Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = laser synthesis of materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 389 KiB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Viewed by 858
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 403
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

16 pages, 1767 KiB  
Article
Common Food-Wrap Film as a Cost-Effective and Readily Available Alternative to Thermoplastic Polyurethane (TPU) Membranes for Microfluidic On-Chip Valves and Pumps
by Huu Anh Minh Nguyen, Mark Volosov, Jessica Maffei, Dae Jung Martins Cruz and Roman Voronov
Micromachines 2025, 16(6), 657; https://doi.org/10.3390/mi16060657 - 30 May 2025
Viewed by 2913
Abstract
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a [...] Read more.
Microfluidic devices rely on precise fluid control to enable complex operations in diagnostics, chemical synthesis, and biological research. Central to this control are microvalves, which regulate on-chip flow but require flexible membranes for active operation. While the laser cutting of thermoplastics offers a fast, automated method for fabricating rigid microfluidic components, integrating flexible elements like valves and pumps remains a key challenge. Thermoplastic polyurethane (TPU) membranes have been adopted to address this need but are costly and difficult to procure reliably. In this study, we present commercial food-wrap film (FWF) as a low-cost, widely available alternative membrane material. We demonstrate FWF’s compatibility with laser-cut thermoplastic microfluidic devices by successfully fabricating Quake-style valves and peristaltic pumps. FWF valves maintained reliable sealing at 40 psi, maintained stable flow rates of ~1.33 μL/min during peristaltic operation, and sustained over one million continuous actuation cycles without performance degradation. Burst pressure testing confirmed robustness up to 60 psi. Additionally, FWF’s thermal resistance up to 140 °C enabled effective thermal bonding with PMMA layers, simplifying device assembly. These results establish FWF as a viable substitute for TPU membranes, offering an accessible and scalable solution for microfluidic device fabrication, particularly in resource-limited settings where TPU availability is constrained. Full article
Show Figures

Figure 1

72 pages, 7480 KiB  
Systematic Review
Synthesis of Iron-Based and Aluminum-Based Bimetals: A Systematic Review
by Jeffrey Ken B. Balangao, Carlito Baltazar Tabelin, Theerayut Phengsaart, Joshua B. Zoleta, Takahiko Arima, Ilhwan Park, Walubita Mufalo, Mayumi Ito, Richard D. Alorro, Aileen H. Orbecido, Arnel B. Beltran, Michael Angelo B. Promentilla, Sanghee Jeon, Kazutoshi Haga and Vannie Joy T. Resabal
Metals 2025, 15(6), 603; https://doi.org/10.3390/met15060603 - 27 May 2025
Viewed by 732
Abstract
Bimetals—materials composed of two metal components with dissimilar standard reduction–oxidation (redox) potentials—offer unique electronic, optical, and catalytic properties, surpassing monometallic systems. These materials exhibit not only the combined attributes of their constituent metals but also new and novel properties arising from their synergy. [...] Read more.
Bimetals—materials composed of two metal components with dissimilar standard reduction–oxidation (redox) potentials—offer unique electronic, optical, and catalytic properties, surpassing monometallic systems. These materials exhibit not only the combined attributes of their constituent metals but also new and novel properties arising from their synergy. Although many reviews have explored the synthesis, properties, and applications of bimetallic systems, none have focused exclusively on iron (Fe)- and aluminum (Al)-based bimetals. This systematic review addresses this gap by providing a comprehensive overview of conventional and emerging techniques for Fe-based and Al-based bimetal synthesis. Specifically, this work systematically reviewed recent studies from 2014 to 2023 using the Scopus, Web of Science (WoS), and Google Scholar databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and was registered under INPLASY with the registration number INPLASY202540026. Articles were excluded if they were inaccessible, non-English, review articles, conference papers, book chapters, or not directly related to the synthesis of Fe- or Al-based bimetals. Additionally, a bibliometric analysis was performed to evaluate the research trends on the synthesis of Fe-based and Al-based bimetals. Based on the 122 articles analyzed, Fe-based and Al-based bimetal synthesis methods were classified into three types: (i) physical, (ii) chemical, and (iii) biological techniques. Physical methods include mechanical alloying, radiolysis, sonochemical methods, the electrical explosion of metal wires, and magnetic field-assisted laser ablation in liquid (MF-LAL). In comparison, chemical protocols covered reduction, dealloying, supported particle methods, thermogravimetric methods, seed-mediated growth, galvanic replacement, and electrochemical synthesis. Meanwhile, biological techniques utilized plant extracts, chitosan, alginate, and cellulose-based materials as reducing agents and stabilizers during bimetal synthesis. Research works on the synthesis of Fe-based and Al-based bimetals initially declined but increased in 2018, followed by a stable trend, with 50% of the total studies conducted in the last five years. China led in the number of publications (62.3%), followed by Russia, Australia, and India, while Saudi Arabia had the highest number of citations per document (95). RSC Advances was the most active journal, publishing eight papers from 2014 to 2023, while Applied Catalysis B: Environmental had the highest number of citations per document at 203. Among the three synthesis methods, chemical techniques dominated, particularly supported particles, galvanic replacement, and chemical reduction, while biological and physical methods have started gaining interest. Iron–copper (Fe/Cu), iron–aluminum (Fe/Al), and iron–nickel (Fe/Ni) were the most commonly synthesized bimetals in the last 10 years. Finally, this work was funded by DOST-PCIEERD and DOST-ERDT. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

47 pages, 2999 KiB  
Review
Advances in the Synthesis of Carbon Nanomaterials Towards Their Application in Biomedical Engineering and Medicine
by Numair Elahi and Constantinos D. Zeinalipour-Yazdi
C 2025, 11(2), 35; https://doi.org/10.3390/c11020035 - 20 May 2025
Cited by 2 | Viewed by 2118
Abstract
Carbon nanomaterials that include different forms such as graphene, carbon nanotubes, fullerenes, graphite, nanodiamonds, carbon nanocones, amorphous carbon, as well as porous carbon, are quite distinguished by their unique structural, electrical, and mechanical properties. This plays a major role in making them pivotal [...] Read more.
Carbon nanomaterials that include different forms such as graphene, carbon nanotubes, fullerenes, graphite, nanodiamonds, carbon nanocones, amorphous carbon, as well as porous carbon, are quite distinguished by their unique structural, electrical, and mechanical properties. This plays a major role in making them pivotal in various medical applications. The synthesis methods used for such nanomaterials, including techniques such as chemical vapor deposition (CVD), arc discharge, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD), are able to offer very precise control over material purity, particle size, and scalability, enabling for nanomaterials catered for different specific applications. These materials have been explored in a range of different systems, which include drug-delivery systems, biosensors, tissue engineering, as well as advanced imaging techniques such as MRI and fluorescence imaging. Recent advancements, including green synthesis strategies and novel innovative approaches like ultrasonic cavitation, have improved both the precision as well as the scalability of carbon nanomaterial production. Despite challenges like biocompatibility and environmental concerns, these nanomaterials hold immense promise in revolutionizing personalized medicine, diagnostics, and regenerative therapies. Many of these applications are currently positioned at Technology Readiness Levels (TRLs) 3–4, with some systems advancing toward preclinical validation, highlighting their emerging translational potential in clinical settings. This review is specific in evaluating synthesis techniques of different carbon nanomaterials and establishing their modified properties for use in biomedicine. It focuses on how these techniques establish biocompatibility, scalability, and performance for use in medicines such as drug delivery, imaging, and tissue engineering. The implications of nanostructure behavior in biological environments are further discussed, with emphasis on applications in imaging, drug delivery, and biosensing. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications (2nd Edition))
Show Figures

Graphical abstract

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1074
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

12 pages, 4429 KiB  
Article
Optimized NaYF4: Er3+/Yb3+ Upconversion Nanocomplexes via Oleic Acid for Biomedical Applications
by Ha Thi Phuong, Le Thi Vinh, Tong Quang Cong, Tran Quoc Tien, Nguyen Duc Van, Vu Thi Hong Ha, Vu Ngoc Phan, Le Thi Hoi, Pham Duc Thang, Do Thi Thao and Tran Thu Huong
Inorganics 2025, 13(5), 140; https://doi.org/10.3390/inorganics13050140 - 29 Apr 2025
Cited by 1 | Viewed by 738
Abstract
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed [...] Read more.
This study presents the synthesis of NaYF4: Er3+/Yb3+ upconversion luminescent nanomaterials using a wet chemistry method. The role of oleic acid in influencing the size, shape, and luminescent properties of the materials was also investigated. The results showed that, at a suitable oleic acid concentration of 10−3 M, the obtained nanoparticles exhibited a nearly spherical morphology with diameters ranging from 150 to 250 nm and predominantly display a hexagonal (β-NaYF4) crystalline phase. Photoluminescence measurements under 980 nm laser excitation reveal that these nanoparticles emit strong, stable luminescence with narrow emission bands characteristic of Er3+ transitions. Subsequently, the nanoparticles were coated with a silica shell, functionalized with amine groups, and conjugated with IgG antibodies via glutaraldehyde (GA) to form the bio-nano complex β-NaYF4: Er3+/Yb3+@SNGA-IgG. In vitro experiments using fluorescence microscopy demonstrated that the complex effectively labels HeLa cervical cancer cells. With its robust upconversion luminescence and excellent biocompatibility, the developed nanocomplex shows promising potential for rapid pathogen detection and other biomedical applications. Full article
(This article belongs to the Special Issue Biological Activity of Metal Complexes)
Show Figures

Figure 1

20 pages, 8233 KiB  
Article
Transformation of TiN to TiNO Films via In-Situ Temperature-Dependent Oxygen Diffusion Process and Their Electrochemical Behavior
by Sheilah Cherono, Ikenna Chris-Okoro, Mengxin Liu, R. Soyoung Kim, Swapnil Nalawade, Wisdom Akande, Mihai Maria-Diana, Johannes Mahl, Christopher Hale, Junko Yano, Shyam Aravamudhan, Ethan Crumlin, Valentin Craciun and Dhananjay Kumar
Metals 2025, 15(5), 497; https://doi.org/10.3390/met15050497 - 29 Apr 2025
Viewed by 863
Abstract
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A [...] Read more.
Titanium oxynitride (TiNO) thin films represent a multifaceted material system applicable in diverse fields, including energy storage, solar cells, sensors, protective coatings, and electrocatalysis. This study reports the synthesis of TiNO thin films grown at different substrate temperatures using pulsed laser deposition. A comprehensive structural investigation was conducted by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Non-Rutherford backscattering spectrometry (N-RBS), and X-ray absorption spectroscopy (XAS), which facilitated a detailed analysis that determined the phase, composition, and crystallinity of the films. Structural control was achieved via temperature-dependent oxygen in-diffusion, nitrogen out-diffusion, and the nucleation growth process related to adatom mobility. The XPS analysis indicates that the TiNO films consist of heterogeneous mixtures of TiN, TiNO, and TiO2 phases with temperature-dependent relative abundances. The correlation between the structure and electrochemical behavior of the thin films was examined. The TiNO films with relatively higher N/O ratio, meaning less oxidized, were more electrochemically active than the films with lower N/O ratio, i.e., more oxidized films. Films with higher oxidation levels demonstrated enhanced crystallinity and greater stability under electrochemical polarization. These findings demonstrate the importance of substrate temperature control in tailoring the properties of TiNO film, which is a fundamental part of designing and optimizing an efficient electrode material. Full article
Show Figures

Figure 1

33 pages, 718 KiB  
Review
Proteomics in Diagnostic Evaluation and Treatment of Breast Cancer: A Scoping Review
by Menelaos Zafrakas, Ioannis Gavalas, Panayiota Papasozomenou, Christos Emmanouilides and Maria Chatzidimitriou
J. Pers. Med. 2025, 15(5), 177; https://doi.org/10.3390/jpm15050177 - 27 Apr 2025
Viewed by 1306
Abstract
Objectives: The aim of this scoping review was to delineate the current role and possible applications of proteomics in personalized breast cancer diagnostic evaluation and treatment. Methods: A comprehensive search in PubMed/MEDLINE and Scopus/EMBASE was conducted, according to the PRISMA–ScR guidelines. Inclusion criteria: [...] Read more.
Objectives: The aim of this scoping review was to delineate the current role and possible applications of proteomics in personalized breast cancer diagnostic evaluation and treatment. Methods: A comprehensive search in PubMed/MEDLINE and Scopus/EMBASE was conducted, according to the PRISMA–ScR guidelines. Inclusion criteria: proteomic studies of specimens from breast cancer patients, clinically relevant studies and clinical studies. Exclusion criteria: in silico, in vitro and studies in animal models, review articles, case reports, case series, comments, editorials, and articles in language other than English. The study protocol was registered in the Open Science Framework. Results: In total, 1093 records were identified, 170 papers were retrieved and 140 studies were selected for data extraction. Data analysis and synthesis of evidence showed that most proteomic analyses were conducted in breast tumor specimens (n = 77), followed by blood samples (n = 48), and less frequently in other biologic material taken from breast cancer patients (n = 19). The most commonly used methods were liquid chromatography–tandem mass spectrometry (LC–MS/MS), followed by Matrix-assisted laser desorption/ionization-time of flight (MALDI–TOF), Surface-Enhanced Laser Desorption/Ionization Time-of-Flight (SELDI–TOF) and Reverse Phase Protein Arrays (RPPA). Conclusions: The present review provides a thorough map of the published literature reporting clinically relevant results yielded from proteomic studies in various biological samples from different subgroups of breast cancer patients. This analysis shows that, although proteomic methods are not currently used in everyday practice to guide clinical decision-making, nevertheless numerous proteins identified by proteomics could be used as biomarkers for personalized diagnostic evaluation and treatment of breast cancer patients. Full article
Show Figures

Figure 1

24 pages, 3710 KiB  
Review
The Laser Powder Bed Fusion of Nd2Fe14B Permanent Magnets: The State of the Art
by Ivan Pelevin, Maria Lyange, Leonid Fedorenko, Stanislav Chernyshikhin and Irina Tereshina
Condens. Matter 2025, 10(2), 22; https://doi.org/10.3390/condmat10020022 - 24 Apr 2025
Viewed by 2143
Abstract
In recent years, significant effort was made to make the 3D printing of fully dense rare-earth permanent magnets a reality. Since suitable Nd2Fe14B-based initial powder material became available, additive manufacturing implementation spread widely, which led to many studies being [...] Read more.
In recent years, significant effort was made to make the 3D printing of fully dense rare-earth permanent magnets a reality. Since suitable Nd2Fe14B-based initial powder material became available, additive manufacturing implementation spread widely, which led to many studies being focused on using this material in 3D printing. This study shows the principal possibilities of the synthesis of Nd-Fe-B magnets by means of the laser powder bed fusion technique; moreover, this study shows significant progress in increasing their magnetic properties. This progress was made possible by different approaches, such as 3D-printing process optimization, the addition of a second phase (a low-melting eutectic) into the initial powder, the tuning of the main phase’s composition, and exploring different scanning strategies. However, the current level of material magnetic properties obtained via laser powder bed fusion is still far from that of magnets produced by using conventional powder metallurgy methods. The present review aims to capture the current state-of-the-art trials and highlight the main challenges. Full article
(This article belongs to the Section Magnetism)
Show Figures

Figure 1

17 pages, 9301 KiB  
Review
Recent Progress in Copper Nanowire-Based Flexible Transparent Conductors
by Jiaxin Shi, Mingyang Zhang, Su Ding and Ge Cao
Coatings 2025, 15(4), 465; https://doi.org/10.3390/coatings15040465 - 15 Apr 2025
Viewed by 1094
Abstract
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical [...] Read more.
With the increasing demand for alternatives to traditional indium tin oxide (ITO), copper nanowires (Cu NWs) have gained significant attention due to their excellent conductivity, cost-effectiveness, and ease of synthesis. However, challenges such as wire–wire contact resistance and oxidation susceptibility hinder their practical applications. This review discusses the development and challenges associated with Cu NW-based flexible transparent conductors (FTCs). Cu NWs are considered a promising alternative to traditional materials like ITO, thanks to their high electrical conductivity and low cost. This paper explores various synthesis methods for Cu NWs, including template-assisted synthesis, hydrazine reduction, and hydrothermal processes, while highlighting the advantages and limitations of each approach. The key challenges, such as contact resistance, oxidation, and the need for protective coatings, are also addressed. Several strategies to enhance the conductivity and stability of Cu NW-based FTCs are proposed, including thermal sintering, laser sintering, acid treatment, and photonic sintering. Additionally, protective coatings like noble metal core–shell layers, electroplated layers, and conductive polymers like PEDOT:PSS are discussed as effective solutions. The integration of graphene with Cu NWs is explored as a promising method to improve oxidation resistance and overall performance. The review concludes with an outlook on the future of Cu NWs in flexible electronics, emphasizing the need for scalable, cost-effective solutions to overcome current challenges and improve the practical application of Cu NW-based FTCs in advanced technologies such as displays, solar cells, and flexible electronics. Full article
(This article belongs to the Special Issue Design of Nanostructures for Energy and Environmental Applications)
Show Figures

Figure 1

12 pages, 1529 KiB  
Article
Synthesis and Application of Sol-Gel-Derived Nano-Silica in Glass Ionomer Cement for Dental Cementation
by Mohammad Dharma Utama, Nina Ariani, Edy Machmud, Acing Habibie Mude, Muhammad Akira Takashi Dharma, Aksani Taqwim and Risnawati Risnawati
Biomimetics 2025, 10(4), 235; https://doi.org/10.3390/biomimetics10040235 - 10 Apr 2025
Viewed by 491
Abstract
Although glass ionomer cements (GIC) are widely used in dental restorations, their long-term performance remains limited by their mechanical properties, including surface roughness and fracture resistance. This study investigates the synthesis of nano-silica from Thalassiosira sp. diatoms through the sol-gel process and its [...] Read more.
Although glass ionomer cements (GIC) are widely used in dental restorations, their long-term performance remains limited by their mechanical properties, including surface roughness and fracture resistance. This study investigates the synthesis of nano-silica from Thalassiosira sp. diatoms through the sol-gel process and its application in influencing the mechanical and physical properties of GIC luting materials. A control group and three experimental groups of different nano-silica concentrations (1%, 3%, and 5%) were compared. Several analyses, including confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and universal testing machines (UTM), were used to determine layer thickness, surface roughness, compressive strength, and tensile strength. Statistical analysis exhibited significant differences between the groups (p < 0.05). The 3% nano-silica group indicated an optimal compromise between mechanical strength and surface smoothness, while the 5% group showed increased thickness and roughness with slightly lower strength. These findings emphasize that the sol-gel-derived nano-silica from Thalassiosira sp. potentially enhances certain characteristics of GIC for possible dental cementation. Further research is needed to determine the long-term durability and bioactivity of these modified materials. Full article
Show Figures

Figure 1

35 pages, 4381 KiB  
Review
A Review of Finite Element Studies on Laser-Based Acoustic Applications in Solid Media
by Evaggelos Kaselouris and Vasilis Dimitriou
Modelling 2025, 6(2), 26; https://doi.org/10.3390/modelling6020026 - 24 Mar 2025
Viewed by 1156
Abstract
The integration of Finite Element Method (FEM) simulations with laser-based techniques has significantly advanced acoustic research by enhancing wave measurement, analysis, and prediction in complex solid media. This review examines the role of the FEM in laser-based acoustics for wave propagation, defect detection, [...] Read more.
The integration of Finite Element Method (FEM) simulations with laser-based techniques has significantly advanced acoustic research by enhancing wave measurement, analysis, and prediction in complex solid media. This review examines the role of the FEM in laser-based acoustics for wave propagation, defect detection, biomedical diagnostics, and engineering applications. FEM models simulate ultrasonic wave generation and propagation in single-layer and multilayered structures, while laser-based experimental techniques provide high-resolution validation, improving modeling accuracy. The synergy between laser-generated ultrasonic waves and FEM simulations enhances defect detection and material integrity assessment, making them invaluable for non-destructive evaluation. In biomedical applications, the FEM aids in tissue characterization and disease detection, while in engineering, its integration with laser-based methods contributes to noise reduction and vibration control. Furthermore, this review provides a comprehensive synthesis of FEM simulations and experimental validation while also highlighting the emerging role of artificial intelligence and machine learning in optimizing FEM models and improving computational efficiency, which has not been addressed in previous studies. Key advancements, challenges, and future research directions in laser-based acoustic applications are discussed. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Figure 1

29 pages, 5534 KiB  
Review
Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production
by Asim Jilani and Hussameldin Ibrahim
Energies 2025, 18(7), 1603; https://doi.org/10.3390/en18071603 - 23 Mar 2025
Cited by 2 | Viewed by 1610
Abstract
Hydrogen production via water splitting is a crucial strategy for addressing the global energy crisis and promoting sustainable energy solutions. This review systematically examines water-splitting mechanisms, with a focus on photocatalytic and electrochemical methods. It provides in-depth discussions on charge transfer, reaction kinetics, [...] Read more.
Hydrogen production via water splitting is a crucial strategy for addressing the global energy crisis and promoting sustainable energy solutions. This review systematically examines water-splitting mechanisms, with a focus on photocatalytic and electrochemical methods. It provides in-depth discussions on charge transfer, reaction kinetics, and key processes such as the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Various electrode synthesis techniques, including hydrothermal methods, chemical vapor deposition (CVD), pulsed laser deposition (PLD), and radio frequency sputtering (RF), are reviewed for their advantages and limitations. The role of carbon-based materials such as graphene, biochar, and graphitic carbon nitride (g-C3N4) in photocatalytic and photoelectrochemical (PEC) water splitting is also highlighted. Their exceptional conductivity, tunable band structures, and surface functionalities contribute to efficient charge separation and enhanced light absorption. Further, advancements in heterojunctions, doped systems, and hybrid composites are explored for their ability to improve photocatalytic and PEC performance by minimizing charge recombination, optimizing electronic structures, and increasing active sites for hydrogen and oxygen evolution reactions. Key challenges, including material stability, cost, scalability, and solar spectrum utilization, are critically analyzed, along with emerging strategies such as novel synthesis approaches and sustainable material development. By integrating water splitting mechanisms, electrode synthesis techniques, and advancements in carbon-based materials, this review provides a comprehensive perspective on sustainable hydrogen production, bridging previously isolated research domains. Full article
Show Figures

Figure 1

18 pages, 4829 KiB  
Article
Purification of CaF2 from Fluorine-Containing Sludge: Optimization via Calcium Ion Coexistence Effect
by Danyang Zhu, Xiang Chen, Hui Gong, Xiankai Wang, Xueyuan Qiao and Xiaohu Dai
Processes 2025, 13(2), 552; https://doi.org/10.3390/pr13020552 - 16 Feb 2025
Cited by 1 | Viewed by 1356
Abstract
The rapid development of the photovoltaic industry has significantly increased fluorine-containing sludge production. Calcium fluoride (CaF2), a vital non-renewable raw material used in optics, metallurgy, and chemical synthesis, holds immense significance for ensuring the sustainable supply of fluoride resources. This study [...] Read more.
The rapid development of the photovoltaic industry has significantly increased fluorine-containing sludge production. Calcium fluoride (CaF2), a vital non-renewable raw material used in optics, metallurgy, and chemical synthesis, holds immense significance for ensuring the sustainable supply of fluoride resources. This study focuses on purifying CaF2 from fluorine-containing sludge using a systematic approach. Through characterization techniques such as XRF, SEM-EDS, XRD, FT-IR, and laser granulometry, the sludge’s composition was thoroughly analyzed. An acid-leaching–alkali-leaching method was proposed and validated for CaF2 purification. A key finding during acid leaching was the “calcium ion coexistence effect”, where the dissolution of other calcium salts influences CaF2 dissolution equilibrium, reducing its loss. Leveraging this phenomenon, an optimized strategy was developed by increasing acid concentration while reducing acid volume. This approach effectively addresses two common challenges in traditional acid-leaching processes: high CaF2 dissolution loss and difficulties in impurity removal. Experimental results revealed that under optimized acid-leaching conditions, the purity of CaF2 increased significantly from an initial 36.7 wt% to 76.1 wt% after acid-leaching–alkali-leaching. This study demonstrates a successful method for purifying CaF2 from fluorine-containing sludge, providing a sustainable solution for fluoride resource recovery. Full article
(This article belongs to the Special Issue Circular Economy and Efficient Use of Resources (Volume II))
Show Figures

Figure 1

Back to TopTop