Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = large format additive manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3072 KiB  
Article
Process Development to Repair Aluminum Components, Using EHLA and Laser-Powder DED Techniques
by Adrienn Matis, Min-Uh Ko, Richard Kraft and Nicolae Balc
J. Manuf. Mater. Process. 2025, 9(8), 255; https://doi.org/10.3390/jmmp9080255 - 31 Jul 2025
Viewed by 194
Abstract
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. [...] Read more.
The article presents a new AM (Additive Manufacturing) process development, necessary to repair parts made from Aluminum 6061 material, with T6 treatment. The laser Directed Energy Deposition (DED) and Extreme High-Speed Directed Energy Deposition (EHLA) capabilities are evaluated for repairing Al large components. To optimize the process parameters, single-track depositions were analyzed for both laser-powder DED (feed rate of 2 m/min) and EHLA (feed rate 20 m/min) for AlSi10Mg and Al6061 powders. The cross-sections of single tracks revealed the bonding characteristics and provided laser-powder DED, a suitable parameter selection for the repair. Three damage types were identified on the Al component to define the specification of the repair process and to highlight the capabilities of laser-powder DED and EHLA in repairing intricate surface scratches and dents. Our research is based on variation of the powder mass flow and beam power, studying the influence of these parameters on the weld bead geometry and bonding quality. The evaluation criteria include bonding defects, crack formation, porosity, and dilution zone depth. The bidirectional path planning strategy was applied with a fly-in and fly-out path for the hatching adjustment and acceleration distance. Samples were etched for a qualitative microstructure analysis, and the HV hardness was tested. The novelty of the paper is the new process parameters for laser-powder DED and EHLA deposition strategies to repair large Al components (6061 T6), using AlSi10Mg and Al6061 powder. Our experimental research tested the defect-free deposition and the compatibility of AlSi10Mg on the Al6061 substrate. The readers could replicate the method presented in this article to repair by laser-powder DED/EHLA large Al parts and avoid the replacement of Al components with new ones. Full article
Show Figures

Figure 1

18 pages, 4836 KiB  
Article
Deep Learning to Analyze Spatter and Melt Pool Behavior During Additive Manufacturing
by Deepak Gadde, Alaa Elwany and Yang Du
Metals 2025, 15(8), 840; https://doi.org/10.3390/met15080840 - 28 Jul 2025
Viewed by 426
Abstract
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, [...] Read more.
To capture the complex metallic spatter and melt pool behavior during the rapid interaction between the laser and metal material, high-speed cameras are applied to record the laser powder bed fusion process and generate a large volume of image data. In this study, four deep learning algorithms are applied: YOLOv5, Fast R-CNN, RetinaNet, and EfficientDet. They are trained by the recorded videos to learn and extract information on spatter and melt pool behavior during the laser powder bed fusion process. The well-trained models achieved high accuracy and low loss, demonstrating strong capability in accurately detecting and tracking spatter and melt pool dynamics. A stability index is proposed and calculated based on the melt pool length change rate. Greater index value reflects a more stable melt pool. We found that more spatters were detected for the unstable melt pool, while fewer spatters were found for the stable melt pool. The spatter’s size can affect its initial ejection speed, and large spatters are ejected slowly while small spatters are ejected rapidly. In addition, more than 58% of detected spatters have their initial ejection angle in the range of 60–120°. These findings provide a better understanding of spatter and melt pool dynamics and behavior, uncover the influence of melt pool stability on spatter formation, and demonstrate the correlation between the spatter size and its initial ejection speed. This work will contribute to the extraction of important information from high-speed recorded videos for additive manufacturing to reduce waste, lower cost, enhance part quality, and increase process reliability. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

33 pages, 2239 KiB  
Article
Strategic Contract Format Choices Under Power Dynamics: A Game-Theoretic Analysis of Tripartite Platform Supply Chains
by Yao Qiu, Xiaoming Wang, Yongkai Ma and Hongyi Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 177; https://doi.org/10.3390/jtaer20030177 - 11 Jul 2025
Viewed by 280
Abstract
In the context of global e-commerce platform supply chains dominated by Alibaba and Amazon, power reconfiguration among tripartite stakeholders (platforms, manufacturers, and retailers) remains a critical yet underexplored issue in supply chain contract design. To analyze the strategic interactions between platforms, manufacturers, and [...] Read more.
In the context of global e-commerce platform supply chains dominated by Alibaba and Amazon, power reconfiguration among tripartite stakeholders (platforms, manufacturers, and retailers) remains a critical yet underexplored issue in supply chain contract design. To analyze the strategic interactions between platforms, manufacturers, and retailers, as well as how platforms select the contract format within a tripartite supply chain, this study proposes a Stackelberg game-theoretic framework incorporating participation constraints to compare fixed-fee and revenue-sharing contracts. The results demonstrate that revenue-sharing contracts significantly enhance supply chain efficiency by aligning incentives across members, leading to improved pricing and sales outcomes. However, this coordination benefit comes with reduced platform dominance, as revenue-sharing inherently redistributes power toward upstream and downstream partners. The analysis reveals a nuanced contract selection framework: given the revenue sharing rate, as the additional value increases, the optimal contract shifts from the mode RR to the mode RF, and ultimately to the mode FF. Notably, manufacturers and retailers exhibit a consistent preference for revenue-sharing contracts due to their favorable profit alignment properties, regardless of the platform’s value proposition. These findings may contribute to platform operations theory by (1) proposing a dynamic participation framework for contract analysis, (2) exploring value-based thresholds for contract transitions, and (3) examining the power-balancing effects of alternative contract formats. This study offers actionable insights for platform operators seeking to balance control and cooperation in their supply chain relationships, while providing manufacturers and retailers with strategic guidance for contract negotiations in platform-mediated markets. These findings are especially relevant for large e-commerce platforms and their partners managing the complexities of contemporary digital supply chains. Full article
(This article belongs to the Section e-Commerce Analytics)
Show Figures

Figure 1

56 pages, 2573 KiB  
Review
A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation
by Usman Aziz, Marion McAfee, Ioannis Manolakis, Nick Timmons and David Tormey
Materials 2025, 18(12), 2870; https://doi.org/10.3390/ma18122870 - 17 Jun 2025
Cited by 1 | Viewed by 671
Abstract
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), [...] Read more.
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM) remains challenged by inherent process-related defects such as residual stresses, porosity, anisotropy, and surface roughness. This review critically examines these AM techniques, focusing on optimizing key manufacturing parameters, mitigating defects, and implementing effective post-processing treatments. This review highlights how process parameters including laser power, energy density, scanning strategy, layer thickness, build orientation, and preheating conditions directly affect microstructural evolution, mechanical properties, and defect formation in AM-fabricated 316/316L stainless steel. Comparative analysis reveals that SLM excels in achieving refined microstructures and high precision, although it is prone to residual stress accumulation and porosity. DED, on the other hand, offers flexibility for large-scale manufacturing but struggles with surface finish and mechanical property consistency. EBM effectively reduces thermal-induced residual stresses due to its sustained high preheating temperatures (typically maintained between 700 °C and 850 °C throughout the build process) and vacuum environment, but it faces limitations related to resolution, cost-effectiveness, and material applicability. Additionally, this review aligns AM techniques with specific defect reduction strategies, emphasizing the importance of post-processing methods such as heat treatment and hot isostatic pressing (HIP). These approaches enhance structural integrity by refining microstructure, reducing residual stresses, and minimizing porosity. By providing a comprehensive framework that connects AM techniques optimization strategies, this review serves as a valuable resource for academic and industry professionals. It underscores the necessity of process standardization and real-time monitoring to improve the reliability and consistency of AM-produced 316/316L stainless steel components. A targeted approach to these challenges will be crucial in advancing AM technologies to meet the stringent performance requirements of various high-value industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

18 pages, 4132 KiB  
Article
A Development of the Rosenthal Equation for Predicting Thermal Profiles During Additive Manufacturing
by William Keeley, Richard Turner, Bashir Mitchell and Nils Warnken
Thermo 2025, 5(2), 16; https://doi.org/10.3390/thermo5020016 - 21 May 2025
Viewed by 1156
Abstract
Thermal modelling of additive manufacturing is a key method for furthering the quality of the components produced, as it allows for analysis that is not possible via experimental methods due to the difficulties involved with in situ monitoring. The thermal gradients present during [...] Read more.
Thermal modelling of additive manufacturing is a key method for furthering the quality of the components produced, as it allows for analysis that is not possible via experimental methods due to the difficulties involved with in situ monitoring. The thermal gradients present during the additive manufacturing process have a large impact on the formation of defects, such as porosity, residual stress, and cracking. The thermal gradients also have a large impact on material properties by controlling the microstructure formed. Thermal modelling methods are often based on numerical solutions of the heat conduction equation. Whilst numerical methods can be more accurate, they are often very slow because of the fine mesh requirements to capture high thermal gradients and iterative solvers to approximate the real-world solution to the required thermal field equations. An analytical model was developed to provide a fast solution to the problem. The analytical model used in this research was based on the Rosenthal equation and was analysed under a range of process parameters. A temperature-dependent Rosenthal model was also created with the aim of improving the results. The analytical model was then compared with a finite element numerical model to act as verification for the results. The analytical model accurately predicted the meltpool width over a range of process conditions. The analytical model underestimated the meltpool length compared to the numerical model, especially at high velocities. When using the standard Rosenthal model, the use of room-temperature or high-temperature thermal conductivities underestimated or overestimated the cooling rates from the meltpool, respectively. A temperature-dependent Rosenthal model was shown to produce more accurate cooling rates compared to the original Rosenthal equation. Full article
(This article belongs to the Special Issue Thermal Science and Metallurgy)
Show Figures

Figure 1

15 pages, 3711 KiB  
Article
Binder Jetting for Functional Testing of Ceramic Sanitaryware
by Cristina Fabuel, María Pilar Gómez-Tena, Arnaldo Moreno, Fernando González-Juárez, Verónica Rico-Pérez and Jordi Balcells
Ceramics 2025, 8(2), 58; https://doi.org/10.3390/ceramics8020058 - 19 May 2025
Viewed by 768
Abstract
Additive manufacturing (AM) of ceramics presents a promising approach for the production of complex sanitaryware prototypes, offering advantages in terms of cost and time to market. This study explores binder jetting (BJ) as an optimal AM technique due to its ability to process [...] Read more.
Additive manufacturing (AM) of ceramics presents a promising approach for the production of complex sanitaryware prototypes, offering advantages in terms of cost and time to market. This study explores binder jetting (BJ) as an optimal AM technique due to its ability to process ceramic materials without thermal stress, accommodate various compositions, and produce large components without support structures. A combination of refractory cement, feldspathic sands, quartz, and calcined alumina was used to formulate 19 different compositions, ensuring adequate green strength and minimizing shrinkage during sintering. A hydration-activated binding method with a water-based binder was employed to enhance part formation and mechanical properties. The results indicate that compositions containing calcined alumina exhibited lower pyroplastic deformation, while optimized gelling agent concentrations improved green strength and dimensional accuracy. The final selected material (SA18) demonstrated high compressive strength, low shrinkage, and a surface roughness comparable to traditional sanitaryware. The application of an engobe layer improved glaze adherence, ensuring a homogeneous surface. This study highlights binder jetting as a viable alternative to traditional ceramic processing, paving the way for its adoption in industrial sanitaryware manufacturing. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

12 pages, 2766 KiB  
Article
Determining Optimal Processing Conditions for Fabricating Industrial Moulds with Additive Manufacturing
by Daniel Moreno Nieto, Francisco Javier Puertas Morales, Julia Rivera Vera, Pedro Burgos Pintos, Daniel Moreno Sanchez and Sergio I. Molina
Appl. Sci. 2025, 15(8), 4572; https://doi.org/10.3390/app15084572 - 21 Apr 2025
Viewed by 526
Abstract
Additive manufacturing has reached a level of reliability and credibility that has already been integrated into specific industries producing final parts or tooling. Among Material Extrusion (ME) techniques, the Fused Granular Fabrication (FGF) method has enabled the development of Large Format Additive Manufacturing [...] Read more.
Additive manufacturing has reached a level of reliability and credibility that has already been integrated into specific industries producing final parts or tooling. Among Material Extrusion (ME) techniques, the Fused Granular Fabrication (FGF) method has enabled the development of Large Format Additive Manufacturing (LFAM) using polymeric materials, which has also established its presence in industries working with large prototypes, molds, and tools. This cost-efficient process has proven its applicability and success in manufacturing molds for composites, particularly in short and medium production runs, significantly reducing production times and costs. This paper presents two experiments designed to optimize process parameters when producing molds using the combined FGF and milling approach. These experiments identified optimal extrusion temperatures and extrusion multipliers to minimize defects at both the macro- and microscales for ASA 20 wt.% carbon fiber (CF) material; additionally, a correlation between milling speed, milling strategy, and surface roughness was established. These findings are valuable for industries adopting this innovative production method, as they provide guidance for defining process parameters to achieve the desired surface roughness of a specific part. A case study of the design of an automobile carter mold is presented, concluding that a specific range of milling speeds is required for conventional or climbing milling strategies to achieve a defined surface roughness range. Full article
(This article belongs to the Special Issue Advances in Carbon Fiber Reinforced Polymers (CFRPs))
Show Figures

Figure 1

12 pages, 4385 KiB  
Article
Effects of Compaction Thickness on Density, Integrity, and Microstructure of Green Parts in Binder Jetting Additive Manufacturing of Silicon Carbide
by Mostafa Meraj Pasha, Md Shakil Arman, Zhijian Pei, Fahim Khan, Jackson Sanders and Stephen Kachur
J. Manuf. Mater. Process. 2025, 9(4), 136; https://doi.org/10.3390/jmmp9040136 - 19 Apr 2025
Cited by 1 | Viewed by 610
Abstract
Binder jetting additive manufacturing (BJAM) of silicon carbide (SiC) has been reported in the literature. In the reported studies, the effects of the compaction thickness on the properties of SiC green parts printed by BJAM have largely been unexamined. This study aims to [...] Read more.
Binder jetting additive manufacturing (BJAM) of silicon carbide (SiC) has been reported in the literature. In the reported studies, the effects of the compaction thickness on the properties of SiC green parts printed by BJAM have largely been unexamined. This study aims to fill this gap in the literature by investigating the effects of the compaction thickness on the density, integrity, and microstructure of SiC green parts printed by BJAM. In this study, experiments were conducted using four levels of compaction thickness at two levels of layer thickness. The results indicate that increasing the compaction thickness enhances the green part density, reaching 1.85 g/cm3 at a layer thickness of 45 µm and 1.87 g/cm3 at a layer thickness of 60 µm, respectively. However, a higher compaction thickness might also introduce defects in green parts, such as cracks. Scanning electron microscopy (SEM) analysis confirmed the improved particle packing and reduced porosity with the increased compaction thickness. These findings underscore a trade-off between density and defect formation, providing critical insights for optimizing BJAM process variables for fabricating SiC parts. Full article
Show Figures

Figure 1

21 pages, 2081 KiB  
Article
Translation of COVID-19 Serology Test on Foil-Based Lateral Flow Chips: A Journey from Injection Molding to Scalable Roll-to-Roll Nanoimprint Lithography
by Pakapreud Khumwan, Stephan Ruttloff, Johannes Götz, Dieter Nees, Conor O’Sullivan, Alvaro Conde, Mirko Lohse, Christian Wolf, Nastasia Okulova, Janine Brommert, Richard Benauer, Ingo Katzmayr, Nikolaus Ladenhauf, Wilfried Weigel, Maciej Skolimowski, Max Sonnleitner, Martin Smolka, Anja Haase, Barbara Stadlober and Jan Hesse
Biosensors 2025, 15(4), 229; https://doi.org/10.3390/bios15040229 - 4 Apr 2025
Viewed by 795
Abstract
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions [...] Read more.
Lateral flow tests (LFTs) had a pivotal role in combating the spread of the SARS-CoV-2 virus throughout the COVID-19 pandemic thanks to their affordability and ease of use. Most of LFT devices were based on nitrocellulose membrane strips whose industrial upscaling to billions of devices has already been extensively demonstrated. Nevertheless, the assay option in an LFT format is largely restricted to qualitative detection of the target antigens. In this research, we surveyed the potential of UV nanoimprint lithography (UV-NIL) and extrusion coating (EC) for the high-throughput production of disposable capillary-driven, foil-based tests that allow multistep assays to be implemented for quantitative readout to address the inherent lack of on-demand fluid control and sensitivity of paper-based devices. Both manufacturing technologies operate on the principle of imprinting that enables high-volume, continuous structuring of microfluidic patterns in a roll-to-roll (R2R) production scheme. To demonstrate the feasibility of R2R-fabricated foil chips in a point-of-care biosensing application, we adapted a commercial chemiluminescence multiplex test for COVID-19 antibody detection originally developed for a capillary-driven microfluidic chip manufactured with injection molding (IM). In an effort to build a complete ecosystem for the R2R manufacturing of foil chips, we also recruited additional processes to streamline chip production: R2R biofunctionalization and R2R lamination. Compared to conventional fabrication techniques for microfluidic devices, the R2R techniques highlighted in this work offer unparalleled advantages concerning improved scalability, dexterity of seamless handling, and significant cost reduction. Our preliminary evaluation indicated that the foil chips exhibited comparable performance characteristics to the original IM-fabricated devices. This early success in assay translation highlights the promise of implementing biochemical assays on R2R-manufactured foil chips. Most importantly, it underscores the potential utilization of UV-NIL and EC as an alternative to conventional technologies for the future development in vitro diagnostics (IVD) in response to emerging point-of-care testing demands. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Graphical abstract

17 pages, 10108 KiB  
Article
Impact of Novel Nozzles on Atomization Flow Field and Particle Features: Simulation and Experimental Validation
by Kai Wang, Zhongliang Zhou, Wenhai Sun, Yanhui Zhang, Suode Zhang and Jianqiang Wang
Metals 2025, 15(3), 313; https://doi.org/10.3390/met15030313 - 13 Mar 2025
Viewed by 725
Abstract
Gas-atomized powder characteristics significantly impact additive manufacturing processes. Two innovative nozzles, semi-converging–diverging nozzle type II and fully converging–diverging nozzle type III, were designed based on the traditional cylindrical nozzle type I. Utilizing the k-ε model and Discrete Phase Model (DPM), the flow field [...] Read more.
Gas-atomized powder characteristics significantly impact additive manufacturing processes. Two innovative nozzles, semi-converging–diverging nozzle type II and fully converging–diverging nozzle type III, were designed based on the traditional cylindrical nozzle type I. Utilizing the k-ε model and Discrete Phase Model (DPM), the flow field evolution and powder characteristics of these nozzles were analyzed at gas pressures ranging from 4 to 8 MPa. The results indicate that in the gas-phase flow field both nozzle type II and nozzle type III can achieve a performance comparable to that of nozzle type I at significantly lower gas pressures. Specifically, nozzle type II operates effectively with a reduction of approximately 1 MPa compared to nozzle type I, while nozzle type III demonstrates an even greater advantage with a pressure reduction of about 2 MPa. In the gas–melt-phase flow field, nozzle type III still has the effect of reducing the pressure by approximately 2 MPa compared to nozzle type I. The melt fracture process under nozzle type III is divided into three distinct stages: the formation of large droplets, a transition area for fragmentation, and a fully fragmented region. This research effectively reduces energy losses and offers novel insights as well as recommendations for applications related to atomization technology. Full article
Show Figures

Figure 1

23 pages, 1454 KiB  
Article
Slot Allocation Protocol for UAV Swarm Ad Hoc Networks: A Distributed Coalition Formation Game Approach
by Liubin Song and Daoxing Guo
Entropy 2025, 27(3), 256; https://doi.org/10.3390/e27030256 - 28 Feb 2025
Viewed by 1241
Abstract
With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, [...] Read more.
With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, especially in offshore and remote areas. A key operational aspect in large-scale UAV swarm networks is slot allocation for large capacity and a low probability of conflict. Traditional methods typically form coalitions among UAVs that are in close spatial proximity to reduce internal network interference, thereby achieving greater throughput. However, significant internal interference still persists. Given that UAV networks are required to transmit a substantial amount of safety-related control information, any packet loss due to internal interference can easily pose potential risks. In this paper, we propose a distributed time coalition formation game algorithm that ensures the absence of internal interference and collisions while sharing time slot resources, thereby enhancing the network’s throughput performance. Instead of forming a coalition from UAVs within a contiguous block area as used in prior studies, UAV nodes with no interference from each other form a coalition that can be called a time coalition. UAVs belonging to one coalition share their transmitting slots with each other, and thus, every UAV node achieves the whole transmitting slots of coalition members. They can transmit data packets simultaneously with no interference. In addition, a distributed coalition formation game-based TDMA (DCFG-TDMA) protocol based on the distributed time coalition formation algorithm is designed for UAV swarm ad hoc networks. Our simulation results verify that the proposed algorithm can significantly improve the UAV throughput compared with that of the conventional TDMA protocol. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

28 pages, 10098 KiB  
Review
A Short Review of Advancements in Additive Manufacturing of Cemented Carbides
by Zhe Zhao, Xiaonan Ni, Zijian Hu, Wenxin Yang, Xin Deng, Shanghua Wu, Yanhui Li, Guanglin Nie, Haidong Wu, Jinyang Liu and Yong Huang
Crystals 2025, 15(2), 146; https://doi.org/10.3390/cryst15020146 - 30 Jan 2025
Cited by 1 | Viewed by 1316
Abstract
Cemented carbides, renowned for their exceptional strength, hardness, elastic modulus, wear resistance, corrosion resistance, low coefficient of thermal expansion, and chemical stability, have long been indispensable tooling materials in metal cutting, oil drilling, and engineering excavation. The advent of additive manufacturing (AM), commonly [...] Read more.
Cemented carbides, renowned for their exceptional strength, hardness, elastic modulus, wear resistance, corrosion resistance, low coefficient of thermal expansion, and chemical stability, have long been indispensable tooling materials in metal cutting, oil drilling, and engineering excavation. The advent of additive manufacturing (AM), commonly known as “3D printing”, has sparked considerable interest in the processing of cemented carbides. Among the various AM techniques, Selective Laser Melting (SLM), Selective Laser Sintering (SLS), Selective Electron Beam Melting (SEBM), and Binder Jetting Additive Manufacturing (BJAM) have garnered frequent attention. Despite the great application potential of AM, no single AM technique has been universally adopted for the large-scale production of cemented carbides yet. The SLM and SEBM processes confront substantial challenges, such as a non-uniform sintering temperature field, which often result in uneven sintering and frequent post-solidification cracking. SLS notably struggles with achieving a high relative density of carbides. While BJAM yields WC-Co samples with a lower incidence of cracking, it is not without flaws, including abnormal WC grain growth, coarse WC clustering, Co-rich pool formation, and porosity. Three-dimensional gel-printing, though possessing certain advantages from its sintering performance, falls short in dimensional and geometric precision control, as well as fabrication efficiency. Cemented carbides produced via AM processes have yet to match the quality of their traditionally prepared counterparts. To date, the specific densification and microstructure evolution mechanisms during the AM process, and their interrelationship with the feedstock carbide material design, printing/sintering process, and resulting mechanical behavior, have not been thoroughly investigated. This gap in our knowledge impedes the rapid advancement of AM for carbide processing. This article offers a succinct overview of additive manufacturing of cemented carbides, complemented by an analysis of the current research landscape. It highlights the benefits and inherent challenges of these techniques, aiming to provide clarity on the present state of the AM processing of cemented carbides and to offer insights into potential future research directions and technological advancements. Full article
(This article belongs to the Special Issue High-Performance Metallic Materials)
Show Figures

Figure 1

15 pages, 4305 KiB  
Article
Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates
by Md Ahsanul Habib, Rawan Elsersawy and Mohammad Abu Hasan Khondoker
J. Manuf. Mater. Process. 2025, 9(2), 37; https://doi.org/10.3390/jmmp9020037 - 29 Jan 2025
Viewed by 1408
Abstract
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM [...] Read more.
Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM techniques more desirable. Large-format EAM systems could benefit from printing lightweight objects with reduced material use and lower power consumption by utilizing hollow rather than solid extrudates. In this study, a custom extruder head was designed and an EAM system capable of extruding inflatable hollow extrudates from a variety of materials was developed. By integrating a co-axial nozzle-needle system, a thermoplastic shell was extruded while creating a hollow core using pressurized nitrogen gas. This method allows for the production of objects with gradient part density and varied mechanical properties by controlling the inflation of the hollow extrudates. The effects of process parameters— such as extrusion temperature, extrusion speed, and gas pressure were investigated—using poly-lactic acid (PLA) and styrene-ethylene-butylene-styrene (SEBS) pellets. The preliminary tests identified the optimal range of these parameters for consistent hollow extrudates. We then varied the parameters to determine their impact on the dimensions of the extrudates, supported by analyses of microscopic images taken with an optical microscope. Our findings reveal that pressure is the most influential factor affecting extrudate dimensions. In contrast, variations in temperature and extrusion speed had a relatively minor impact, whereas changes in pressure led to significant alterations in the extrudate’s size and shape. Full article
Show Figures

Figure 1

16 pages, 5154 KiB  
Article
Microstructural Organization and Mechanical Properties of 5356 Aluminum Alloy Wire Arc Additive Manufacturing Under Low Heat Input Conditions
by Xiaogang Zuo, Zhimin Lv, Yuejie Wang, Xiaokang Chen and Wenjun Qi
Metals 2025, 15(2), 116; https://doi.org/10.3390/met15020116 - 25 Jan 2025
Viewed by 949
Abstract
This study examines the microstructure and mechanical properties of 5356 aluminum alloy under low heat input conditions during arc additive manufacturing, focusing on the challenges posed by excessive heat input, which hinders specimen formation and affects dimensional accuracy. The study analyzes the characteristics [...] Read more.
This study examines the microstructure and mechanical properties of 5356 aluminum alloy under low heat input conditions during arc additive manufacturing, focusing on the challenges posed by excessive heat input, which hinders specimen formation and affects dimensional accuracy. The study analyzes the characteristics of single-pass multilayer straight-walled specimens fabricated under varying low heat input conditions, along with evaluations of their mechanical properties, including their microstructure, microhardness, and tensile strength. This study demonstrates that as the heat input increases from 87.5 J/mm to 190.0 J/mm, the width of the vertical wall specimens increases significantly, whereas the change in single-layer height remains minimal. The specimen width increases from 5.22 mm to 8.87 mm, representing a change of 3.65 mm, while the single-layer height increases by only 0.16 mm. The microstructure primarily consists of the α(Al) matrix and the skeletal β(Al3Mg2) phase. As heat input increases, some of the β(Al3Mg2) phase dissolves, resulting in a decrease in its distribution density, a reduction in its quantity, and an increase in its size. The average hardness increases from 69.40 HV at 87.5 J/mm to 77.89 HV at 154.2 J/mm, before decreasing to 73.56 HV at 190.0 J/mm. As the heat input increases, the tensile strength and elongation of both horizontal and vertical specimens initially increase and then decrease. The tensile strength and elongation of the horizontal specimens are slightly greater than those of the vertical specimens. The microstructure and mechanical properties vary across different regions. In the upper region, the β(Al3Mg2) phase is uniformly distributed, with high density and small size. The fracture surface exhibits fine, uniform dimples, displaying the best microhardness and mechanical properties, with a tensile strength of 245.88 MPa. In the middle region, the distribution density of the β phase decreases, the size increases, and the dimples become slightly coarser. Consequently, the microhardness and mechanical properties decline. At the bottom, due to the higher cooling rates, the β phase does not dissolve significantly. The distribution density is high, the dimples are large and uneven, and the microhardness and mechanical properties are the lowest, with a tensile strength of 236.00 MPa. Full article
Show Figures

Figure 1

14 pages, 4248 KiB  
Article
Emission Characteristics and Health Risk Assessment of Volatile Organic Compounds in Key Industries: A Case Study in the Central Plains of China
by Fengwei Liu, Lei Tong, Qingyue Luo, Yufei Ling, Hongyi Gu, Yangchao Lv, Anwei Shi, Hui Liu, Hang Xiao and Cenyan Huang
Atmosphere 2025, 16(1), 74; https://doi.org/10.3390/atmos16010074 - 10 Jan 2025
Cited by 5 | Viewed by 1300
Abstract
Volatile organic compounds (VOCs), the precursors of ozone and fine particulate matter, are one of the atmospheric pollutants harmful to human health. The emission characteristics of VOCs in Anyang, a typical industrial city in the Central Plains of China, are unclear. To determine [...] Read more.
Volatile organic compounds (VOCs), the precursors of ozone and fine particulate matter, are one of the atmospheric pollutants harmful to human health. The emission characteristics of VOCs in Anyang, a typical industrial city in the Central Plains of China, are unclear. To determine the emission level and composition of local VOCs, this study conducted on-site sampling of 20 factories in eight key industries. A total of 105 VOC species in seven categories were observed. The concentration of total VOCs emitted from the eight industries in order from large to small was as follows: packaging and printing > pharmaceutical > paint manufacturing > industrial coating > chemical industry > metal smelting > furniture manufacturing > textile printing and dyeing. In addition to industrial coating, the total VOCs and their corresponding ozone formation potential of organized emissions in seven industries (1.44–87.64, 1.52–181.61 mg/m3) were higher than those of unorganized emissions (0.38–24.17, 0.38–125.55 mg/m3). The VOC emissions were concentrated in the central, south-central, and south-eastern parts of the city, mainly from the factories in the packaging and printing, pharmaceutical, paint, and coating industries. The furniture manufacturing (4.55 × 10−3) and pharmaceutical (1.66 × 10−3) industries in organized emissions were at high risk of carcinogenesis, while the pharmaceutical industry in unorganized emissions (3.61 × 10−4) was at moderate risk of carcinogenesis. Naphthalene was the main high-risk compound. In terms of non-carcinogenic risk, the packaging and printing industry in organized emissions (228.51) and the metal smelting industry in unorganized emissions (16.16) had the highest risk, and the main high-risk compound was ethyl acetate. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

Back to TopTop