epidemiological investigation of T. gondii infections among dogs and cats in Shanghai, China. This innovative ICTS allows for rapid results within 25 min, which include a qualitative result through naked-eye observation under an ultraviolet lamp and a quantitative one derived using a strip reader. With a detection limit of 1:6400 for dog positive serum and no cross-reactivity with other canine and feline pathogens, the EuNPs-ICTS demonstrated excellent consistency with standard enzyme-linked immunosorbent assay results for dogs (κ = 0.91) and cats (κ = 0.92). In addition, 20.38% of 996 dog serum samples and 14.18% of 416 cat serum samples revealed T. gondii antibodies, highlighting the efficacy of this approach. Our study presents a rapid, sensitive, specific, and reproducible EuNPs-ICTS, serving as a promising tool for on-the-spot diagnosis of T. gondii infections in dogs and cats. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Graphical abstract

18 pages, 3372 KB  
Review
The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review
by Peng Wang, Jinyan Li, Lingling Guo, Jiaxun Li, Feng He, Haitao Zhang and Hai Chi
Chemosensors 2024, 12(6), 88; https://doi.org/10.3390/chemosensors12060088 - 24 May 2024
Cited by 17 | Viewed by 5920
Abstract
Food safety inspections are an essential aspect of food safety monitoring. Rapid, accurate, and low-cost food analysis can considerably increase the efficiency of food safety inspections. The lateral flow immunochromatographic assay (LFIA) technique has recently grown in popularity due to its ease of [...] Read more.
Food safety inspections are an essential aspect of food safety monitoring. Rapid, accurate, and low-cost food analysis can considerably increase the efficiency of food safety inspections. The lateral flow immunochromatographic assay (LFIA) technique has recently grown in popularity due to its ease of use and high efficiency. It is currently commonly utilized in food inspection. In this review, we briefly introduce the principle and classification of LFIA, critically discuss the recent application status of LFIA in food contaminantion detection, and finally propose that artificial intelligence and information technology will further advance the development of LFIA in the field of food safety monitoring. Full article
Show Figures

Figure 1

14 pages, 921 KB  
Article
Characteristics and Immunogenicity of Gluten Peptides in Enzyme-Treated and -Untreated Beers for Celiac Patients
by Anneleen Decloedt, Hellen Watson, Godelieve Gheysen and Anita Van Landschoot
Fermentation 2024, 10(6), 277; https://doi.org/10.3390/fermentation10060277 - 23 May 2024
Cited by 5 | Viewed by 2348
Abstract
The peptidomes from the literature of 24 prolyl-endopeptidase-treated beers during fermentation, declared gluten-free, and 13 untreated beers have been characterised and subjected to an extensive study to investigate their safety for celiac patients. The analysis contains 1996 gluten peptides, ascribed to the treated [...] Read more.
The peptidomes from the literature of 24 prolyl-endopeptidase-treated beers during fermentation, declared gluten-free, and 13 untreated beers have been characterised and subjected to an extensive study to investigate their safety for celiac patients. The analysis contains 1996 gluten peptides, ascribed to the treated beers, and 1804 to the untreated beers. The prolyl-endopeptidase-untreated malt beers are hazardous for celiac patients. Peptides of most of these beers showed matches with complete celiac immunogenic motifs, and an additional 28% of the peptides have partial matches with complete immunogenic motifs. On the other hand, after the enzyme treatment during fermentation no celiac hazardous gluten peptides are identified in the treated beers. Due to partial matches with complete celiac immunogenic motifs, 11% potentially hazardous gluten peptides are still identified in the treated beers. Only a maximum of 17% of these peptides can be detected by ELISA analysis. A mass spectrometry analysis or the recently developed method based on G12/A1 monoclonal antibody lateral flow immunochromatographic assay seems necessary to thoroughly reveal the potential risk of the treated beers. The actual immune response of treated beer, described in the literature by the response of the serum antibodies of celiac disease (CD)-active patients and by in vitro immune response, could not be related to the presence of known (partial) CD-immunogenic motifs in the gluten peptides. Full article
(This article belongs to the Special Issue Advances in Beverages, Food, Yeast and Brewing Research, 3rd Edition)
Show Figures

Figure 1

24 pages, 2812 KB  
Review
Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples
by Xinyi Zhao, Abhijnan Bhat, Christine O’Connor, James Curtin, Baljit Singh and Furong Tian
Nanomaterials 2024, 14(10), 855; https://doi.org/10.3390/nano14100855 - 14 May 2024
Cited by 12 | Viewed by 5420
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. [...] Read more.
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013–2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection. Full article
Show Figures

Graphical abstract

11 pages, 3480 KB  
Article
Rapid Detection of Measles Virus Using Reverse Transcriptase/Recombinase Polymerase Amplification Coupled with CRISPR/Cas12a and a Lateral Flow Detection: A Proof-of-Concept Study
by Elena Pinchon, Steven Henry, Fanny Leon, Chantal Fournier-Wirth, Vincent Foulongne and Jean-François Cantaloube
Diagnostics 2024, 14(5), 517; https://doi.org/10.3390/diagnostics14050517 - 29 Feb 2024
Cited by 6 | Viewed by 3240
Abstract
The measles virus is highly contagious, and efforts to simplify its diagnosis are essential. A reverse transcriptase/recombinase polymerase amplification assay coupled with CRISPR/Cas12a and an immunochromatographic lateral flow detection (RT-RPA-CRISPR-LFD) was developed for the simple visual detection of measles virus. The assay was [...] Read more.
The measles virus is highly contagious, and efforts to simplify its diagnosis are essential. A reverse transcriptase/recombinase polymerase amplification assay coupled with CRISPR/Cas12a and an immunochromatographic lateral flow detection (RT-RPA-CRISPR-LFD) was developed for the simple visual detection of measles virus. The assay was performed in less than 1 h at an optimal temperature of 42 °C. The detection limit of the assay was 31 copies of an RNA standard in the reaction tube. The diagnostic performances were evaluated on a panel of 27 measles virus RT-PCR-positive samples alongside 29 measles virus negative saliva samples. The sensitivity and specificity were 96% (95% CI, 81–99%) and 100% (95% CI, 88–100%), respectively, corresponding to an accuracy of 98% (95% CI, 94–100%; p < 0.0001). This method will open new perspectives in the development of the point-of-care testing diagnosis of measles. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

Back to TopTop