Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production
Abstract
:1. Introduction
2. Water Splitting Mechanism
2.1. Photocatalytic Water Splitting
2.2. Photoelectrochemical Reactions
2.2.1. Hydrogen Evolution Reaction
2.2.2. Oxygen Evolution Reaction
3. Electrode Synthesis Method for Water Splitting
3.1. Chemical Methods
3.1.1. Hydrothermal Fabrication
3.1.2. Electrochemical Deposition
3.2. Physical Method
4. Carbon-Based Material for Water Splitting
4.1. Graphene and Its Derivatives
4.2. Biochar for Water Splitting
4.3. Graphitic Carbon Nitride for Water Splitting
5. Challenges and Future Directions for Sustainable Hydrogen Production Using Photocatalytic and Electrochemical Methods
5.1. Challenges and Future Directions in Photocatalysis
5.2. Challenges and Future Directions in Electrocatalysis
5.3. Pathway to Large-Scale Implementation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barokh, H.; Siavashi, M. Pore-scale direct numerical simulation of steam methane reforming (SMR) for hydrogen production in open-cell porous catalytic foam. Int. J. Hydrog. Energy 2024, 83, 1294–1308. [Google Scholar] [CrossRef]
- Jeje, S.O.; Marazani, T.; Obiko, J.O.; Shongwe, M.B. Advancing the hydrogen production economy: A comprehensive review of technologies, sustainability, and future prospects. Int. J. Hydrog. Energy 2024, 78, 642–661. [Google Scholar] [CrossRef]
- Cho, H.H.; Strezov, V.; Evans, T.J. A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies. Sustain. Mater. Technol. 2023, 35, e00567. [Google Scholar] [CrossRef]
- Tüysüz, H. Alkaline Water Electrolysis for Green Hydrogen Production. Acc. Chem. Res. 2024, 57, 558–567. [Google Scholar] [CrossRef]
- Otto, M.; Chagoya, K.L.; Blair, R.G.; Hick, S.M.; Kapat, J.S. Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. J. Energy Storage 2022, 55, 105714. [Google Scholar] [CrossRef]
- Tahir, M.B.; Batool, A. Chapter 3—Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future perspectives. In Sustainable Materials and Green Processing for Energy Conversion; Cheong, K.Y., Apblett, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 97–130. [Google Scholar]
- Shahid, M.U.; Najam, T.; Helal, M.H.; Hossain, I.; El-Bahy, S.M.; El-Bahy, Z.M.; Rehman, A.u.; Shah, S.S.A.; Nazir, M.A. Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: A critical review. Int. J. Hydrog. Energy 2024, 62, 1113–1138. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts 2020, 10, 858. [Google Scholar] [CrossRef]
- Abdelouahed, L.; Kourdourli, F.; Taouk, B.; Estel, L. Energy evaluation of processes for the production of hydrogen from biomass biodigestion under Aspen Plus. In Computer Aided Chemical Engineering; Montastruc, L., Negny, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 51, pp. 163–168. [Google Scholar]
- Ma, X.; Tao, H. Chapter 6—Cost–benefit analysis of waste-to-biohydrogen systems. In Waste to Renewable Biohydrogen; Zhang, Q., He, C., Ren, J., Goodsite, M.E., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 123–141. [Google Scholar]
- Akhlaghi, N.; Najafpour-Darzi, G. A comprehensive review on biological hydrogen production. Int. J. Hydrog. Energy 2020, 45, 22492–22512. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.; Han, C.; Cai, T.; Cui, Y.; Xing, W.; Zhi, C. Corrosion of metallic anodes in aqueous batteries. Energy Environ. Sci. 2025, 18, 2050–2094. [Google Scholar] [CrossRef]
- Coronel-García, M.A.; Salazar-Barrera, J.G.; Malpica-Maldonado, J.J.; Martínez-Salazar, A.L.; Melo-Banda, J.A. Hydrogen production by aluminum corrosion in aqueous hydrochloric acid solution promoted by sodium molybdate dihydrate. Int. J. Hydrog. Energy 2020, 45, 13693–13701. [Google Scholar] [CrossRef]
- Kumar, D.; Muthukumar, K. An overview on activation of aluminium-water reaction for enhanced hydrogen production. J. Alloys Compd. 2020, 835, 155189. [Google Scholar] [CrossRef]
- Kalanur, S.S.; Duy, L.T.; Seo, H. Recent Progress in Photoelectrochemical Water Splitting Activity of WO3 Photoanodes. Top. Catal. 2018, 61, 1043–1076. [Google Scholar] [CrossRef]
- Nishioka, S.; Osterloh, F.E.; Wang, X.; Mallouk, T.E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Primers 2023, 3, 42. [Google Scholar] [CrossRef]
- Rosman, N.N.; Yunus, R.M.; Shah, N.R.A.M.; Shah, R.M.; Arifin, K.; Minggu, L.J.; Ludin, N.A. An overview of co-catalysts on metal oxides for photocatalytic water splitting. Int. J. Energy Res. 2022, 46, 11596–11619. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Amani, A.M. Photocatalytic systems: Reactions, mechanism, and applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef]
- Mohammed, Y.; Hafeez, H.Y.; Mohammed, J.; Suleiman, A.B.; Ndikilar, C.E.; Idris, M.G. Hydrogen production via photocatalytic water splitting using spinel ferrite-based photocatalysts: Recent and future perspectives. Next Energy 2024, 4, 100145. [Google Scholar] [CrossRef]
- Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. [Google Scholar] [CrossRef]
- Aldosari, O.F.; Hussain, I. Unlocking the potential of TiO2-based photocatalysts for green hydrogen energy through water-splitting: Recent advances, future perspectives and techno feasibility assessment. Int. J. Hydrog. Energy 2024, 59, 958–981. [Google Scholar] [CrossRef]
- Rafique, M.; Hajra, S.; Irshad, M.; Usman, M.; Imran, M.; Assiri, M.A.; Ashraf, W.M. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 2023, 8, 25640–25648. [Google Scholar] [CrossRef]
- Sharma, K.; Hasija, V.; Malhotra, M.; Verma, P.K.; Parwaz Khan, A.A.; Thakur, S.; Van Le, Q.; Phan Quang, H.H.; Nguyen, V.-H.; Singh, P.; et al. A review of CdS-based S-scheme for photocatalytic water splitting: Synthetic strategy and identification techniques. Int. J. Hydrog. Energy 2024, 52, 804–818. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Ajmal, Z.; Abd El-Gawad, H.H.; Ghernaout, D.; Al-Hadeethi, Y.; Raza, S.; Orooji, Y. Advances/Scope and prospects of g-C3N4 derived fascinating photocatalyst as a leading route towards solar energy adaption. J. Clean. Prod. 2024, 438, 140568. [Google Scholar] [CrossRef]
- Ashfaq, Z.; Iqbal, T.; Ali, H.; Eldin, S.M.; Mahtab Alam, M.; Al-Harbi, F.F.; Arshad, M.; Galal, A.M. Review of different CdS/TiO2 and WO3/ g-C3N4 composite based photocatalyst for hydrogen production. Arab. J. Chem. 2023, 16, 105024. [Google Scholar] [CrossRef]
- Keshipour, S.; Hadidi, M.; Gholipour, O. A Review on Hydrogen Generation by Photo-, Electro-, and Photoelectro-Catalysts Based on Chitosan, Chitin, Cellulose, and Carbon Materials Obtained from These Biopolymers. Adv. Polym. Technol. 2023, 2023, 8835940. [Google Scholar] [CrossRef]
- Wijayatha, K.G.U. 5—Photoelectrochemical cells for hydrogen generation. In Functional Materials for Sustainable Energy Applications; Kilner, J.A., Skinner, S.J., Irvine, S.J.C., Edwards, P.P., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 91–146e. [Google Scholar]
- Zhang, L.; Mohamed, H.H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 263–276. [Google Scholar]
- Mansoor, M.A.; Ehsan, M.A.; McKee, V.; Huang, N.-M.; Ebadi, M.; Arifin, Z.; Basirun, W.J.; Mazhar, M. Hexagonal structured Zn (1−x) Cd x O solid solution thin films: Synthesis, characterization and applications in photoelectrochemical water splitting. J. Mater. Chem. A 2013, 1, 5284–5292. [Google Scholar] [CrossRef]
- Mansoor, M.; Huang, N.; McKee, V.; Peiris, T.N.; Wijayantha, K.; Arifin, Z.; Misran, M.; Mazhar, M. Single phased MnZnO3 solid solution thin films for solar energy harvesting applications. Sol. Energy Mater. Sol. Cells 2015, 137, 258–264. [Google Scholar]
- Daraz, U.; Ansari, T.M.; Arain, S.A.; Mansoor, M.A.; Mazhar, M. Study of solvent effect on structural and photoconductive behavior of ternary chalcogenides InBiS3-In2S3-Bi2S3 composite thin films deposited via AACVD. Main Group Met. Chem. 2019, 42, 102–112. [Google Scholar]
- Naeem, R.; Shakir, S.; Sharif, S.; Afzal, S.; Bashir, S.; Mansoor, M.A. The photoelectrochemically enhanced oxygen evolution reaction via thin films of novel (1:2:1) SnO-Mn2O3-TiO2 hybrid nanotubes. Surf. Interfaces 2024, 46, 104034. [Google Scholar]
- Kang, J.; Ghule, B.G.; Gyeong, S.G.; Ha, S.-J.; Jang, J.-H. Alleviating Charge Recombination Caused by Unfavorable interaction of P and Sn in Hematite for Photoelectrochemical Water Oxidation. ACS Catal. 2024, 14, 10355–10364. [Google Scholar]
- Marriam, F.; Arshad, A.; Munawar, K.; Mansoor, M.A.; Ebadi, M.; Naeem, R. Synergistic Approach of TiO2@ MnZnO3 Heterostructure for Efficient Photoelectrochemical Water Splitting. J. Electrochem. Soc. 2024, 171, 096501. [Google Scholar] [CrossRef]
- Dong, G.; Yan, L.; Bi, Y. Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting. J. Mater. Chem. A 2023, 11, 3888–3903. [Google Scholar] [CrossRef]
- Balapure, A.; Dutta, J.R.; Ganesan, R. Recent advances in semiconductor heterojunctions: A detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Appl. Interfaces 2024, 1, 43–69. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336. [Google Scholar] [CrossRef]
- Anantharaj, S. Hydrogen evolution reaction on Pt and Ru in alkali with volmer-step promotors and electronic structure modulators. Curr. Opin. Electrochem. 2022, 33, 100961. [Google Scholar] [CrossRef]
- Xu, W.; Tang, X.-Q.; Zhang, Z.; Wang, Y.-R.; Luo, J.-L.; Bulugu, I.; Yin, W.-J.; Tang, X.; Shen, Y. Experimental and computational insight into the role of cobalt and phosphorus in boosting Volmer and Heyrovsky steps of Ni in alkaline hydrogen evolution reaction. Fuel 2024, 358, 130174. [Google Scholar] [CrossRef]
- Manohar, A.; Suvarna, T.; Chintagumpala, K.; Ubaidullah, M.; Mameda, N.; Kim, K.H. Exploring progress in binary and ternary nanocomposites for photoelectrochemical water splitting: A comprehensive review. Coord. Chem. Rev. 2025, 522, 216180. [Google Scholar] [CrossRef]
- Varanasi, J.L.; Veerubhotla, R.; Pandit, S.; Das, D. Chapter 5.7—Biohydrogen Production Using Microbial Electrolysis Cell: Recent Advances and Future Prospects. In Microbial Electrochemical Technology; Mohan, S.V., Varjani, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 843–869. [Google Scholar]
- Zhang, B.; Yao, J.; Liu, J.; Zhang, T.; Wan, H.; Wang, H. Reducing the pH dependence of hydrogen evolution kinetics via surface reactivity diversity in medium-entropy alloys. EES Catal. 2023, 1, 1017–1024. [Google Scholar] [CrossRef]
- Joshi, K.K.; Pataniya, P.M.; Bhadu, G.R.; Sumesh, C.K. Cu2CoSnS4 electrocatalyst embedded paper working electrodes for efficient, stable, pH universal, and large-current-density hydrogen evolution reaction. Int. J. Hydrog. Energy 2024, 49, 829–842. [Google Scholar] [CrossRef]
- Ďurovič, M.; Hnát, J.; Bouzek, K. Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. J. Power Sources 2021, 493, 229708. [Google Scholar] [CrossRef]
- van der Heijden, O.; Park, S.; Vos, R.E.; Eggebeen, J.J.J.; Koper, M.T.M. Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Lett. 2024, 9, 1871–1879. [Google Scholar] [CrossRef]
- Singha Roy, S.; Nagappan, S.; Satheesan, A.K.; Karmakar, A.; Kundu, S. Surface-Enhanced Raman Scattering Coupled with In Situ Raman Spectroscopy for the Detection of the OER Mechanism: A Mini-Review. J. Phys. Chem. C 2024, 128, 13634–13650. [Google Scholar] [CrossRef]
- Liang, C.; Katayama, Y.; Tao, Y.; Morinaga, A.; Moss, B.; Celorrio, V.; Ryan, M.; Stephens, I.E.L.; Durrant, J.R.; Rao, R.R. Role of Electrolyte pH on Water Oxidation for Iridium Oxides. J. Am. Chem. Soc. 2024, 146, 8928–8938. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jung, W. Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 15506–15521. [Google Scholar] [CrossRef]
- Wang, H.; Sun, F.; Qi, J.; Zhang, D.; Sun, H.; Wang, Q.; Li, Z.; Wu, Y.A.; Hu, Z.; Wang, B. Recent progress on layered double hydroxides: Comprehensive regulation for enhanced oxygen evolution reaction. Mater. Today Energy 2022, 27, 101036. [Google Scholar] [CrossRef]
- Chen, K.; Dao, V.; Yadav, S.; Lee, I.-H. Progress and perspective of transition metal layered double hydroxides with oxygen vacancies for enhancing water splitting applications: A review. J. Environ. Chem. Eng. 2024, 12, 113773. [Google Scholar] [CrossRef]
- Han, C.; Zhao, Y.; Yuan, Y.; Guo, Z.; Chen, G.; Yang, J.; Bao, Q.; Guo, L.; Chen, C. Transition metal-based layered double hydroxides and their derivatives for efficient oxygen evolution reaction. Int. J. Hydrog. Energy 2024, 63, 918–936. [Google Scholar] [CrossRef]
- Aghamohammadi, P.; Hüner, B.; Altıncı, O.C.; Akgul, E.T.; Teymur, B.; Simsek, U.B.; Demir, M. Recent advances in the electrocatalytic applications (HER, OER, ORR, water splitting) of transition metal borides (MBenes) materials. Int. J. Hydrog. Energy 2024, 87, 179–198. [Google Scholar] [CrossRef]
- Raza, A.; Hassan, J.Z.; Qumar, U.; Zaheer, A.; Babar, Z.U.D.; Iannotti, V.; Cassinese, A. Strategies for robust electrocatalytic activity of 2D materials: ORR, OER, HER, and CO2RR. Mater. Today Adv. 2024, 22, 100488. [Google Scholar] [CrossRef]
- Ismail, N.; Qin, F.; Fang, C.; Liu, D.; Liu, B.; Liu, X.; Wu, Z.-l.; Chen, Z.; Chen, W. Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate 2021, 2, e106. [Google Scholar] [CrossRef]
- Liu, C.; Qian, J.; Ye, Y.; Zhou, H.; Sun, C.-J.; Sheehan, C.; Zhang, Z.; Wan, G.; Liu, Y.-S.; Guo, J. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45. [Google Scholar]
- Ehsan, M.A.; Aftab, F.; Younas, M.; Mansoor, M.A.; Ahmed, S. Graphite sheet-supported bimetallic RhNi thin film alloys for enhanced and durable hydrogen evolution in acidic environments. Int. J. Hydrog. Energy 2024, 69, 411–420. [Google Scholar]
- Bibi, H.; Mansoor, M.A.; Asghar, M.A.; Ahmad, Z.; Numan, A.; Haider, A. Facile hydrothermal synthesis of highly durable binary and ternary cobalt nickel copper oxides for high-performance oxygen evolution reaction. Int. J. Hydrog. Energy 2024, 107, 369–377. [Google Scholar]
- Guo, T.; Li, L.; Wang, Z. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2200827. [Google Scholar]
- Antipin, D.; Risch, M. Calculation of the Tafel slope and reaction order of the oxygen evolution reaction between pH 12 and pH 14 for the adsorbate mechanism. Electrochem. Sci. Adv. 2023, 3, e2100213. [Google Scholar]
- Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S. Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions. ChemElectroChem 2021, 8, 195–208. [Google Scholar] [CrossRef]
- Long, G.-f.; Wan, K.; Liu, M.-y.; Liang, Z.-x.; Piao, J.-h.; Tsiakaras, P. Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction. J. Catal. 2017, 348, 151–159. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, X.; Eikerling, M. The rate-determining term of electrocatalytic reactions with first-order kinetics. Electrochim. Acta 2021, 393, 139019. [Google Scholar] [CrossRef]
- Wan, C.; Ling, Y.; Wang, S.; Pu, H.; Huang, Y.; Duan, X. Unraveling and Resolving the Inconsistencies in Tafel Analysis for Hydrogen Evolution Reactions. ACS Cent. Sci. 2024, 10, 658–665. [Google Scholar]
- Alnarabiji, M.S.; Tsang, S.C.E.; Mahadi, A.H. Advances in electrode synthesis and fabrication for electrochemical water splitting. Fuel 2024, 357, 129741. [Google Scholar] [CrossRef]
- Ashraf, I.; Ahmad, S.; Nazir, F.; Dastan, D.; Shi, Z.; Garmestani, H.; Iqbal, M. Hydrothermal synthesis and water splitting application of d-Ti3C2 MXene/V2O5 hybrid nanostructures as an efficient bifunctional catalyst. Int. J. Hydrog. Energy 2022, 47, 27383–27396. [Google Scholar] [CrossRef]
- Boukhouiete, A.; Boumendjel, S.; SOBHI, N.-E.-H. Effect of current density on the microstructure and morphology of the electrodepositednickel coatings. Turk. J. Chem. 2021, 45, 1599–1608. [Google Scholar] [PubMed]
- Sarawutanukul, S.; Phattharasupakun, N.; Sawangphruk, M. 3D CVD graphene oxide-coated Ni foam as carbo- and electro-catalyst towards hydrogen evolution reaction in acidic solution: In situ electrochemical gas chromatography. Carbon 2019, 151, 109–119. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W. Water Splitting: From Electrode to Green Energy System. Nano-Micro Lett. 2020, 12, 131. [Google Scholar] [CrossRef]
- O’Hare, D. Hydrothermal Synthesis. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 3989–3992. [Google Scholar]
- Liu, Y.; Huang, B.; Xie, Z. Hydrothermal synthesis of core-shell MoO2/α-Mo2C heterojunction as high performance electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2018, 427, 693–701. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Wang, B.; Ma, M.-G.; Lin, K.-L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 2016, 1–2, 63–83. [Google Scholar] [CrossRef]
- Kim, Y.; Jun, S.E.; Lee, G.; Nam, S.; Jang, H.W.; Park, S.H.; Kwon, K.C. Recent Advances in Water-Splitting Electrocatalysts Based on Electrodeposition. Materials 2023, 16, 3044. [Google Scholar] [CrossRef]
- Sakairi, M.; Goto, Y.; Fushimi, K.; Kikuchi, T.; Takahashi, H. Fabrication of Cu Micro-rods with Co-axial Dual Capillary Solution Flow Type Droplet Cell and Electrodeposition with the Cell. Electrochemistry 2010, 78, 118–121. [Google Scholar] [CrossRef]
- Sengupta, S.; Patra, A.; Jena, S.; Das, K.; Das, S. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits. Metall. Mater. Trans. A 2018, 49, 920–937. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Johannes, N. Electrodeposition of Ir–Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. Int. J. Hydrog. Energy 2021, 46, 609–621. [Google Scholar]
- Milchev, A. Electrocrystallization: Fundamentals of Nucleation and Growth; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Koshy, S.S.; Rath, J.; Kiani, A. Fabrication of binder-less metal electrodes for electrochemical water splitting—A review. Heliyon 2024, 10, e37188. [Google Scholar] [CrossRef]
- Zhao, Z.; Schipper, D.E.; Leitner, A.P.; Thirumalai, H.; Chen, J.-H.; Xie, L.; Qin, F.; Alam, M.K.; Grabow, L.C.; Chen, S.; et al. Bifunctional metal phosphide FeMnP films from single source metal organic chemical vapor deposition for efficient overall water splitting. Nano Energy 2017, 39, 444–453. [Google Scholar] [CrossRef]
- Sivagurunathan, A.T.; Adhikari, S.; Kim, D.-H. Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: Recent advances and prospects. Nano Energy 2021, 83, 105802. [Google Scholar] [CrossRef]
- Kavinkumar, T.; Seenivasan, S.; Jung, H.; Han, J.W.; Kim, D.-H. Atomic layer deposition-triggered hierarchical core/shell stable bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 21132–21141. [Google Scholar] [CrossRef]
- Ng, S.; Sanna, M.; Redondo, E.; Pumera, M. Engineering 3D-printed carbon structures with atomic layer deposition coatings as photoelectrocatalysts for water splitting. J. Mater. Chem. A 2024, 12, 396–404. [Google Scholar] [CrossRef]
- Haydous, F.; Si, W.; Guzenko, V.A.; Waag, F.; Pomjakushina, E.; El Kazzi, M.; Sévery, L.; Wokaun, A.; Pergolesi, D.; Lippert, T. Improved Photoelectrochemical Water Splitting of CaNbO2N Photoanodes by CoPi Photodeposition and Surface Passivation. J. Phys. Chem. C 2019, 123, 1059–1068. [Google Scholar] [CrossRef]
- Ladhane, S.; Shah, S.; Shinde, P.; Punde, A.; Waghmare, A.; Hase, Y.; Bade, B.R.; Doiphode, V.; Rahane, S.N.; Kale, D.; et al. Enhanced Photoelectrochemical Activity Realized from WS2 Thin Films Prepared by RF-Magnetron Sputtering for Water Splitting. ChemElectroChem 2024, 11, e202400002. [Google Scholar] [CrossRef]
- Kozejova, M.; Bodnarova, R.; Latyshev, V.; Lisnichuk, M.; Girman, V.; You, H.; Komanicky, V. Structural dependence of hydrogen evolution reaction on transition metal catalysts sputtered at different temperatures in alkaline media. Int. J. Hydrog. Energy 2022, 47, 26987–26999. [Google Scholar] [CrossRef]
- Mathankumar, M.; Balasubramanian, S.; Hasin, P.; Lin, J.-Y. Pulsed laser deposition as an efficient tool to enhance the performance of electrocatalysis design, strategies and current perspectives. Int. J. Hydrog. Energy 2024, 60, 668–687. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Fominski, V.Y.; Romanov, R.I.; Volosova, M.A.; Shelyakov, A.V. Pulsed laser deposition of nanocomposite MoSex/Mo thin-film catalysts for hydrogen evolution reaction. Thin Solid Film. 2015, 592, 175–181. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Lv, Z.; Wang, M.; Dang, J. Recent strategies to improve the catalytic activity of pristine MOFs and their derived catalysts in electrochemical water splitting. Int. J. Hydrog. Energy 2023, 48, 30435–30463. [Google Scholar] [CrossRef]
- Mohsin, M.; Ishaq, T.; Bhatti, I.A.; Maryam; Jilani, A.; Melaibari, A.A.; Abu-Hamdeh, N.H. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Nanomaterials 2023, 13, 546. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.S.; Ahmad, N.B.H.; Afroze, S.; Taweekun, J.; Sharifpur, M.; Azad, A.K. Hydrogen Production from Water Splitting through Photocatalytic Activity of Carbon-Based Materials. Chem. Eng. Technol. 2023, 46, 420–434. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Jilani, A.; Othman, M.H.D.; Ansari, M.O.; Hussain, S.Z.; Ismail, A.F.; Khan, I.U.; Inamuddin. Graphene and its derivatives: Synthesis, modifications, and applications in wastewater treatment. Environ. Chem. Lett. 2018, 16, 1301–1323. [Google Scholar] [CrossRef]
- Karthik, G.; Rosaiah, P.; Albaqami, M.D.; Nunna, G.P.; Ko, T.J. Investigating the influence of oxygen-functionalized graphene nanosheets as an efficient multifunctional material for supercapacitor and electrocatalytic water splitting applications. Diam. Relat. Mater. 2024, 147, 111293. [Google Scholar] [CrossRef]
- Sadiq, I.; Ali, S.A.; Ahmad, T. Graphene-Based Derivatives Heterostructured Catalytic Systems for Sustainable Hydrogen Energy via Overall Water Splitting. Catalysts 2023, 13, 109. [Google Scholar] [CrossRef]
- Wang, P.; Zhan, S.; Xia, Y.; Ma, S.; Zhou, Q.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 2017, 207, 335–346. [Google Scholar] [CrossRef]
- Hafeez, H.Y.; Lakhera, S.K.; Bellamkonda, S.; Rao, G.R.; Shankar, M.V.; Bahnemann, D.W.; Neppolian, B. Construction of ternary hybrid layered reduced graphene oxide supported g-C3N4-TiO2 nanocomposite and its photocatalytic hydrogen production activity. Int. J. Hydrog. Energy 2018, 43, 3892–3904. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Li, Y.; Fan, X.; Zhang, G.; Zhang, F.; Peng, W. Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. J. Colloid Interface Sci. 2020, 577, 101–108. [Google Scholar] [CrossRef]
- Alotaibi, N.H.; Shah, J.H.; Nisa, M.U.; Mohammad, S.; Günhan Özcan, H.; Abid, A.G.; Allakhverdiev, S.I. Catalytic enhancement of graphene oxide by trace molybdenum oxide nanoparticles doping: Optimized electrocatalyst for green hydrogen production. Int. J. Hydrog. Energy 2024, 62, 488–497. [Google Scholar] [CrossRef]
- Louis, J.; Padmanabhan, N.T.; Jayaraj, M.K.; John, H. Exploring enhanced interfacial charge separation in ZnO/reduced graphene oxide hybrids on alkaline photoelectrochemical water splitting and photocatalytic pollutant degradation. Mater. Res. Bull. 2024, 169, 112542. [Google Scholar] [CrossRef]
- Younas, U.; Mobeen, F.; Saleem, A.; Ali, F.; Huwayz, M.A.; Ashraf, A.; Ahmad, A.; Alwadai, N.; Pervaiz, M.; Iqbal, M. Efficient hydrogen production via overall water splitting using CuO/ZnO decorated reduced graphene oxide as bifunctional electrocatalyst. Ceram. Int. 2024, 50, 30570–30578. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, R.; Dong, G.; Xiang, M.; Hui, J.; Ou, J.; Qin, H. Biochar Nanocomposite Derived from Watermelon Peels for Electrocatalytic Hydrogen Production. ACS Omega 2021, 6, 2066–2073. [Google Scholar] [CrossRef]
- Mian, M.M.; Alam, N.; Ahommed, M.S.; He, Z.; Ni, Y. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: A review. J. Clean. Prod. 2022, 360, 132131. [Google Scholar] [CrossRef]
- Chi, N.T.L.; Anto, S.; Ahamed, T.S.; Kumar, S.S.; Shanmugam, S.; Samuel, M.S.; Mathimani, T.; Brindhadevi, K.; Pugazhendhi, A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel 2021, 287, 119411. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, W.; Peng, H.; Pan, B.; Xing, B. Functional Biochar and Its Balanced Design. ACS Environ. Au 2022, 2, 115–127. [Google Scholar] [CrossRef]
- Janu, R.; Mrlik, V.; Ribitsch, D.; Hofman, J.; Sedláček, P.; Bielská, L.; Soja, G. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 2021, 4, 36–46. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, M.; Li, Q.; Lu, S.; Zhou, D.; Feng, L.; Hou, Z.; Yu, J. Comparative analysis of the properties of biochars produced from different pecan feedstocks and pyrolysis temperatures. Ind. Crops Prod. 2023, 197, 116638. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Ho, S.-H.; Zhu, S.; Chang, J.-S. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresour. Technol. 2017, 246, 123–134. [Google Scholar] [CrossRef]
- Lou, T.; Yin, Y.; Wang, J. Recent advances in effect of biochar on fermentative hydrogen production: Performance and mechanisms. Int. J. Hydrog. Energy 2024, 57, 315–327. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, Q.; Gu, Y.; Nie, X.; Shan, R. Review of Advances in the Utilization of Biochar-Derived Catalysts for Biodiesel Production. ACS Omega 2023, 8, 8190–8200. [Google Scholar] [CrossRef]
- Amdeha, E. Biochar-based nanocomposites for industrial wastewater treatment via adsorption and photocatalytic degradation and the parameters affecting these processes. Biomass Convers. Biorefinery 2023, 14, 23293–23318. [Google Scholar] [CrossRef]
- Bhatt, M.D.; Lee, J.S. Nanomaterials for photocatalytic hydrogen production: From theoretical perspectives. RSC Adv. 2017, 7, 34875–34885. [Google Scholar] [CrossRef]
- An, M.; Yang, Z.; Zhang, B.; Xue, B.; Xu, G.; Chen, W.; Wang, S. Construction of biochar-modified TiO2 anatase-rutile phase S-scheme heterojunction for enhanced performance of photocatalytic degradation and photocatalytic hydrogen evolution. J. Environ. Chem. Eng. 2023, 11, 110367. [Google Scholar] [CrossRef]
- Deng, C.; Peng, L.; Ling, X.; Wang, T.; Xu, R.; Zhu, Y.; Wang, C.; Qian, X.; Wang, L.; Wu, Y.; et al. Construction of S-scheme Zn0.2Cd0.8S/biochar aerogel architectures for boosting photocatalytic hydrogen production under sunlight irradiation. J. Clean. Prod. 2023, 414, 137616. [Google Scholar] [CrossRef]
- Deng, C.; Ling, X.; Peng, L.; Wang, T.; Xu, R.; Zhu, Y.; Zhang, W.; Sun, P.; Wu, Y.; Hu, H.; et al. Constructing nano CdS-decorated porous biomass-derived carbon for multi-channel synergetic photocatalytic hydrogen evolution under solar lighting. Appl. Surf. Sci. 2023, 623, 157065. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Gomari, K.A.; Hafeez, H.Y.; Mohammed, J.; Dankawu, U.M.; Ndikilar, C.E.; Suleiman, A.B. A recent development and future prospect of g–C3N4–based photocatalyst for stable hydrogen (H2) generation via photocatalytic water-splitting. Int. J. Hydrog. Energy 2024, 85, 598–624. [Google Scholar] [CrossRef]
- Kuila, S.K.; Guchhait, S.K.; Mandal, D.; Kumbhakar, P.; Chandra, A.; Tiwary, C.S.; Kundu, T.K. Dimensionality effects of g-C3N4 from wettability to solar light assisted self-cleaning and electrocatalytic oxygen evolution reaction. Chemosphere 2023, 333, 138951. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, Z.; Wang, Y.; Ai, H.; Zhang, W.; Liu, X.; Han, X.; Zhao, J.; Zhang, H. Exploiting synergistic effects: Co3O4/g-C3N4 composite catalyst for enhanced oxygen evolution reaction. Int. J. Electrochem. Sci. 2023, 18, 100394. [Google Scholar] [CrossRef]
- Pan, J.; Wang, P.; Wang, P.; Yu, Q.; Wang, J.; Song, C.; Zheng, Y.; Li, C. The photocatalytic overall water splitting hydrogen production of g-C3N4/CdS hollow core–shell heterojunction via the HER/OER matching of Pt/MnOx. Chem. Eng. J. 2021, 405, 126622. [Google Scholar] [CrossRef]
- BaQais, A.; Shariq, M.; Qamar, M.A.; Alhasmialameer, D.; Alharbi, A.F.; Althikrallah, H.A.; Alrahili, M.R.; Alrashdi, K.S. Synthesis and characterization of (Ni, Mn)-ZnO/g-C3N4 nanocomposite for efficient electrochemical water splitting: The role of electrocatalyst for OER. Diam. Relat. Mater. 2024, 147, 111343. [Google Scholar] [CrossRef]
- Paul, A.M.; Sajeev, A.; Nivetha, R.; Gothandapani, K.; Bhardwaj, P.; Raghavan, V.; Jacob, G.; Sellapan, R.; Jeong, S.K.; Grace, A.N. Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diam. Relat. Mater. 2020, 107, 107899. [Google Scholar] [CrossRef]
- Sowmya, S.; Vijaikanth, V. g-C3N4/Chlorocobaloxime Nanocomposites as Multifunctional Electrocatalysts for Water Splitting and Energy Storage. ACS Omega 2023, 8, 32940–32954. [Google Scholar] [CrossRef]
Method | Technique | Key Advantages | Disadvantages | Ref. |
---|---|---|---|---|
Physical | CVD | Deposits thin-film electrodes from vapor-phase precursors on various substrates. Repeatable once optimized. Excellent control over film thickness and uniformity. | Requires high temperatures; risk of contamination and defects; high energy consumption; costly. | [67,77,78] |
ALD | Can deposit thin electrodes at the angstrom scale with excellent conformality. Ideal for coating complex structures. | Very slow process, limiting scalability; high cost for large-scale production | [79,80,82] | |
RF sputtering | Room-temperature process; enables uniform deposition with high reproducibility. Suitable for a wide range of materials. | Limited control over electrode morphology and density; high vacuum required. | [83,84] | |
PLD | Enables electrode fabrication scaling due to the larger electrode size (10 × 10 cm); flexibility in coating thickness from nanometers to micrometers. | Higher production cost for large-scale applications; equipment is expensive and energy intensive. | [85,86] | |
Chemical | Hydrothermal | Versatile and cost-effective; allows varied electrode morphologies; can integrate multiple materials into one structure. | Long reaction times; energy-intensive; requires stringent safety measures due to high-pressure conditions. | [64,66,73,74,75,76] |
Electrochemical Deposition | Simple, low-cost process with controllable composition. Suitable for large-scale production. | Surface roughness issues; poor adhesion in some cases; limited to conductive substrates; potential environmental concerns. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jilani, A.; Ibrahim, H. Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production. Energies 2025, 18, 1603. https://doi.org/10.3390/en18071603
Jilani A, Ibrahim H. Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production. Energies. 2025; 18(7):1603. https://doi.org/10.3390/en18071603
Chicago/Turabian StyleJilani, Asim, and Hussameldin Ibrahim. 2025. "Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production" Energies 18, no. 7: 1603. https://doi.org/10.3390/en18071603
APA StyleJilani, A., & Ibrahim, H. (2025). Development in Photoelectrochemical Water Splitting Using Carbon-Based Materials: A Path to Sustainable Hydrogen Production. Energies, 18(7), 1603. https://doi.org/10.3390/en18071603