Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = large-scale battery energy storage system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 1907 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

31 pages, 5644 KiB  
Article
Mitigation Technique Using a Hybrid Energy Storage and Time-of-Use (TOU) Approach in Photovoltaic Grid Connection
by Mohammad Reza Maghami, Jagadeesh Pasupuleti, Arthur G. O. Mutambara and Janaka Ekanayake
Technologies 2025, 13(8), 339; https://doi.org/10.3390/technologies13080339 - 5 Aug 2025
Abstract
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a [...] Read more.
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a pair of 132/11 kV, 15 MVA transformers, supplying a total load of 20.006 MVA. Each node is integrated with a 100 kW PV system, enabling up to 100% PV penetration scenarios. A hybrid mitigation strategy combining TOU-based load shifting and BESS was implemented to address voltage violations occurring, particularly during low-load night hours. Dynamic simulations using DIgSILENT PowerFactory were conducted under worst-case (no load and peak load) conditions. The novelty of this research is the use of real rural network data to validate a hybrid BESS–TOU strategy, supported by detailed sensitivity analysis across PV penetration levels. This provides practical voltage stabilization insights not shown in earlier studies. Results show that at 100% PV penetration, TOU or BESS alone are insufficient to fully mitigate voltage drops. However, a hybrid application of 0.4 MWh BESS with 20% TOU load shifting eliminates voltage violations across all nodes, raising the minimum voltage from 0.924 p.u. to 0.951 p.u. while reducing active power losses and grid dependency. A sensitivity analysis further reveals that a 60% PV penetration can be supported reliably using only 0.4 MWh of BESS and 10% TOU. Beyond this, hybrid mitigation becomes essential to maintain stability. The proposed solution demonstrates a scalable approach to enable large-scale PV integration in dense rural grids and addresses the specific operational characteristics of Malaysian networks, which differ from commonly studied IEEE test systems. This work fills a critical research gap by using real local data to propose and validate practical voltage mitigation strategies. Full article
Show Figures

Figure 1

14 pages, 1536 KiB  
Article
Control Strategy of Multiple Battery Energy Storage Stations for Power Grid Peak Shaving
by Peiyu Chen, Wenqing Cui, Jingan Shang, Bin Xu, Chao Li and Danyang Lun
Appl. Sci. 2025, 15(15), 8656; https://doi.org/10.3390/app15158656 (registering DOI) - 5 Aug 2025
Abstract
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy [...] Read more.
In order to achieve the goals of carbon neutrality, large-scale storage of renewable energy sources has been integrated into the power grid. Under these circumstances, the power grid faces the challenge of peak shaving. Therefore, this paper proposes a coordinated variable-power control strategy for multiple battery energy storage stations (BESSs), improving the performance of peak shaving. Firstly, the strategy involves constructing an optimization model incorporating load forecasting, capacity constraints, and security indices to design a coordination mechanism tracking the target load band with the equivalent power. Secondly, it establishes a quantitative evaluation system using metrics such as peak–valley difference and load standard deviation. Comparison based on typical daily cases shows that, compared with the constant power strategy, the coordinated variable-power control strategy has a more obvious and comprehensive improvement in overall peak-shaving effects. Furthermore, it employs a “dynamic dispatch of multiple BESS” mode, effectively mitigating the risks and flexibility issues associated with single BESSs. This strategy provides a reliable new approach for large-scale energy storage to participate in high-precision peaking. Full article
Show Figures

Figure 1

21 pages, 2608 KiB  
Review
Recent Progress on the Research of 3D Printing in Aqueous Zinc-Ion Batteries
by Yating Liu, Haokai Ding, Honglin Chen, Haoxuan Gao, Jixin Yu, Funian Mo and Ning Wang
Polymers 2025, 17(15), 2136; https://doi.org/10.3390/polym17152136 - 4 Aug 2025
Abstract
The global transition towards a low-carbon energy system urgently demands efficient and safe energy storage solutions. Aqueous zinc-ion batteries (AZIBs) are considered a promising alternative to lithium-ion batteries due to their inherent safety and environmental friendliness. However, conventional manufacturing methods are costly and [...] Read more.
The global transition towards a low-carbon energy system urgently demands efficient and safe energy storage solutions. Aqueous zinc-ion batteries (AZIBs) are considered a promising alternative to lithium-ion batteries due to their inherent safety and environmental friendliness. However, conventional manufacturing methods are costly and labor-intensive, hindering their large-scale production. Recent advances in 3D printing technology offer innovative pathways to address these challenges. By combining design flexibility with material optimization, 3D printing holds the potential to enhance battery performance and enable customized structures. This review systematically examines the application of 3D printing technology in fabricating key AZIB components, including electrodes, electrolytes, and integrated battery designs. We critically compare the advantages and disadvantages of different 3D printing techniques for these components, discuss the potential and mechanisms by which 3D-printed structures enhance ion transport and electrochemical stability, highlight critical existing scientific questions and research gaps, and explore potential strategies for optimizing the manufacturing process. Full article
(This article belongs to the Special Issue Polymeric Materials for Next-Generation Energy Storage)
Show Figures

Figure 1

13 pages, 3774 KiB  
Article
Design of TEMPO-Based Polymer Cathode Materials for pH-Neutral Aqueous Organic Redox Flow Batteries
by Yanwen Ren, Qianqian Zheng, Cuicui He, Jingjing Nie and Binyang Du
Materials 2025, 18(15), 3624; https://doi.org/10.3390/ma18153624 - 1 Aug 2025
Viewed by 197
Abstract
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the [...] Read more.
Aqueous organic redox flow batteries (AORFBs) represent an advancing class of electrochemical energy storage systems showing considerable promise for large-scale grid integration due to their unique aqueous organic chemistry. However, the use of small-molecule active materials in AORFBs is significantly limited by the issue of stability and crossover. To address these challenges, we designed a high-water-solubility polymer cathode material, P-T-S, which features a polyvinylimidazole backbone functionalized with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and sulfonate groups. P-T-S exhibits a solubility of 34 Ah L−1 in water and 31 Ah L−1 in 1.0 M NaCl aqueous solution (NaClaq). When paired with methyl viologen to assemble a pH-neutral AORFB with a theoretical capacity of 15 Ah L−1, the system exhibits a material utilization rate of 92.0%, an average capacity retention rate of 99.74% per cycle (99.74% per hour), and an average Coulombic efficiency of 98.69% over 300 consecutive cycles at 30 mA cm−2. This work provides a new design strategy for polymer materials for high-performance AORFBs. Full article
Show Figures

Graphical abstract

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 303
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

22 pages, 16421 KiB  
Article
Deep Neural Network with Anomaly Detection for Single-Cycle Battery Lifetime Prediction
by Junghwan Lee, Longda Wang, Hoseok Jung, Bukyu Lim, Dael Kim, Jiaxin Liu and Jong Lim
Batteries 2025, 11(8), 288; https://doi.org/10.3390/batteries11080288 - 30 Jul 2025
Viewed by 507
Abstract
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially [...] Read more.
Large-scale battery datasets often contain anomalous data due to sensor noise, communication errors, and operational inconsistencies, which degrade the accuracy of data-driven prognostics. However, many existing studies overlook the impact of such anomalies or apply filtering heuristically without rigorous benchmarking, which can potentially introduce biases into training and evaluation pipelines. This study presents a deep learning framework that integrates autoencoder-based anomaly detection with a residual neural network (ResNet) to achieve state-of-the-art prediction of remaining useful life at the cycle level using only a single-cycle input. The framework systematically filters out anomalous samples using multiple variants of convolutional and sequence-to-sequence autoencoders, thereby enhancing data integrity before optimizing and training the ResNet-based models. Benchmarking against existing deep learning approaches demonstrates a significant performance improvement, with the best model achieving a mean absolute percentage error of 2.85% and a root mean square error of 40.87 cycles, surpassing prior studies. These results indicate that autoencoder-based anomaly filtering significantly enhances prediction accuracy, reinforcing the importance of systematic anomaly detection in battery prognostics. The proposed method provides a scalable and interpretable solution for intelligent battery management in electric vehicles and energy storage systems. Full article
(This article belongs to the Special Issue Machine Learning for Advanced Battery Systems)
Show Figures

Figure 1

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 347
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

17 pages, 4618 KiB  
Article
ANN-Enhanced Modulated Model Predictive Control for AC-DC Converters in Grid-Connected Battery Systems
by Andrea Volpini, Samuela Rokocakau, Giulia Tresca, Filippo Gemma and Pericle Zanchetta
Energies 2025, 18(15), 3996; https://doi.org/10.3390/en18153996 - 27 Jul 2025
Viewed by 273
Abstract
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their [...] Read more.
With the increasing integration of renewable energy sources (RESs) into power systems, batteries are playing a critical role in ensuring grid reliability and flexibility. Among them, vanadium redox flow batteries (VRFBs) have emerged as a promising solution for large-scale storage due to their long cycle life, scalability, and deep discharge capability. However, achieving optimal control and system-level integration of VRFBs requires accurate, real-time modeling and parameter estimation, challenging tasks given the multi-physics nature and time-varying dynamics of such systems. This paper presents a lightweight physics-informed neural network (PINN) framework tailored for VRFBs, which directly embeds the discrete-time state-space dynamics into the network architecture. The model simultaneously predicts terminal voltage and estimates five discrete-time physical parameters associated with RC dynamics and internal resistance, while avoiding hidden layers to enhance interpretability and computational efficiency. The resulting PINN model is integrated into a modulated model predictive control (MMPC) scheme for a dual-stage DC-AC converter interfacing the VRFB with low-voltage AC grids. Simulation and hardware-in-the-loop results demonstrate that adaptive tuning of the PINN-estimated parameters enables precise tracking of battery parameter variations, thereby improving the robustness and performance of the MMPC controller under varying operating conditions. Full article
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 272
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

22 pages, 1475 KiB  
Systematic Review
A Systematic Review of Grid-Forming Control Techniques for Modern Power Systems and Microgrids
by Paul Arévalo, Carlos Ramos and Agostinho Rocha
Energies 2025, 18(14), 3888; https://doi.org/10.3390/en18143888 - 21 Jul 2025
Viewed by 405
Abstract
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a [...] Read more.
Looking toward the future, governments around the world have started to change their energy mix due to climate change. The new energy mix will consist mainly of Inverter-Based Resources (IBRs), such as wind and solar power. This transition from a synchronous to a non-synchronous grid introduces new challenges in stability, resilience, and synchronization, necessitating advanced control strategies. Among these, Grid-Forming (GFM) control techniques have emerged as an effective solution for ensuring stable operations in microgrids and large-scale power systems with high IBRs integration. This paper presents a systematic review of GFM control techniques, focusing on their principles and applications. Using the PRISMA 2020 methodology, 75 studies published between 2015 and 2025 were synthesized to evaluate the characteristics of GFM control strategies. The review organizes GFM strategies, evaluates their performance under varying operational scenarios, and emphasizes persistent challenges like grid stability, inertia emulation, and fault ride-through capabilities. Furthermore, this study examines real-world implementations of GFM technology in modern power grids. Notable projects include the UK’s National Grid Pathfinder Program, which integrates GFM inverters to enhance stability, and Australia’s Hornsdale Power Reserve, where battery energy storage with GFM capabilities supports grid frequency regulation. Full article
(This article belongs to the Topic Modern Power Systems and Units)
Show Figures

Figure 1

27 pages, 4005 KiB  
Article
Quantum-Enhanced Predictive Degradation Pathway Optimization for PV Storage Systems: A Hybrid Quantum–Classical Approach for Maximizing Longevity and Efficiency
by Dawei Wang, Shuang Zeng, Liyong Wang, Baoqun Zhang, Cheng Gong, Zhengguo Piao and Fuming Zheng
Energies 2025, 18(14), 3708; https://doi.org/10.3390/en18143708 - 14 Jul 2025
Viewed by 257
Abstract
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the [...] Read more.
The increasing deployment of photovoltaic and energy storage systems (ESSs) in modern power grids has highlighted the critical challenge of component degradation, which significantly impacts system efficiency, operational costs, and long-term reliability. Conventional energy dispatch and optimization approaches fail to adequately mitigate the progressive efficiency loss in PV modules and battery storage, leading to suboptimal performance and reduced system longevity. To address these challenges, this paper proposes a quantum-enhanced degradation pathway optimization framework that dynamically adjusts operational strategies to extend the lifespan of PV storage systems while maintaining high efficiency. By leveraging quantum-assisted Monte Carlo simulations and hybrid quantum–classical optimization, the proposed model evaluates degradation pathways in real time and proactively optimizes energy dispatch to minimize efficiency losses due to aging effects. The framework integrates a quantum-inspired predictive maintenance algorithm, which utilizes probabilistic modeling to forecast degradation states and dynamically adjust charge–discharge cycles in storage systems. Unlike conventional optimization methods, which struggle with the complexity and stochastic nature of degradation mechanisms, the proposed approach capitalizes on quantum parallelism to assess multiple degradation scenarios simultaneously, significantly enhancing computational efficiency. A three-layer hierarchical optimization structure is introduced, ensuring real-time degradation risk assessment, periodic dispatch optimization, and long-term predictive adjustments based on PV and battery aging trends. The framework is tested on a 5 MW PV array coupled with a 2.5 MWh lithium-ion battery system, with real-world degradation models applied to reflect light-induced PV degradation (0.7% annual efficiency loss) and battery state-of-health deterioration (1.2% per 100 cycles). A hybrid quantum–classical computing environment, utilizing D-Wave’s Advantage quantum annealer alongside a classical reinforcement learning-based optimization engine, enables large-scale scenario evaluation and real-time operational adjustments. The simulation results demonstrate that the quantum-enhanced degradation optimization framework significantly reduces efficiency losses, extending the PV module’s lifespan by approximately 2.5 years and reducing battery-degradation-induced wear by 25% compared to conventional methods. The quantum-assisted predictive maintenance model ensures optimal dispatch strategies that balance energy demand with system longevity, preventing excessive degradation while maintaining grid reliability. The findings establish a novel paradigm in degradation-aware energy optimization, showcasing the potential of quantum computing in enhancing the sustainability and resilience of PV storage systems. This research paves the way for the broader integration of quantum-based decision-making in renewable energy infrastructure, enabling scalable, high-performance optimization for future energy systems. Full article
Show Figures

Figure 1

25 pages, 9888 KiB  
Article
An Optimal Multi-Zone Fast-Charging System Architecture for MW-Scale EV Charging Sites
by Sai Bhargava Althurthi and Kaushik Rajashekara
World Electr. Veh. J. 2025, 16(7), 389; https://doi.org/10.3390/wevj16070389 - 10 Jul 2025
Viewed by 270
Abstract
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS [...] Read more.
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS architectures, including those currently deployed in commercial sites. Most EVFS implementations use either a common AC-bus or a common DC-bus configuration, with DC-bus architectures being slightly more predominant. The paper analyzes the EV charging and battery energy storage system (BESS) requirements for future large-scale EVFSs and identifies key implementation challenges associated with the full adoption of the common DC-bus approach. To overcome these limitations, a novel multi-zone EVFS architecture is proposed that employs an optimal combination of isolated and non-isolated DC-DC converter topologies while maintaining galvanic isolation for EVs. The system efficiency and total power converter capacity requirements of the proposed architecture are evaluated and compared with those of other EVFS models. A major feature of the proposed design is its multi-zone division and zonal isolation capabilities, which are not present in conventional EVFS architectures. These advantages are demonstrated through a scaled-up model consisting of 156 EV fast chargers. The analysis highlights the superior performance of the proposed multi-zone EVFS architecture in terms of efficiency, total power converter requirements, fault tolerance, and reduced grid impacts, making it the best solution for reliable and scalable MW-scale commercial EVFS systems of the future. Full article
Show Figures

Figure 1

28 pages, 4234 KiB  
Review
A Review on Laser-Induced Graphene-Based Electrocatalysts for the Oxygen Reduction Reaction in Electrochemical Energy Storage and Conversion
by Giulia Massaglia and Marzia Quaglio
Nanomaterials 2025, 15(14), 1070; https://doi.org/10.3390/nano15141070 - 10 Jul 2025
Viewed by 470
Abstract
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable [...] Read more.
The increasing demand for efficient and sustainable energy conversion technologies has driven extensive research into alternative electrocatalysts for the oxygen reduction reaction (ORR). Platinum-based catalysts, while highly efficient, suffer from high costs, scarcity, and long-term instability Laser-Induced Graphene (LIG) has recently attracted considerable interest as an effective metal-free electrocatalyst for oxygen reduction reaction (ORR), owing to its remarkable electrical conductivity, customizable surface functionalities, and multi-scale porous architecture. This review explores the synthesis strategies, physicochemical properties, and ORR catalytic performance of LIG. Additionally, this review offered a detailed overview regarding the effective pole of heteroatom doping (N, S, P, B) and functionalization techniques to enhance catalytic activity. Finally, we highlight the current challenges and future perspectives of LIG-based ORR catalysts for fuel cells and other electrochemical energy applications. Furthermore, laser-induced-graphene (LIG) has emerged as a highly attractive candidate for electrochemical energy conversion systems, due to its large specific surface area, tunable porosity, excellent electrical conductivity, and cost-effective fabrication process. This review discusses recent advancements in LIG synthesis, its structural and electrochemical properties, and its applications in supercapacitors, batteries, fuel cells, and electrocatalysis. Despite its advantages, challenges such as mechanical stability, electrochemical degradation, and large-scale production remain key areas for improvement. Additionally, this review explores future perspectives on optimizing LIG for next-generation energy storage and conversion technologies. Full article
(This article belongs to the Special Issue Nanomaterials Based (Bio) Electrochemical Energy and Storage Sytems)
Show Figures

Figure 1

31 pages, 6211 KiB  
Review
Unlocking the Potential of MBenes in Li/Na-Ion Batteries
by Zixin Li, Yao Hu, Haihui Lan and Huicong Xia
Molecules 2025, 30(13), 2831; https://doi.org/10.3390/molecules30132831 - 1 Jul 2025
Cited by 1 | Viewed by 397
Abstract
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication [...] Read more.
MBenes, an emerging family of two-dimensional transition metal boride materials, are gaining prominence in alkali metal-ion battery research owing to their distinctive stratified architecture, enhanced charge transport properties, and exceptional electrochemical durability. This analysis provides a comprehensive examination of morphological characteristics and fabrication protocols for MBenes, with particular focus on strategies for optimizing energy storage metrics through controlled adjustment of interlayer distance and tailored surface modifications. The discussion highlights these materials’ unique capability to host substantial alkali metal ions, translating to exceptional longevity during charge–discharge cycling and remarkable high-current performance in both lithium and sodium battery systems. Current obstacles to materials development are critically evaluated, encompassing precision control in nanoscale synthesis, reproducibility in large-scale production, enhancement of thermodynamic stability, and eco-friendly processing requirements. Prospective research pathways are proposed, including sustainable manufacturing innovations, atomic-level structural tailoring through computational modeling, and expansion into hybrid energy storage-conversion platforms. By integrating fundamental material science principles with practical engineering considerations, this work seeks to establish actionable frameworks for advancing MBene-based technologies toward next-generation electrochemical storage solutions with enhanced energy density and operational reliability. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

Back to TopTop