Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = late miocene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 22195 KiB  
Article
Investigating Attributes of Oil Source Rocks by Combining Geochemical Approaches and Basin Modelling (Central Gulf of Suez, Egypt)
by Moataz Barakat, Mohamed Reda, Dimitra E. Gamvroula, Robert Ondrak and Dimitrios E. Alexakis
Resources 2025, 14(7), 114; https://doi.org/10.3390/resources14070114 - 16 Jul 2025
Viewed by 640
Abstract
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and [...] Read more.
The present study focused on the Upper Cretaceous to Middle Miocene sequence in the Central Gulf of Suez, Egypt. The Upper Cretaceous to Middle Miocene sequence in the October field is thick and deeply buried, consisting mainly of brown limestone, chalk limestone, and reefal limestone intercalated with clastic shale. This study integrated various datasets, including total organic carbon (TOC), Rock-Eval pyrolysis, visual kerogen examination, vitrinite reflectance (%Ro), and bottom-hole temperature measurements. The main objective of this study is to delineate the source rock characteristics of these strata regarding organic richness, thermal maturity, kerogen type, timing of hydrocarbon transformation and generation. The Upper Cretaceous Brown Limestone Formation is represented by 135 samples from four wells and is considered to be a fair to excellent source rock, primarily containing type I and II kerogen. It is immature to early mature, generating oil with a low to intermediate level of hydrocarbon conversion. The Eocene Thebes Formation is represented by 105 samples from six wells and is considered to be a good to fair oil source rock with some potential for gas, primarily containing type II and II/III kerogen. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. The Middle Miocene Lower Rudeis Formation is represented by 8 samples from two wells and considered to be a fair but immature source rock, primarily containing type III kerogen with a low level of conversion representing a potential source for gas. The Middle Miocene Belayim Formation is represented by 29 samples from three wells and is considered to be a poor to good source rock, primarily containing kerogen type II and III. Most samples are immature with a low level of hydrocarbon conversion while few are mature having an intermediate degree of hydrocarbon conversion. 1D basin model A-5 well shows that the Upper Cretaceous Brown Limestone source rock entered the early oil window at 39 Ma, progressed to the main oil window by 13 Ma, and remains in this stage today. The Eocene Thebes source rock began generating hydrocarbons at 21.3 Ma, advanced to the main oil window at 11 Ma, and has been in the late oil window since 1.6 Ma. The Middle Miocene Lower Rudeis source rock entered the early oil window at 12.6 Ma, transitioned to the main oil window at 5.7 Ma, where it remains active. In contrast, the Middle Miocene Belayim source rock has not yet reached the early oil window and remains immature, with values ranging from 0.00 to 0.55 % Ro. The transformation ratio plot shows that the Brown Limestone Formation began transforming into the Upper Cretaceous (73 Ma), reaching 29.84% by the Miocene (14.3 Ma). The Thebes Formation initiated transformation in the Late Eocene (52.3 Ma) and reached 6.42% by 16.4 Ma. The Lower Rudeis Formation began in the Middle Miocene (18.7 Ma), reaching 3.59% by 9.2 Ma. The Belayim Formation started its transformation at 11.2 Ma, reaching 0.63% by 6.8 Ma. Full article
Show Figures

Figure 1

24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 451
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

19 pages, 2647 KiB  
Article
Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia
by Jamel Ayari, Maurizio Barbieri, Tiziano Boschetti, Ahmed Sellami, Paolo Ballirano and Abdelkarim Charef
Geosciences 2025, 15(7), 269; https://doi.org/10.3390/geosciences15070269 - 12 Jul 2025
Viewed by 472
Abstract
The Sidi Aissa Pb-Zn-(Ag) District, located within the Nappe Zone of northern Tunisia, has been reinterpreted as a typical intermediate-sulfidation (IS) epithermal mineralization system based on field observations and lithogeochemical analyses. Previously described as vein-style Pb-Zn deposits, the local geological framework is dominated [...] Read more.
The Sidi Aissa Pb-Zn-(Ag) District, located within the Nappe Zone of northern Tunisia, has been reinterpreted as a typical intermediate-sulfidation (IS) epithermal mineralization system based on field observations and lithogeochemical analyses. Previously described as vein-style Pb-Zn deposits, the local geological framework is dominated by extensional normal faults forming half-grabens. These faults facilitated the exhumation of deep Triassic autochthonous rocks and the extrusion of 8-Ma rhyodacites and Messinian basalts. These structures, functioning as pathways for magmatic-hydrothermal fluids, facilitated the upward migration of acidic fluids, which interacted with the surrounding wall rocks, forming a subsurface alteration zone. The mineralization, shaped by Miocene extensional tectonics and magmatic activity, occurred in three stages: early quartz-dominated veins, an intermediate barite-rich phase, and late-stage supergene oxidation. Hydrothermal alteration, characterized by silicification, argillic, and propylitic zones, is closely associated with the deposition of base metals (Pb, Zn) and silver. The mineral assemblage, including barite, galena, sphalerite, and quartz, reflects dynamic processes such as fluid boiling, mixing, and pressure changes. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

17 pages, 9577 KiB  
Entry
Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes
by Enzo Mantovani, Marcello Viti, Caterina Tamburelli and Daniele Babbucci
Encyclopedia 2025, 5(3), 97; https://doi.org/10.3390/encyclopedia5030097 - 7 Jul 2025
Viewed by 449
Definition
Tectonic activity in the Mediterranean region has been driven by the convergence of the confining plates (Nubia, Arabia and Eurasia). This convergence has been accommodated by the consumption of the oceanic domains that were present in the late Oligocene. It is suggested that [...] Read more.
Tectonic activity in the Mediterranean region has been driven by the convergence of the confining plates (Nubia, Arabia and Eurasia). This convergence has been accommodated by the consumption of the oceanic domains that were present in the late Oligocene. It is suggested that this process has been enabled by the lateral escape of orogenic belts in response to constrictional contexts. Where this condition was not present, subduction did not occur. This interpretation can plausibly and coherently account for the very complex pattern of tectonic processes in the whole area since the early Miocene. It is also suggested, by providing some examples, that the geodynamic context proposed here might help us to recognize the connection between the ongoing tectonic processes and the spatio-temporal distribution of past major earthquakes. A discussion is then reported about the incompatibilities of the main alternative geodynamic interpretation (slab pull) with the observed deformation pattern. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

34 pages, 10609 KiB  
Article
Mineralogy and Fluid Inclusion Constraints on the Genesis of the Recently Discovered Ag-(Ni-Co-Sb-As-Hg ± Bi) Vein Ore Shoot Mineralization in the Aouli Pb-Zn District (Upper Moulouya, Morocco)
by Khadra Zaid, Mohammed Bouabdellah, Gilles Levresse, Mohamed Idbaroud, Erik Melchiorre, Ryan Mathur, Michel Jébrak, Adriana Potra, Johan Yans, Max Frenzel, Valby van Schijndel, Lakhlifa Benaissi and Said Belkacim
Minerals 2025, 15(7), 669; https://doi.org/10.3390/min15070669 - 22 Jun 2025
Viewed by 819
Abstract
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments [...] Read more.
Unusual Ag-(Ni-Co-Sb-As-Hg ± Bi)-bearing fault-fill vein ore shoot mineralization set in a gangue of quartz, fluorite, and barite has been identified in Morocco’s Aouli deposit. The Paleozoic host rocks consist of a succession of Cambrian to Ordovician-aged folded and low- to medium-grade metasediments and metavolcaniclastic rocks with tuff interbeds and amphibolite sills, locally intruded by late Visean calc-alkaline to alkaline granitoid intrusions. Paragenetic relationships indicate that the sequence of ore precipitation comprises a succession of Ni-Co-Fe arsenides, followed by Pb-Sb-As-Ag-Hg sulfarsenides/sulfosalts and then Zn-Pb-Fe sulfides. Results indicate that the ore shoot mineralization formed from episodic stages of fracturing and subsequent fluid migration. Precipitation of ore phases is thought to have occurred as a result of isothermal mixing and subsequent fluid–rock interactions. The timing of mineralization is thought to have occurred between Late Triassic and Late Miocene, coinciding with major crustal extension and Middle Jurassic–Upper Cretaceous alkaline magmatism. Thermal convection and seismic pumping are proposed as the main driving force for the large-scale migration of the ore-forming brines. This research bears directly upon the potential for new exploration targets in Pb-Zn ± fluorite ± barite deposits hosted in Variscan inliers throughout North Africa. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Graphical abstract

18 pages, 3587 KiB  
Article
Phylogeography and Population Demography of Parrotia subaequalis, a Hamamelidaceous Tertiary Relict ‘Living Fossil’ Tree Endemic to East Asia Refugia: Implications from Molecular Data and Ecological Niche Modeling
by Yunyan Zhang, Zhiyuan Li, Qixun Chen, Yahong Wang, Shuang Wang, Guozheng Wang, Pan Li, Hong Liu, Pengfu Li, Chi Xu and Zhongsheng Wang
Plants 2025, 14(12), 1754; https://doi.org/10.3390/plants14121754 - 7 Jun 2025
Viewed by 754
Abstract
The diverse topography and mild monsoon climate in East Asia are considered to be important drivers for the long-term ecological success of the Tertiary relict ‘living fossil’ plants during the glacial/interglacial cycles. Here we investigated the phylogeographic pattern and demographic history of a [...] Read more.
The diverse topography and mild monsoon climate in East Asia are considered to be important drivers for the long-term ecological success of the Tertiary relict ‘living fossil’ plants during the glacial/interglacial cycles. Here we investigated the phylogeographic pattern and demographic history of a hamamelidaceous Tertiary relict ‘living fossil’ tree (Parrotia subaequalis) endemic to the subtropical forests of eastern China, employing molecular data and ecological niche modeling. In the long evolutionary history, P. subaequalis has accumulated a high haplotype diversity. Weak gene flow by seeds, geographical isolation, and heterogeneous habitats have led to a relatively high level of genetic differentiation in this species. The divergence time of two cpDNA lineages of P. subaequalis was dated to the late Miocene of the Tertiary period, and the diversification of haplotypes occurred in the Quaternary period. Paleo-distribution modeling suggested that P. subaequalis followed the pattern of ‘glacial expansion-interglacial compression’. The Dabie Mountain and Yellow Mountain in Anhui Province and the Tianmu Mountain and Simin Mountain in Zhejiang Province were inferred to be multiple glacial refugia of P. subaequalis in East Asia and have been proposed to be protected as ‘Management Units’. Collectively, our study offers insights into the plant evolution and adaptation of P. subaequalis and other Tertiary relict ‘living fossil’ trees endemic to East Asia refugia. Full article
(This article belongs to the Special Issue Origin and Evolution of the East Asian Flora (EAF)—2nd Edition)
Show Figures

Figure 1

21 pages, 3035 KiB  
Article
Samotherium boissieri from the Late Miocene of Southern Italy
by Antonella Cinzia Marra
Life 2025, 15(6), 911; https://doi.org/10.3390/life15060911 - 4 Jun 2025
Viewed by 527
Abstract
Samotherium boissieri is a giraffid typical of the Pikermian biome, well documented at Samos and occurring in the late Miocene of the Greco-Iranian paleobioprovince. The species has been also recorded at Cessaniti in Calabria (Southern Italy), in a faunal association including other Pikermian [...] Read more.
Samotherium boissieri is a giraffid typical of the Pikermian biome, well documented at Samos and occurring in the late Miocene of the Greco-Iranian paleobioprovince. The species has been also recorded at Cessaniti in Calabria (Southern Italy), in a faunal association including other Pikermian species as well as species of Eurasian and African affinity. In this paper, Calabrian specimens are studied and compared to Samos ones. Morphological and biometrical data fall within the variability of Samotherium boissieri and clearly differ from the co-occurring giraffid, Bohlinia attica. Two partially complete forelimbs, probably referring to the same individual, permit the first full description of the manus bones for the species, carpals in particular. The occurrence of Samotherium boissieri in Calabria contributes to the wide discussion on paleobiogeographical assessments of the central Mediterranean in the late Miocene, still not well-understood. Full article
(This article belongs to the Special Issue Back to Basics in Palaeontology)
Show Figures

Figure 1

27 pages, 49480 KiB  
Article
Analyzing Recent Tectonic Activity Along the Karak Wadi Al Fayha Fault System Using Seismic, Earthquake, and Remote Sensing Data
by Mu’ayyad Al Hseinat, Malek AlZidaneen and Ghassan Sweidan
Geosciences 2025, 15(5), 177; https://doi.org/10.3390/geosciences15050177 - 14 May 2025
Viewed by 1123
Abstract
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been [...] Read more.
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been previously mapped using field observations, gravity, magnetic, and reflection seismic methods. However, these approaches lacked the vertical resolution necessary to characterize its shallow structure, leaving its influence on recent deposits and surface topography poorly understood. This study employs reflection seismic sections integrated with a Digital Elevation Model to refine terrain analysis and enhance fault mechanism solutions for determining the regional stress field pattern. Our results provide compelling evidence of the KWF’s upward propagation into the surface, as demonstrated by deformation of the uppermost Cretaceous and Cenozoic successions, distinct geomorphic features in the Digital Elevation Model, alignment of earthquake epicenters along the fault, and active landslides associated with its movement. We suggest that the reactivation of the KWF has been influenced by changing stress fields from the Late Cretaceous (Turonian) to the present. The Northwestern Arabian plate has undergone multiple tectonic stress transitions, including WNW–ESE compression associated with the Syrian Arc Fold-Belt system (Turonian–Plio-Pleistocene) and subsequent NNE–SSW extension linked to Red Sea rifting (Neogene–present). The analysis of fault mechanism solutions suggests that the latest fault movements result from the continued activity of the Irbid Rift event (Eocene) and the Dead Sea Transform Fault since the Miocene. Full article
(This article belongs to the Special Issue Applied Geophysics for Geohazards Investigations)
Show Figures

Figure 1

44 pages, 19223 KiB  
Article
Fluid Inclusion Evidence of Deep-Sourced Volatiles and Hydrocarbons Hosted in the F–Ba-Rich MVT Deposit Along the Zaghouan Fault (NE Tunisia)
by Chaima Somrani, Fouad Souissi, Giovanni De Giudici, Alexandra Guedes and Silvio Ferrero
Minerals 2025, 15(5), 489; https://doi.org/10.3390/min15050489 - 6 May 2025
Viewed by 529
Abstract
The Hammam–Zriba F–Ba (Zn–Pb) stratabound deposit is located within the Zaghouan Fluorite Province (ZFP), which is the most important mineral sub-province in NE Tunisia, with several CaF2 deposits occurring mainly along the Zaghouan Fault and corresponding to an F-rich MVT mineral system [...] Read more.
The Hammam–Zriba F–Ba (Zn–Pb) stratabound deposit is located within the Zaghouan Fluorite Province (ZFP), which is the most important mineral sub-province in NE Tunisia, with several CaF2 deposits occurring mainly along the Zaghouan Fault and corresponding to an F-rich MVT mineral system developed along the unconformity surface between the uppermost Jurassic limestones and the late Cretaceous layers. Petrographic analysis, microthermometry, and Raman spectroscopy applied to fluid inclusions in fluorite revealed various types of inclusions containing brines, oil, CO2, and CH4 along with solid phases such as evenkite, graphite, kerogen and bitumen. Microthermometric data indicate homogenization temperatures ranging from 85 °C to 145 ± 5 °C and salinities of 13–22 wt.% NaCl equivalent. This study supports a model of heterogeneous trapping, where saline basinal brines, oil, and gases were simultaneously trapped within fluorite, which indicates fluid immiscibility. The Raman analysis identified previously undetected organic compounds, including the first documented occurrence of evenkite, a mineral hydrocarbon, co-genetically trapped with graphite. The identification of evenkite and graphite in fluid inclusions offers new insights into the composition of hydrocarbon-bearing fluids within the MVT deposits in Tunisia, contributing to an understanding of the mineralogical characteristics of these deposits. The identified hydrocarbons correspond to three oil families. Family I (aliphatic compounds) is attributed to the lower-Eocene Bou-Dabbous Formation, family II (aromatic compounds) is attributed to the Albian Fahdene Formation and the Cenomanian–Turonian Bahloul Formation, and family III is considered as a mixture of aliphatic and aromatic compounds generated by the three sources. The presence of graphite in fluid inclusions could suggest the involvement of a thermal effect from deep-seated sources through the reservoir to the site of fluorite precipitation. These findings suggest that the fluorite mineral system might have been linked with the interaction of multi-reservoir fluids, potentially linked to the neighboring petroleum system in northeastern Tunisia during the Miocene. This study aims to investigate the composition of fluid inclusions in fluorite from the Hammam–Zriba F–Ba (Zn–Pb) deposit, with a particular focus on the plausible sources of hydrocarbons and their implications for the genetic relationship between the mineralizing system and petroleum reservoirs. Full article
Show Figures

Graphical abstract

28 pages, 3433 KiB  
Article
Assessment of Intraspecific Variability in the Forest Dormouse (Dryomys nitedula) and Woolly Dormouse (Dryomys laniger) from Türkiye and Adjacent Regions Based on Mitochondrial DNA
by Ercüment Çolak, Georgi Markov, Engin Selvi, Teoman Kankılıç, Perinçek Seçkinozan Şeker, Maria A. Kocheva, Milena K. Gospodinova, Reyhan Çolak, Hristo Dimitrov and Nuri Yiğit
Life 2025, 15(4), 660; https://doi.org/10.3390/life15040660 - 17 Apr 2025
Viewed by 775
Abstract
This study aimed to reveal intraspecific variations in two Dryomys species distributed in Türkiye, based on mitochondrial DNA cytochrome b gene sequences, and to discuss the factors driving these variations in the context of phylogeography and genetic species concepts. As a result of [...] Read more.
This study aimed to reveal intraspecific variations in two Dryomys species distributed in Türkiye, based on mitochondrial DNA cytochrome b gene sequences, and to discuss the factors driving these variations in the context of phylogeography and genetic species concepts. As a result of Maximum Likelihood, Bayesian Inference, and Network analyses, which included haplogroups or lineages from Italy, Russia, the Caucasus, and Iran identified in previous studies, along with Turkish haplotypes, three major clades (MC1, MC2, and MC3) were identified within Dryomys nitedula. These clades began to diverge evolutionarily in the middle of the Late Miocene (8.82 million years ago) and exhibit significant genetic differences from one another. The Turkish haplotypes were divided into five distinct lineages (N1–N5), each within five subclades (SC1–SC5), which were nested within these MCs. These lineages, their geographical distributions, and the subspecies defined in previous studies that correspond to these lineages are as follows: N1 from the Thrace region (Dryomys nitedula wingei), N2 from the Black Sea region (potentially a new subspecies), N3 from western and central Anatolia (Dryomys nitedula phrygius), N4 from northeastern Anatolia (Dryomys nitedula tichomirowi), and N5 from eastern Anatolia (Dryomys nitedula pictus). The N2 lineage, distributed in areas close to the coastal side of the Eastern Black Sea region and with a range close to both N3 (D. n. phrygius) and N4 (D. n. tichomirowi), exhibited high genetic differentiation from these two lineages and was a candidate to be treated as a new subspecies of Dryomys nitedula in Türkiye. The N5 lineage, which includes haplotypes from the distribution areas of the populations initially classified as Dryomys pictus and later as Dryomys nitedula pictus in previous studies, was found to be more closely related to Dryomys nitedula kurdistanicus from the Zagros Mountains than to D. n. pictus from the central regions of Iran. Combining the results of this study with previous research, it is clear that the D. nitedula lineages in Türkiye, along with haplogroups or subspecies in neighboring regions diverged between the middle Late Miocene and Middle Pleistocene. This divergence is believed to have been driven by climatic cycles and geomorphological processes that shaped the topography of their distribution range. The high genetic diversity observed in the lineages of Anatolia suggests that the region may have served as a glacial refuge for D. nitedula. Similarly to the processes and factors shaping the evolution of D. nitedula, Dryomys laniger was found to have diverged into two lineages, western (L1) and eastern (L2 or Dryomys anatolicus), within its distribution range during the Late Pliocene (2.94 Mya). To make a more accurate taxonomic assessment of D. laniger, a larger number of samples is needed, and the distribution limits should be more clearly defined. Full article
Show Figures

Figure 1

17 pages, 5582 KiB  
Article
Diversity of Late Cenozoic Actinopterygian Assemblages of the South of Eastern Europe
by Zoltán Barkaszi and Oleksandr Kovalchuk
Diversity 2025, 17(4), 259; https://doi.org/10.3390/d17040259 - 5 Apr 2025
Viewed by 709
Abstract
In the late Cenozoic, the south-west of Eastern Europe was a region affected by extensive hydrological transformations that resulted in the retreat of the Eastern Paratethys and the emergence and further evolution of freshwater communities. In recent decades, a relatively rich fossil actinopterygian [...] Read more.
In the late Cenozoic, the south-west of Eastern Europe was a region affected by extensive hydrological transformations that resulted in the retreat of the Eastern Paratethys and the emergence and further evolution of freshwater communities. In recent decades, a relatively rich fossil actinopterygian fauna has been described from this area. The present study was based on previous systematic studies and aimed to assess and trace the temporal dynamics of the diversity of fish assemblages that existed in the area from the Late Miocene until the end of the Pleistocene. Species diversity, taxonomic diversity, taxonomic complexity, and functional diversity were analysed. It was found that the diversity of the fish assemblages notably decreased during the Late Miocene, when representatives of the families Clariidae, Moronidae, Sciaenidae, and Gobiidae disappeared, and remained relatively low during the Pliocene. During the Pleistocene, however, functional diversity gradually increased, despite fluctuating species and taxonomic diversity and taxonomic richness and complexity, which suggests an increasing stability of the coenotic structure within the fish communities. The revealed temporal trends reflect the impact of the palaeoenvironmental and palaeoecological processes that characterised the region during the late Cenozoic, particularly orogenic and climatic changes, and the evolution of a typical limnophilous, lacustrine-riverine fish fauna. Full article
Show Figures

Figure 1

37 pages, 21085 KiB  
Article
Unraveling the Protracted Magmatic Evolution in the Central Urumieh–Dokhtar Magmatic Arc (Northeast Saveh, Iran): Zircon U-Pb Dating, Lu-Hf Isotopes, and Geochemical Constraints
by Mohammad Goudarzi, Hassan Zamanian, Urs Klötzli, Jiří Sláma, Jitka Míková, Jolanta Burda, David R. Lentz, Matee Ullah and Jiranan Homnan
Minerals 2025, 15(4), 375; https://doi.org/10.3390/min15040375 - 3 Apr 2025
Viewed by 769
Abstract
Cenozoic plutonic rocks in northeast Saveh, part of the central Urumieh–Dokhtar Magmatic Arc (UDMA) in Iran, comprise monzonite, monzodiorite, gabbro, and gabbrodiorite. Geochemical, zircon U-Pb geochronology, and Hf isotopic data reveal that these plutonic rocks belong to a medium-K calc-alkaline, metaluminous series with [...] Read more.
Cenozoic plutonic rocks in northeast Saveh, part of the central Urumieh–Dokhtar Magmatic Arc (UDMA) in Iran, comprise monzonite, monzodiorite, gabbro, and gabbrodiorite. Geochemical, zircon U-Pb geochronology, and Hf isotopic data reveal that these plutonic rocks belong to a medium-K calc-alkaline, metaluminous series with arc-related signatures. Zircon U-Pb ages (ca. 60 to 3 Ma) indicate prolonged magmatic evolution from the Middle Paleocene to the Middle Pliocene. Contrary to earlier reports of a 15 Ma period of reduced magmatic activity (ca. 72–57 Ma), our data indicate a shorter interval (ca. 10–12 Ma) during which magmatic activity decreased significantly. Key magmatic pulses occurred during the Late Eocene (ca. 40–47 Ma), Early Miocene (ca. 23–18 Ma), and Late Miocene–Pliocene (ca. 11–5.2 Ma), with geochemical data indicating a subduction-related origin. The most recent magmatic pulses in the central UDMA, potentially extending across the entire UDMA, are dated between 5 and 2.5 Ma, identified in a cluster of zircons from gabbroic rocks, which could correspond to the concluding stages of slab steepening related to continental subduction. Zircon εHf(t) values (−11.43 to 12.5) and geochemical data suggest fractional crystallization, crustal assimilation, and mantle-derived melts. The clinopyroxene crystallization temperatures (1150–1200 °C) and supporting geochemical data imply that magma was produced in a metasomatized spinel–lherzolite mantle at depths <80 km. This generation is associated with asthenospheric upwelling and slab rollback, which, in turn, triggered the partial melting of the lithosphere and fueled the region’s magmatic activity. Full article
Show Figures

Figure 1

41 pages, 17061 KiB  
Article
Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew (Taxus)
by Chuncheng Wang, Minqiu Wang, Shanshan Zhu, Xingtong Wu, Shaolong Yang, Yadan Yan and Yafeng Wen
Plants 2025, 14(7), 1094; https://doi.org/10.3390/plants14071094 - 1 Apr 2025
Cited by 1 | Viewed by 614
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche [...] Read more.
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan–Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations. Full article
Show Figures

Figure 1

14 pages, 6070 KiB  
Article
The Uplift and Denudation History of the Jianfeng Pluton on Hainan Island, China
by Di Lin, Guicheng Xue, Yong Zheng, Gucheng Zhang, Zailong Hu, Changxin Wei, Zhizhuang Zhang and Qinmin Yuan
Minerals 2025, 15(3), 320; https://doi.org/10.3390/min15030320 - 19 Mar 2025
Viewed by 432
Abstract
Hainan Island is the only large island located on the northern margin of the South China Sea and is surrounded by Cenozoic graben basins, including the Qiongdongnan, Yinggehai, and Beibuwan basins. The uplift and denudation history of the Jianfeng pluton on southwestern Hainan [...] Read more.
Hainan Island is the only large island located on the northern margin of the South China Sea and is surrounded by Cenozoic graben basins, including the Qiongdongnan, Yinggehai, and Beibuwan basins. The uplift and denudation history of the Jianfeng pluton on southwestern Hainan Island is significant for understanding the formation of the regional geomorphology and adjacent basin evolution. This paper presents apatite and zircon fission-track (FT) analyses conducted on the Jianfeng pluton. The zircon FT (ZFT) ages of the pluton range are from 63 ± 4 to 108 ± 8 Ma, and the apatite FT (AFT) ages are from 19.4 ± 1.8 to 43.9 ± 4.4 Ma. The average confined track lengths in apatite are relatively short (11.9–12.8 μm). An age–elevation plot indicates that two rapid cooling events occurred during 73–63 and 44–40 Ma. Thermal modeling revealed four stages of 73–63 Ma, 44–40 Ma, 40–11 Ma, and 11–0 Ma. From the Late Cretaceous to the middle Eocene (73–40 Ma), the Jianfeng area underwent episodic rapid uplift and denudation. At the end of the Late Cretaceous (73–63 Ma), the area was affected by mid-ocean ridge spreading in the Proto-South China Sea. During the middle Eocene (44–40 Ma), the Yinggehai Basin underwent abrupt expansion and subsidence, which increased the elevation difference between the Jianfeng area and the Yinggehai Basin. From the middle Eocene to the middle Miocene (40–11 Ma), the Jianfeng area underwent slow denudation, and the Yinggehai Basin was rapidly infilled, which eliminated the original elevation difference between the two areas. From the middle Miocene to the present (11–0 Ma), the Jianfeng area has undergone reactivated rapid uplift and denudation, which was driven by the remote effects of the India–Eurasia collision. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

22 pages, 8550 KiB  
Article
Fossil Samaras of Acer in the Lower Miocene of Central Inner Mongolia, China, and Their Phytogeographical Implications
by Han Dong, Yong Wu, Xiaoyan Wang, Meiting Wang, Deshuang Ji, Jiwei Liang and Liang Xiao
Diversity 2025, 17(3), 218; https://doi.org/10.3390/d17030218 - 19 Mar 2025
Viewed by 415
Abstract
Samara fossils of Acer were unearthed from the Early Miocene Hannuoba Formation in central Inner Mongolia, China. Based on macro- and micro-characteristics, they were identified as Acer pretataricum sp. nov. of section Ginnala, and cf. Acer mono of section Platanoidea. We [...] Read more.
Samara fossils of Acer were unearthed from the Early Miocene Hannuoba Formation in central Inner Mongolia, China. Based on macro- and micro-characteristics, they were identified as Acer pretataricum sp. nov. of section Ginnala, and cf. Acer mono of section Platanoidea. We reconstructed the dispersal routes of these two sections according to their fossil records. During the Early Eocene, section Ginnala was confined to North America. In the Late Eocene, this section expanded westward to East Asia. It was distributed widely in East Asia. In the Late Tertiary, it potentially recolonized the European and American continents. Meanwhile, section Platanoidea was distributed disjunctively in East Asia and North America during the Eocene. Members of this section likely expanded westward from East Asia into Europe in the Oligocene. By the Miocene, it had achieved extensive distribution in the Northern Hemisphere. However, by the Pliocene, it was confined to East Asia and Western Europe. It may have spread eastward from East Asia to North America during the Holocene, finally forming its current existence in North America and the Eurasian continent. This investigation reveals distinct differences in the dispersal pathways of two sections, suggesting that the reconstruction of dispersal routes for Acer taxa should be conducted separately at the section level. Full article
Show Figures

Figure 1

Back to TopTop