Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosoda, K.; Tada, R.; Ishikawa, M.; Yoshino, K. Effect of C60 doping on electrical and optical properties of poly[(disilanylene)oligophenylenes]. Jpn. J. Appl. Phys. 1997, 36, L372–L375. [Google Scholar] [CrossRef]
- Poole, C.P.; Owens, F.J. Introduction to Nanotechnology; John Wiley & Sons: New York, NY, USA, 2003; Wiley Interscience; 400p. [Google Scholar]
- Brabec, C.J.; Padinger, F.; Sariciftci, N.S.; Hummelen, J.C. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 1999, 85, 6866–6872. [Google Scholar] [CrossRef]
- Kamanina, N.; Barrientos, A.; Leyderman, A.; Cui, Y.; Vikhnin, V.; Vlasse, M. Effect of fullerene doping on the absorption edge shift in COANP. Mol. Mater. 2000, 13, 275–280. [Google Scholar]
- Grishina, A.D.; Licea-Jimenez, L.; Pereshivko, L.Y.; Krivenko, T.V.; Savel’ev, V.V.; Rychwalski, R.W.; Vannikov, A.V. Infrared Photorefractive Composites Based on Polyvinylcarbazole and Carbon Nanotubes. High Energy Chem. 2006, 40, 341–347. [Google Scholar] [CrossRef]
- Lee, W.; Chen, H.C. Diffraction efficiency of a holographic grating in a liquid-crystal cell composed of asymmetrically patterned electrodes. Nanotechnology 2003, 14, 987–990. [Google Scholar] [CrossRef]
- Khoo, I.C.; Williams, Y.Z.; Lewis, B.; Mallouk, T. Photorefractive CdSe and Gold Nanowire-Doped Liquid Crystals and Polymer-Dispersed-Liquid-Crystal Photonic Crystals. Mol. Cryst. Liq. Cryst. 2006, 446, 233–244. [Google Scholar] [CrossRef]
- Gan, C.; Zhang, Y.; Liu, S.W.; Wang, Y.; Xiao, M. Linear and nonlinear optical refractions of CR39 composite with CdSe nanocrystals. Opt. Mater. 2008, 30, 1440–1445. [Google Scholar] [CrossRef]
- Matczyszyn, K.; Olesiak-Banska, J. DNA as scaffolding for nanophotonic structures. J. Nanophoton. 2012, 6, 064505. [Google Scholar] [CrossRef]
- Gutierrez, R.; Cuniberti, G. Modeling Charge Transport and Dynamics in Biomolecular Systems. J. Self-Assem. Mol. Electron. 2013, 1, 1–39. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Zubtsova, Y.A.; Bretonniere, Y.; Andraud, C.; Baldeck, P.; Kajzar, F. Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials. J. Nanotechnol. Diagn. Treat. 2014, 2, 2–5. [Google Scholar]
- Rout, S.; Sonkusale, S. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation. Opt. Express 2016, 24, 14618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ren, Y.; Chen, J.; Hu, Z.; Bai, J.; Zhao, L.; Wang, K. Fast testing of partial camera lenses based on a liquid crystal spatial light modulator. Appl. Opt. 2022, 61, 6420–6429. Available online: https://opg.optica.org/ao/abstract.cfm?URI=ao-61-22-6420 (accessed on 21 August 2022). [CrossRef]
- Alaloul, M.; Khurgin, J.B.; Al-Ani, I.; As’ham, K.; Huang, L.; Hattori, H.T.; Miroshnichenko, A.E. On-chip low-loss all-optical MoSe2 modulator. Opt. Lett. 2022, 47, 3640–3643. Available online: https://opg.optica.org/ol/abstract.cfm?URI=ol-47-15-3640 (accessed on 21 August 2022). [CrossRef] [PubMed]
- Shcherbin, K.; Gvozdovskyy, I.; Shumelyuk, A.; Slagle, J.; Evans, D.R. Near-infrared sensitive two-wave mixing adaptive interferometer based on a liquid crystal light valve with a semiconductor substrate. Appl. Opt. 2022, 61, 6498–6503. Available online: https://opg.optica.org/ao/abstract.cfm?URI=ao-61-22-6498 (accessed on 21 August 2022). [CrossRef]
- Al-Rubaiyee, H.A.; Al-Hayali, S.K.; Al-Janabi, A.H. Nanostructured coating of graphene nanoparticles deposited onto a cladding etched no-core optical fiber for temperature measurement. Appl. Opt. 2020, 59, 4663–4671. Available online: https://www.osapublishing.org/ao/abstract.cfm?URI=ao-59-15-4663 (accessed on 21 August 2022). [CrossRef]
- Fan, Z.; Chu, S.; Qin, J.; Zhang, Y.; Liu, H. Tunable liquid crystal core refractive index sensor based on surface plasmon resonance in gold nanofilm coated photonic crystal fiber. Appl. Opt. 2022, 61, 2675–2682. Available online: https://opg.optica.org/ao/abstract.cfm?URI=ao-61-10-2675 (accessed on 21 August 2022). [CrossRef]
- Henderson, L.; Neumann, O.; Kadria-Vili, Y.; Gerislioglu, B.; Bankson, J.; Nordlander, P.; Halas, N.J. Plasmonic gadolinium oxide nanomatryoshkas: Bifunctional magnetic resonance imaging enhancers for photothermal cancer therapy. PNAS Nexus 2022. [Google Scholar] [CrossRef]
- Dhanapal, D.; Xiao, M.; Wang, S.; Meng, Y. A Review on Sulfonated Polymer Composite/Organic-Inorganic Hybrid Membranes to Address Methanol Barrier Issue for Methanol Fuel Cells. Nanomaterials 2019, 9, 668. [Google Scholar] [CrossRef]
- Ibrahim, N.; Jamaluddin, N.; Tan, L.; Yusof, N.M. A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus. Sensors 2021, 21, 5114. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vikhnin, V.S.; Leyderman, A.; Barrientos, A.; Cui, Y.; Vlasse, M. Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine. Opt. Spectrosc. 2000, 89, 369–371. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Plekhanov, A.I. Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules. Opt. Spectrosc. 2002, 93, 408–415. [Google Scholar] [CrossRef]
- Mikhailova, M.M.; Kosyreva, M.M.; Kamanina, N.V. On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett. 2002, 28, 450–453. [Google Scholar] [CrossRef]
- Kamanina, N.V. Nonlinear Optical Study of Fullerene-Doped Conjugated Systems: New Materials for Nanophotonics Applications. In Organic Nanophotonics; Springer: Dordrecht, The Netherlands, 2003; pp. 177–192. [Google Scholar]
- Kamanina, N.V.; Sheka, E.F. Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation. Opt. Spectrosc. 2004, 96, 599–612. [Google Scholar] [CrossRef]
- Kamanina, N.V. Fullerene-dispersed nematic liquid crystal structures: Dynamic characteristics and self-organization processes. Physics-Uspekhi 2005, 48, 419–427. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Komolkin, A.V.; Yevlampieva, N.P. Variation of the orientational order parameter in a nematic liquid crystal-COANP-C70 composite structure. Tech. Phys. Lett. 2005, 31, 478–480. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Emandi, A.; Kajzar, F.; Attias, A.-J. Laser-Induced Change in the Refractive Index in the Systems Based on Nanostructured Polyimide: Comparative Study with Other Photosensitive Structures. Mol. Cryst. Liq. Cryst. 2008, 486, 1–11. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Uskoković, D.P. Refractive Index of Organic Systems Doped with Nano-Objects. Mater. Manuf. Process. 2008, 23, 552–556. [Google Scholar] [CrossRef]
- Kamanina, N.; Vasilyev, P.; Serov, S.; Savinov, V.; Bogdanov, K.; Uskokovic, D. Nanostructured Materials for Optoelectronic Applications. Acta Phys. Pol. A 2010, 117, 786–790. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.A.; Likhomanova, S.; Timonin, D.N.; Kuzhakov, P.V.; Rozhkova, N.N.; Kityk, I.V.; Plucinski, K.J.; Uskokovic, D. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci. Mater. Electron. 2012, 23, 1538–1542. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Kuzhakov, P.V.; Likhomanova, S.V.; Andraud, C.; Rau, I.; Kajzar, F. Photorefractive, Photoconductive, Dynamic Features and Interfaces of the Optical Materials Modified with Nanoobjects. Nonlinear Opt. Quantum Opt. Concepts Mod. Opt. 2014, 45, 283–292. [Google Scholar]
- Vasilyev, P.Y.; Kamanina, N.V. Prospects for using transparent conducting coatings containing fullerenes and nanotubes in display elements of the new generation. Tech. Phys. Lett. 2007, 33, 764–766. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilyev, P.Y.; Vangonen, A.I.; Studeonov, V.I.; Usanov, Y.E.; Kajzar, F.; Attias, A.-J. Photophysics of Organic Structures Doped with Nanoobjects: Optical Limiting, Switching and Laser Strength. Mol. Cryst. Liq. Cryst. 2008, 485, 197–206. [Google Scholar] [CrossRef]
- Kamanina, N.; Vasilenko, N. High-speed SLM with a photosensitive polymer layer. Electron. Lett. 1995, 31, 394–395. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilenko, N.A. Influence of operating conditions and interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 1997, 29, 1–9. [Google Scholar] [CrossRef]
- Akhmanov, S.A.; Nikitin, S.Y. Physical Optics; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Moharam, M.G.; Young, L. Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 1978, 17, 1757–1759. [Google Scholar] [CrossRef]
- Jang, K.S.; Kim, H.W.; Cho, S.H.; Kim, J.D. Enhanced diffraction efficiency in a photorefractive liquid crystal cell with poly (9-vinylcarbazole)-infiltrated mesoporous TiO2 layers. J. Phys. Chem. B 2006, 110, 23678–23682. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, F.; Pei, Y.; Sun, X. High-diffraction-efficiency holographic gratings in C60-doped nematics. Appl. Opt. 2009, 48, 6506–6510. [Google Scholar] [CrossRef]
- Hrozhyk, U.; Nersisyan, S.; Serak, S.; Tabiryan, N.; Hoke, L.; Steeves, D.M.; Kimball, B.R. Optical switching of liquid-crystal polarization gratings with nanosecond pulses. Opt. Lett. 2009, 34, 2554–2556. [Google Scholar] [CrossRef]
- Su, W.C.; Huang, C.Y.; Chen, J.Y.; Su, W.H. Effect of recording-beam ratio on diffraction efficiency of polarization holographic gratings in dye-doped liquid-crystal films. Opt. Lett. 2010, 35, 405–407. [Google Scholar] [CrossRef]
- Ogiwara, A. Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings. Appl. Opt. 2011, 50, 594–603. [Google Scholar] [CrossRef]
- Kafafi, Z.H.; Lindle, J.R.; Pong, R.G.S.; Bartoli, F.J.; Lingg, L.J.; Milliken, J. Off-resonant nonlinear optical properties of films of C60 studied by degenerate four-wave mixing. Chem. Phys. Lett. 1992, 188, 492–496. [Google Scholar] [CrossRef]
- Chakravorty, K.K. Photogeneration of refractive-index patterns in doped polyimide films. Appl. Opt. 1993, 32, 2331–2338. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, L.; Paton, B.E.; Payne, S.H. Precise thickness and refractive index determination of polyimide films using attenuated total reflection. Appl. Opt. 1994, 33, 8036–8040. [Google Scholar] [CrossRef] [PubMed]
- Maruo, Y.Y.; Sasaki, S.; Tamamura, T. Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides. Appl. Opt. 1995, 34, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Rosker, M.J.; Marcy, H.O.; Chang, T.Y.; Khoury, J.T.; Hansen, K.; Whetten, R.L. Time resolved degenerate four-wave mixing in thin films of C60 and C70 using femtosecond optical pulses. Chem. Phys. Lett. 1992, 196, 427–432. [Google Scholar] [CrossRef]
- Meth, J.S.; Vanherzeele, H.; Wang, Y. Dispersion third-optical nonlinearity of C60. A third-harmonic generation study. Chem. Phys. Lett. 1992, 111, 26–31. [Google Scholar] [CrossRef]
- Kamanina, N.V. Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials 2022, 15, 2153. [Google Scholar] [CrossRef]
- Bershtein, V.; Egorov, V. DSC in Physical Chemistry of Polymers; Chemistry: Leningrad, Russia, 1990; 200p. [Google Scholar]
- Cherkasov, Y.A.; Kamanina, N.V.; Alexandrova, E.L.; Berendyaev, V.I.; Vasilenko, N.A.; Kotov, B.V. Polyimides: New properties of xerographic, thermoplastic, and liquid-crystal structures. In Xerographic Photoreceptors and Organic Photorefractive Materials IV; SPIE: Bellingham, WA, USA, 1998; Volume 3471, pp. 254–260. [Google Scholar]
- Kamanina, N.V.; Rozhkova, N.N.; Chernozatonskii, L.A.; Shmidt, N.M.; Ferritto, R.; Kajzar, F. Influence of Nanostructuration Process on the Properties of Materials. Nonlinear Opt. Quantum Opt. 2012, 45, 153–160. [Google Scholar]
- Shurpo, N.V.; Serov, S.V.; Shmidt, A.V.; Margaryan, H.L.; Kamanina, N.V. Futures of fullerenes and carbon nanotubes for nonlinear optics and display application. Diam. Relat. Mater. 2009, 18, 931–934. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Bretonniere, Y.; Andraud, C. Organic systems and their photorefractive properties under the nano- and biostructuration: Scientific view and sustainable development. J. Nanomater. 2015, 2015, 278902. [Google Scholar] [CrossRef]
- Khoo, C.; Li, H.; Liang, Y. Observation of orientational photorefractive effects in nematic liquid crystal. Opt. Lett. 1994, 19, 1723–1725. [Google Scholar] [CrossRef] [PubMed]
- Tatsuura, S. Makoto Furuki Optical Switching System. US Patent No. 6.806.996. B2, 19 October 2004. [Google Scholar]
- Shirk, J.S.; Lindle, J.R.; Bartoli, F.J.; Hoffman, C.A.; Kafafi, Z.H.; Snow, A.W. Off-resonant third-order optical nonlinearities of metal-substituted phthalocyanines. Appl. Phys. Lett. 1989, 55, 1287–1288. [Google Scholar] [CrossRef]
- Nalwa, H.S.; Saito, T.; Kakuta, A.; Iwayanagi, T. Third-order nonlinear optical properties of polymorphs of oxotitanium phthalocyanine. J. Phys. Chem. 1993, 97, 10515–10517. [Google Scholar] [CrossRef]
- Wen, T.C.; Lian, I.D. Nanosecond measurements ofnonlinear absorption and refraction in solutions of bis-phthalocyanines at 532 nm. Synth. Metal. 1996, 83, 111–116. [Google Scholar] [CrossRef]
- Groznov, M.A.; Myl’nikov, V.S.; Soms, L.N.; Tarasov, A.A. Liquid-crystal space-time light modulator with a resolution higher than 1000 lines/mm. Sov. Phys.-Tech. Phys. 1987, 32, 1233–1234. [Google Scholar]
- Dumarevskii, Y.D.; Zakharova, T.V.; Kovtonyuk, N.F.; Lapshin, A.N.; Lomakin, A.E.; Sokolov, A.V. Characteristics of liquid crystal optically controlled transparencies based on α-Si:H photosensitive layers. Sov. J. Opt. Tech. 1989, 56, 729–732. [Google Scholar]
- Barannik, A.V.; Smorgon, S.L.; Syryanov, V.Y.; Shabanov, V.F. Stability ofthe transmittance ofoptical modulators based on polymer-encapsulated nematic liquid crystals. J. Opt. Technol. 1997, 64, 486–488. [Google Scholar]
- Babucke, H.; Thiele, P.; Prasse, T.; Rabe, M.; Henneberger, F. ZnSe-based electro-optic waveguide modulators for the blue-green spectral range. Semicond. Sci. Technol. 1998, 13, 200–206. [Google Scholar] [CrossRef]
- Caldwell, M.E.; Yeatman, E.M. Surface-plasmon spatial light modulators based on liquid crystal. Appl. Opt. 1992, 31, 3880–3891. [Google Scholar] [CrossRef]
- Kogan, P.; Apter, B.; Baal-Zedaka, I.; Efron, U. Computer simulation of liquid crystal spatial light modulator based on surface plasmon resonance. In Liquid Crystals XI; SPIE: Bellingham, WA, USA, 2007; Volume 6654, pp. 147–158. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, J.; Qu, Y.; Qiu, S.; Zhou, X.; Yan, B.; Wang, K.; Sang, X.; Yu, C. Design of a compressed hexagonal dual-core photonic crystal fiber polarization beam splitter with a liquid crystal filled air hole. Opt. Eng. 2022, 61, 057104. [Google Scholar] [CrossRef]
- Magno, G.; Grande, M.; D’Orazio, A. Graphene/liquid crystal-based multifunctional structure for tunable metasurfaces. In Metamaterials XIII; SPIE: Bellingham, WA, USA, 2022; Volume 12130, pp. 94–98. [Google Scholar] [CrossRef]
- Sasaki, T.; Yagami, T.; Takashi, T.; Van Le, K.; Naka, Y. Photorefractive effect of smectic liquid crystals and their application to laser ultrasonic remote sensing. In Photosensitive Materials and Their Applications II; SPIE: Bellingham, WA, USA, 2022; Volume 12151, pp. 84–90. [Google Scholar] [CrossRef]
System Studied | c, wt.% | W, J × cm−2 | Λ, mm−1 | Δni | Ref. |
---|---|---|---|---|---|
Pure PI | 0 | 0.6 | 90 | 10−4–10−5 | [29] |
PI + QDs CdSe(ZnS) | 0.003 | 0.2–0.3 | 90–100 | 2.0 × 10−3 | [50] |
PI + graphene oxide | 0.1 | 0.2 | 100 | 3.4 × 10−3 | [53] |
PI + graphene oxide | 0.2 | 0.2 | 100 | 3.7 × 10−3 | current |
PI + shungite | 0.1 | 0.6 | 100 | 3.6 × 10−3 | [50] |
PI + shungite | 0.2 | 0.6 | 100 | 5.1 × 10−3 | current |
PI + C60 | 0.2 | 0.5–0.6 | 90 | 4.2 × 10−3 | [29] |
PI + C70 | 0.2 | 0.6 | 90 | 4.68 × 10−3 | [54] |
PI + CNTs | 0.1 | 0.6 | 100 | 5.67 × 10−3 | current |
PI + CNTs | 0.05 | 0.3 | 150 | 4.5 × 10−3 | [31] |
PI + CNTs | 0.1 | 0.3 | 150 | 5.5 × 10−3 | [31] |
Pure COANP | 0 | 0.9 | 90–100 | ~10−5 | [29] |
COANP + C60 | 5 | 0.9 | 100 | 6.21 × 10−3 | [29] |
COANP + C70 | 5 | 0.9 | 100 | 6.89 × 10−3 | [29] |
COANP + graphene oxides | 0.2–0.6 | 100 | 0.95 × 10−2 | Current | |
LC based on the complex PI-C70 | 0.1 | 0.3 | 100 | 1.15 × 10−3 | [50] |
LC based on the complex PI-C70 | 0.2 | 0.2 | 90–100 | 1.2 × 10−3 | Current |
LC based on the complex COANP-C70 | 5 | 0.02 | 100 | 1.4 × 10−3 | [29] |
LC with DNA | * | 0.1 | 120 | 1.39 × 10−3 | [55] |
LC based on the complex CdSe(ZnS)-DNA | ** | 0.1 | 120 | 1.35 × 10−3 | [55] |
LC based on the complex CdSe(ZnS)-DNA | 0.1 | 100 | 1.42 × 10−3 | Current | |
LC | *** | 0.2 W × cm−2 | 0.16 × 10−3 | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N.; Likhomanova, S.; Zubtsova, Y. Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One. C 2022, 8, 43. https://doi.org/10.3390/c8030043
Kamanina N, Likhomanova S, Zubtsova Y. Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One. C. 2022; 8(3):43. https://doi.org/10.3390/c8030043
Chicago/Turabian StyleKamanina, Natalia, Svetlana Likhomanova, and Yulia Zubtsova. 2022. "Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One" C 8, no. 3: 43. https://doi.org/10.3390/c8030043
APA StyleKamanina, N., Likhomanova, S., & Zubtsova, Y. (2022). Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One. C, 8(3), 43. https://doi.org/10.3390/c8030043