Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = laser-induced change of the refractive index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5166 KiB  
Article
Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing
by Chen Li, Chao Fan, Hao Wu, Xxx Sedao and Jiang Wang
Nanomaterials 2025, 15(1), 60; https://doi.org/10.3390/nano15010060 - 2 Jan 2025
Cited by 1 | Viewed by 1234
Abstract
This study presents a novel reflective fiber Fabry–Perot (F–P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. [...] Read more.
This study presents a novel reflective fiber Fabry–Perot (F–P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum. The dimensions and quality of the optical fiber are meticulously regulated through a combination of femtosecond laser cutting and chemical polishing, significantly enhancing the mechanical strength and sensitivity of the sensor’s overall structure. Experimental results indicate that the sensor achieves salinity sensitivity of 0.288 nm/% within a salinity range of 0% to 25%. Furthermore, the temperature sensitivity is measured at a minimal 0.015 nm/°C, allowing us to neglect temperature effects. The device is characterized by its compact size, straightforward structure, high mechanical robustness, ease of production, and excellent reproducibility. It demonstrates considerable potential for sensing applications in the domains of biomedicine and chemical engineering. Full article
(This article belongs to the Special Issue Nonlinear Optics and Ultrafast Lasers in Nanosystems)
Show Figures

Graphical abstract

10 pages, 2496 KiB  
Article
Introducing Optical Nonlinearity in PDMS Using Organic Solvent Swelling
by Sudhakara Reddy Bongu, Maximilian Buchmüller, Daniel Neumaier and Patrick Görrn
Optics 2024, 5(1), 66-75; https://doi.org/10.3390/opt5010005 - 15 Feb 2024
Cited by 2 | Viewed by 1984
Abstract
The feasibility of introducing optical nonlinearity in poly-dimethyl siloxane (PDMS) using organic solvent swelling was investigated. The third-order nonlinear refraction and absorption properties of the individual materials, as well as the PDMS/solvent compounds after swelling were characterized. The well-established Z-scan technique served as [...] Read more.
The feasibility of introducing optical nonlinearity in poly-dimethyl siloxane (PDMS) using organic solvent swelling was investigated. The third-order nonlinear refraction and absorption properties of the individual materials, as well as the PDMS/solvent compounds after swelling were characterized. The well-established Z-scan technique served as characterization method for the nonlinear properties under picosecond pulsed laser excitation at a 532 nm wavelength. These experiments included investigations on the organic solvents nitrobenzene, 2,6-lutidine, and toluene, which showed inherent optical nonlinearity. We showed that nitrobenzene, one of the most well-known nonlinear optical materials, has proven suboptimal in this context due to its limited swelling effect in PDMS and comparatively high (non)linear absorption, resulting in undesirable thermal effects and potential photo-induced damage in the composite material. Toluene and 2,6-lutidine not only exhibited lower absorption compared to nitrobenzene but also show a more pronounced swelling effect in PDMS. The incorporation of toluene caused a weight change of up to 116% of PDMS, resulting in substantial nonlinear optical effects, reflected in the nonlinear refractive index of the PDMS/toluene composite n2=3.1×1015 cm2/W. Full article
(This article belongs to the Section Nonlinear Optics)
Show Figures

Figure 1

10 pages, 4990 KiB  
Article
Hybrid Approach for Multiscale and Multimodal Time-Resolved Diagnosis of Ultrafast Processes in Materials via Tailored Synchronization of Laser and X-ray Sources at MHz Repetition Rates
by Nikita Marchenkov, Evgenii Mareev, Anton Kulikov, Fedor Pilyak, Eduard Ibragimov, Yuri Pisarevskii and Fedor Potemkin
Optics 2024, 5(1), 1-10; https://doi.org/10.3390/opt5010001 - 16 Jan 2024
Cited by 6 | Viewed by 1692
Abstract
The synchronization of laser and X-ray sources is essential for time-resolved measurements in the study of ultrafast processes, including photo-induced piezo-effects, shock wave generation, and phase transitions. On the one hand, optical diagnostics (by synchronization of two laser sources) provides information about changes [...] Read more.
The synchronization of laser and X-ray sources is essential for time-resolved measurements in the study of ultrafast processes, including photo-induced piezo-effects, shock wave generation, and phase transitions. On the one hand, optical diagnostics (by synchronization of two laser sources) provides information about changes in vibration frequencies, shock wave dynamics, and linear and nonlinear refractive index behavior. On the other hand, optical pump–X-ray probe diagnostics provide an opportunity to directly reveal lattice dynamics. To integrate two approaches into a unified whole, one needs to create a robust method for the synchronization of two systems with different repetition rates up to the MHz range. In this paper, we propose a universal approach utilizing a field-programmable gate array (FPGA) to achieve precise synchronization between different MHz sources such as various lasers and synchrotron X-ray sources. This synchronization method offers numerous advantages, such as high flexibility, fast response, and low jitter. Experimental results demonstrate the successful synchronization of two different MHz systems with a temporal resolution of 250 ps. This enables ultrafast measurements with a sub-nanosecond resolution, facilitating the uncovering of complex dynamics in ultrafast processes. Full article
Show Figures

Figure 1

10 pages, 2566 KiB  
Article
An Integrated Pump-Controlled Variable Coupler Fabricated by Ultrafast Laser Writing
by David Benedicto, Juan C. Martín, Antonio Dias-Ponte, Javier Solis and Juan A. Vallés
Micromachines 2023, 14(7), 1370; https://doi.org/10.3390/mi14071370 - 4 Jul 2023
Viewed by 1978
Abstract
The design and fabrication of a integrated symmetric directional coupler dependent o the pumping power and operating at a 1534 nm wavelength is reported. The twin-core waveguide was inscribed into Er3+/Yb3+ co-doped phosphate glass by a femtosecond laser direct writing [...] Read more.
The design and fabrication of a integrated symmetric directional coupler dependent o the pumping power and operating at a 1534 nm wavelength is reported. The twin-core waveguide was inscribed into Er3+/Yb3+ co-doped phosphate glass by a femtosecond laser direct writing technique. By optical pumping, the coupling ratio can be modulated due to the changes induced in the refractive index of the material. The experimental results demonstrated that the coupling ratio can be tuned continuously from 100/0 to 50/50 by increasing the pump’s power from 0 to 350 mW. The developed twin-core coupler has promising applications for on-chip all-optical signal processing and communication systems. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing)
Show Figures

Figure 1

14 pages, 825 KiB  
Article
Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects
by Natalia Kamanina
Polymers 2023, 15(13), 2819; https://doi.org/10.3390/polym15132819 - 26 Jun 2023
Cited by 5 | Viewed by 1714
Abstract
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a [...] Read more.
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a specific nanotechnology approach is shown to increase the refractive and photoconductive parameters of the organic conjugated materials. The sensitization process, along with laser treatment, are presented in order to improve the basic physical–chemical properties of laser, solar energy, and general photonics materials. Effective nanoparticles, such as fullerenes, shungites, reduced graphene oxides, carbon nanotubes, etc., are used in order to obtain the bathochromic shift, increase the laser-induced change in the refractive index, and amplify the charge carrier mobility of the model matrix organics sensitized with these nanoparticles. The four-wave mixing technique is applied to test the main refractive characteristics of the studied materials. Volt–current measurements are used to estimate the increased charge carrier mobility. The areas of application for the modified nanostructured plastic matrixes are discussed and extended, while also taking into account the surface relief. Full article
(This article belongs to the Topic Photosensitive and Optical Materials)
Show Figures

Graphical abstract

17 pages, 5270 KiB  
Article
Sb2S3-Based Dynamically Tuned Color Filter Array via Genetic Algorithm
by Xueling Wei, Jie Nong, Yiyi Zhang, Hansi Ma, Rixing Huang, Zhenkun Yuan, Zhenfu Zhang, Zhenrong Zhang and Junbo Yang
Nanomaterials 2023, 13(9), 1452; https://doi.org/10.3390/nano13091452 - 24 Apr 2023
Cited by 7 | Viewed by 3945
Abstract
Color displays have become increasingly attractive, with dielectric optical nanoantennas demonstrating especially promising applications due to the high refractive index of the material, enabling devices to support geometry-dependent Mie resonance in the visible band. Although many structural color designs based on dielectric nanoantennas [...] Read more.
Color displays have become increasingly attractive, with dielectric optical nanoantennas demonstrating especially promising applications due to the high refractive index of the material, enabling devices to support geometry-dependent Mie resonance in the visible band. Although many structural color designs based on dielectric nanoantennas employ the method of artificial positive adjustment, the design cycle is too lengthy and the approach is non-intelligent. The commonly used phase change material Ge2Sb2Te5 (GST) is characterized by high absorption and a small contrast to the real part of the refractive index in the visible light band, thereby restricting its application in this range. The Sb2S3 phase change material is endowed with a wide band gap of 1.7 to 2 eV, demonstrating two orders of magnitude lower propagation loss compared to GST, when integrated onto a silicon waveguide, and exhibiting a maximum refractive index contrast close to 1 at 614 nm. Thus, Sb2S3 is a more suitable phase change material than GST for tuning visible light. In this paper, genetic algorithms and finite-difference time-domain (FDTD) solutions are combined and introduced as Sb2S3 phase change material to design nanoantennas. Structural color is generated in the reflection mode through the Mie resonance inside the structure, and the properties of Sb2S3 in different phase states are utilized to achieve tunability. Compared to traditional methods, genetic algorithms are superior-optimization algorithms that require low computational effort and a high population performance. Furthermore, Sb2S3 material can be laser-induced to switch the transitions of the crystallized and amorphous states, achieving reversible color. The large chromatic aberration ∆E modulation of 64.8, 28.1, and 44.1 was, respectively, achieved by the Sb2S3 phase transition in this paper. Moreover, based on the sensitivity of the structure to the incident angle, it can also be used in fields such as angle-sensitive detectors. Full article
Show Figures

Figure 1

11 pages, 726 KiB  
Article
Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer
by Sébastien Maqueda, Julien Perchoux, Clément Tronche, José Javier Imas González, Marc Genetier, Maylis Lavayssière and Yohan Barbarin
Sensors 2023, 23(7), 3720; https://doi.org/10.3390/s23073720 - 4 Apr 2023
Cited by 4 | Viewed by 2669
Abstract
In this paper, we demonstrate that a compact and inexpensive interferometric sensor based on the self-mixing effect in the laser cavity can be used for the characterization of shock waves. The sensor measures the changes in the refractive index induced by the shock [...] Read more.
In this paper, we demonstrate that a compact and inexpensive interferometric sensor based on the self-mixing effect in the laser cavity can be used for the characterization of shock waves. The sensor measures the changes in the refractive index induced by the shock wave. It is based on the self-mixing interferometry scheme. We describe the architecture of the dynamic sensor and the design of the experimental setup used for the characterization that involves a shock tube. Thus, we detail the experimental measurements for shock wave pressure amplitude of 5 bar and address their interpretation with regard to the most admitted models for acousto-optics. Full article
(This article belongs to the Special Issue Metrology of Shock Waves)
Show Figures

Figure 1

20 pages, 2970 KiB  
Article
Optical Study of Lysozyme Molecules in Aqueous Solutions after Exposure to Laser-Induced Breakdown
by Ruslan M. Sarimov, Tatiana A. Matveyeva, Vera A. Mozhaeva, Aleksandra I. Kuleshova, Anastasia A. Ignatova and Alexander V. Simakin
Biomolecules 2022, 12(11), 1613; https://doi.org/10.3390/biom12111613 - 1 Nov 2022
Cited by 1 | Viewed by 2324
Abstract
The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on [...] Read more.
The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on the physicochemical characteristics of optical breakdown. After exposure to optical breakdown, changes were observed in the enzymatic activity of lysozyme, absorption and fluorescence spectra, viscosity, and the sizes of molecules and aggregates of lysozyme measured by dynamic light scattering. However, the refractive index of the solution and the Raman spectrum did not change. The appearance of a new fluorescence peak was observed upon excitation at 350 nm and emission at 434 nm at exposure for 30 min. Previously, a peak in this range was associated with the fluorescence of amyloid fibrils. However, neither the ThT assay nor the circular dichroism dispersion confirmed the formation of amyloid fibrils. Probably, under the influence of optical breakdown, a small part of the protein degraded, and a part changed its native state and aggregated, forming functional dimers or “native aggregates”. Full article
Show Figures

Figure 1

16 pages, 2541 KiB  
Article
Effect of Laser-Induced Optical Breakdown on the Structure of Bsa Molecules in Aqueous Solutions: An Optical Study
by Egor I. Nagaev, Ilya V. Baimler, Alexey S. Baryshev, Maxim E. Astashev and Sergey V. Gudkov
Molecules 2022, 27(19), 6752; https://doi.org/10.3390/molecules27196752 - 10 Oct 2022
Cited by 17 | Viewed by 2858
Abstract
The influence of laser radiation of a typical surgical laser on the physicochemical properties of the Bovine Serum Albumin (BSA) protein was studied. It was established that the physicochemical characteristics of optical breakdown weakly depend on the concentration of protein molecules. At the [...] Read more.
The influence of laser radiation of a typical surgical laser on the physicochemical properties of the Bovine Serum Albumin (BSA) protein was studied. It was established that the physicochemical characteristics of optical breakdown weakly depend on the concentration of protein molecules. At the same time, the patterns observed for an aqueous solution of BSA irradiated with a laser for different time periods were extremely similar to the classical ones. It was established that after exposure to laser radiation, the optical density of protein solutions increases. At the same time, the intensity of BSA fluorescence due to aromatic amino acid residues decreases insignificantly after exposure to laser radiation. In this case, the position of the excitation and emission maximum does not change, and the shape of the fluorescence spot on 3D maps also does not change significantly. On the Raman spectrum after exposure to laser radiation, a significant decrease in 1570 cm−1 was observed, which indicates the degradation of α-helices and, as a result, partial denaturation of BSA molecules. Partial denaturation did not significantly change the total area of protein molecules, since the refractive index of solutions did not change significantly. However, in BSA solutions, after exposure to laser radiation, the viscosity increased, and the pseudoplasticity of aqueous solutions decreased. In this case, there was no massive damage to the polypeptide chain; on the contrary, when exposed to optical breakdown, intense aggregation was observed, while aggregates with a size of 400 nm or more appeared in the solution. Thus, under the action of optical breakdown induced by laser radiation in a BSA solution, the processes of partial denaturation and aggregation prevail, aromatic amino acid residues are damaged to a lesser extent, and fragmentation of protein molecules is not observed. Full article
(This article belongs to the Special Issue Biophysical Chemistry)
Show Figures

Figure 1

1 pages, 171 KiB  
Abstract
Solid-State Laser Intra-Cavity Photothermal Sensor (SLIPS) for Gas Detection with Parts-Per-Billion Sensitivity
by Grzegorz Dudzik and Krzysztof Abramski
Eng. Proc. 2022, 21(1), 34; https://doi.org/10.3390/engproc2022021034 - 29 Aug 2022
Cited by 2 | Viewed by 1102
Abstract
We report a novel, miniaturized gas sensor configuration with ppbv (parts-per-billion by volume) sensitivity, where detection of the gas sample concentration is realized inside a Nd:YVO4/YVO4/Air-Gap structure (2 × 2 × 14 mm3) of the double-beam, monolithic [...] Read more.
We report a novel, miniaturized gas sensor configuration with ppbv (parts-per-billion by volume) sensitivity, where detection of the gas sample concentration is realized inside a Nd:YVO4/YVO4/Air-Gap structure (2 × 2 × 14 mm3) of the double-beam, monolithic diode-pumped solid-state laser (DPSSL) resonator operating at 1064 nm. Both generated probe and reference beams are passed through an ultra-compact sensing volume (4 μL) of the air-gap section filled with gas molecules. Simultaneously, an auxiliary laser beam is targeted on the absorption line of a measured gas sample and focused on a 1064 nm probe beam only. Due to the absorption effect, excited gas molecules are heated locally, resulting in a negligible change in a gas refractive index (RI), which is inherent to the photothermal effect (PT). Hence, the PT-induced variations of the gas RI inside the laser resonator are modulating the optical path-length of the probe beam, which resulted in a significant optical frequency shift of the probe beam against the reference one. The optical frequency changes were measured by applying the heterodyne detection technique, where both 1064 nm beams were coupled onto the near-infrared (near-IR) high-speed photodiode (PD), resulting in a beat note signal readout down-converted into the radio-frequency (RF) domain. The RF mixer was used to shift the beat note in frequency accordingly to the frequency modulation (FM) demodulator range. The demodulator converts the beat note frequency changes into a proportional voltage signal. To provide better gas sensor properties, a typical wavelength modulation spectroscopy (WMS) technique was additionally used. The solid-state laser intra-cavity photothermal sensor (SLIPS) is a unique approach to gas spectroscopy, which provides tens of ppbv sensitivity, more than 5000 signal-to-noise (SNR) ratio, baseline-free measurements, miniature, versatile and non-complex sensor setup based on inexpensive DPSSL technology. The SLIPS has no limitation in terms of the excitation wavelength because only one near-IR detector for signal retrieval is needed. Full article
(This article belongs to the Proceedings of The 9th International Symposium on Sensor Science)
11 pages, 1834 KiB  
Article
Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One
by Natalia Kamanina, Svetlana Likhomanova and Yulia Zubtsova
C 2022, 8(3), 43; https://doi.org/10.3390/c8030043 - 26 Aug 2022
Cited by 2 | Viewed by 2444
Abstract
It should be remarked that the basic knowledge collected from complicated area of the structuration process of the organic materials, including the liquid crystal (LC) ones, useful for the optoelectronics and biomedicine, requires extending the types of the novel matrix model materials and [...] Read more.
It should be remarked that the basic knowledge collected from complicated area of the structuration process of the organic materials, including the liquid crystal (LC) ones, useful for the optoelectronics and biomedicine, requires extending the types of the novel matrix model materials and the class of the dopants, which can change the spectral and photorefractive features of the matrixes with good advantage. In the current paper the effect of the introduction of the bio-objects (based on DNA) and of the nano-objects (based on fullerenes, quantum dots, carbon nanotubes, shungites, graphenes) in the organic conjugated materials has been comparatively discussed. The influence of this process on the photorefractive features, namely on the laser-induced change of the refractive index, has been studied. The clear innovative tendency of the alternative using of the bio-objects together or instead of the nano-objects ones has been analyzed via considering of the modification of the spectral and non-linear optical characteristics. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Figure 1

15 pages, 3852 KiB  
Article
Temporal Evolution of Refractive Index Induced by Short Laser Pulses Accounting for Both Photoacoustic and Photothermal Effects
by Zhiying Xia, Bin Ni, Ruijie Hou, Yang Zhang, Lianping Hou, Jamie Jiangmin Hou, John H. Marsh, Xuefeng Liu and Jichuan Xiong
Appl. Sci. 2022, 12(12), 6256; https://doi.org/10.3390/app12126256 - 20 Jun 2022
Cited by 3 | Viewed by 2473
Abstract
Materials such as silicon, copper, gold, and aluminum exhibit strong absorption and scattering characterization under short-pulsed laser irradiation. Due to the photoelastic effect and thermoelastic relaxation, the focal area may induce a local modulation in the refractive index, which can be detected with [...] Read more.
Materials such as silicon, copper, gold, and aluminum exhibit strong absorption and scattering characterization under short-pulsed laser irradiation. Due to the photoelastic effect and thermoelastic relaxation, the focal area may induce a local modulation in the refractive index, which can be detected with the intensity reflection coefficient perturbation. Normally, the thermal effect causes a weak refractive index change and is negligible, compared with the pressure-induced effect in most photoacoustic analytical systems. In this study, we present a theoretical model with the whole process of absorbed energy conversion analysis for the refractive index perturbation induced by both thermal effect and photoacoustic pressure. In this model, data analysis was carried out on the transformation of the energy absorbed by the sample into heat and stress. To prove the feasibility of this model, numerical simulation was performed for the photothermal and photoacoustic effects under different incident intensities using the finite element method. Experiment results on silicon and carbon fiber verified that the refractive index change induced by the photothermal effect can be detected and be incorporated with pressure-induced refractive index change. The simulation results showed very good agreement with the results of the experiments. The main aim of this study was to further understand the absorption and conversion process of short-pulsed light energy and the resulting photothermal and photoacoustic effects. Full article
(This article belongs to the Special Issue Ultrasound Technology in Industry and Medicine)
Show Figures

Figure 1

12 pages, 1802 KiB  
Review
Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements
by Natalia V. Kamanina
Materials 2022, 15(6), 2153; https://doi.org/10.3390/ma15062153 - 15 Mar 2022
Cited by 7 | Viewed by 2139
Abstract
In the current paper, the results of the sensitization process’ influence on the refractive organic materials’ features are shown. The correlation between the refractive properties and the intermolecular charge transfer effect of doped organic thin films are shown via estimation of the laser-induced [...] Read more.
In the current paper, the results of the sensitization process’ influence on the refractive organic materials’ features are shown. The correlation between the refractive properties and the intermolecular charge transfer effect of doped organic thin films are shown via estimation of the laser-induced change in the refractive index. The refractive parameter is shown for a model organics matrix based on a polyimide doped with fullerenes, carbon nanotubes, reduced graphene oxides, etc. A second harmonic of the Nd-laser was used to record the holographic gratings in the Raman–Nath diffraction conditions at different spatial frequencies. The laser-induced refractive index change was considered to be an indicator in order to estimate the basic organic materials’ physical–chemical characteristics. Additional data are presented for the liquid crystal cells doped with nanoparticles. The correlation between the content of the nanoobjects in the organics’ bodies and the contact angle at the thin film surfaces is shown. Some propose to use this effect for general optoelectronics, for the optical limiting process, and for display application. Full article
(This article belongs to the Special Issue Recent Advances in Functional Nanomaterials)
Show Figures

Figure 1

20 pages, 8154 KiB  
Review
Ge Ion Implanted Photonic Devices and Annealing for Emerging Applications
by Xingshi Yu, Xia Chen, Milan M. Milosevic, Weihong Shen, Rob Topley, Bigeng Chen, Xingzhao Yan, Wei Cao, David J. Thomson, Shinichi Saito, Anna C. Peacock, Otto L. Muskens and Graham T. Reed
Micromachines 2022, 13(2), 291; https://doi.org/10.3390/mi13020291 - 12 Feb 2022
Cited by 8 | Viewed by 4001
Abstract
Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96. A subsequent annealing process, either by using an external laser [...] Read more.
Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96. A subsequent annealing process, either by using an external laser or integrated thermal heaters can partially or completely remove those lattice defects and gradually change the amorphous silicon back into the crystalline form and, therefore, reduce the material’s refractive index. Utilising this change in optical properties, we successfully demonstrated various erasable photonic devices. Those devices can be used to implement a flexible and commercially viable wafer-scale testing method for a silicon photonics fabrication line, which is a key technology to reduce the cost and increase the yield in production. In addition, Ge ion implantation and annealing are also demonstrated to enable post-fabrication trimming of ring resonators and Mach–Zehnder interferometers and to implement nonvolatile programmable photonic circuits. Full article
(This article belongs to the Special Issue Micro/Nanophotonic Devices in Europe)
Show Figures

Figure 1

10 pages, 2703 KiB  
Article
Phase-Type Fresnel Zone Plate with Multi-Wavelength Imaging Embedded in Fluoroaluminate Glass Fabricated via Ultraviolet Femtosecond Laser Lithography
by Qisong Li, Xuran Dai, Haosong Shi, Yi Liu and Long Zhang
Micromachines 2021, 12(11), 1362; https://doi.org/10.3390/mi12111362 - 4 Nov 2021
Cited by 9 | Viewed by 2977
Abstract
Herein, we report a novel optical glass material, fluoroaluminate (AlF3) glass, with excellent optical transmittance from ultraviolet to infrared wavelength ranges, which provides more options for application in optical devices. Based on its performance, the phase-type Fresnel zone plate (FZP) by [...] Read more.
Herein, we report a novel optical glass material, fluoroaluminate (AlF3) glass, with excellent optical transmittance from ultraviolet to infrared wavelength ranges, which provides more options for application in optical devices. Based on its performance, the phase-type Fresnel zone plate (FZP) by ultraviolet femtosecond (fs) laser-inscribed lithography is achieved, which induces the refractive index change by fs-laser tailoring. The realization of ultraviolet fs-laser fabrication inside glass can benefit from the excellent optical performance of the AlF3 glass. Compared with traditional surface-etching micro-optical elements, the phase-type FZP based on AlF3 glass exhibits a clear and well-defined geometry and presents perfect environmental suitability without surface roughness problems. Additionally, optical focusing and multi-wavelength imaging can be easily obtained. Phase-type FZP embedded in AlF3 glass has great potential applications in the imaging and focusing in glass-integrated photonics, especially for the ultraviolet wavelength range. Full article
Show Figures

Figure 1

Back to TopTop