Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = laminariales

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3038 KiB  
Article
Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer
by Zihao Yuan, Jie Zhang and Delin Duan
Int. J. Mol. Sci. 2025, 26(2), 716; https://doi.org/10.3390/ijms26020716 - 16 Jan 2025
Cited by 1 | Viewed by 1212
Abstract
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains [...] Read more.
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored. This study investigates the genomic and evolutionary dynamics of V-HPOs in brown algae, focusing on Laminariales species, particularly Saccharina japonica. Genomic analyses revealed the extensive expansion of the V-HPO gene family in brown algae, with 88 V-HPOs identified in S. japonica, surpassing the number in red algae. Phylogenetic analysis demonstrated distinct evolutionary divergence between brown and red algal V-HPOs, with the brown algal clade closely related to bacterial V-HPOs. These findings suggest horizontal gene transfer (HGT) played a key role in acquiring V-HPO genes, particularly from Acidobacteriota, a bacterial phylum known for genomic plasticity. Additionally, enriched active transposable elements were identified around V-HPO genomic clusters, highlighting their role in tandem gene duplications and rapid HGT processes. Expression profiling further revealed dynamic regulation of V-HPOs in response to environmental conditions. This study provides new insights into how HGT has driven kelp genomic adaptations and enhances understanding of marine ecological success and evolutionary processes. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 2509 KiB  
Article
Effects of pH, Temperature, and Light on the Inorganic Carbon Uptake Strategies in Early Life Stages of Macrocystis pyrifera (Ochrophyta, Laminariales)
by Bárbara S. Labbé, Pamela A. Fernández, July Z. Florez and Alejandro H. Buschmann
Plants 2024, 13(23), 3267; https://doi.org/10.3390/plants13233267 - 21 Nov 2024
Cited by 2 | Viewed by 1517
Abstract
The responses of seaweed species to increased CO2 and lowered pH (Ocean Acidification: OA) depend on their carbon concentrating mechanisms (CCMs) and inorganic carbon (Ci) preferences. However, few studies have described these mechanisms in the early life stages of seaweeds or assessed [...] Read more.
The responses of seaweed species to increased CO2 and lowered pH (Ocean Acidification: OA) depend on their carbon concentrating mechanisms (CCMs) and inorganic carbon (Ci) preferences. However, few studies have described these mechanisms in the early life stages of seaweeds or assessed the effects of OA and its interactions with other environmental drivers on their functionality and photophysiology. Our study evaluated the effects of pH, light (PAR), temperature, and their interactions on the Ci uptake strategies and photophysiology in the early stages of Macrocystis pyrifera. Gametophytes were cultivated under varying pH (7.80 and 8.20), light (20 and 50 µmol photons m−2s−1), and temperature (12 and 16 °C) conditions for 25 days. We assessed photophysiological responses and CCMs (in particular, the extracellular dehydration of HCO3 to CO2 mediated by the enzyme carbonic anhydrase (CA) and direct HCO3 uptake via an anion exchange port). This study is the first to describe the Ci uptake strategies in gametophytes of M. pyrifera, demonstrating that their primary CCM is the extracellular conversion of HCO3 to CO2 mediated by CA. Additionally, our results indicate that decreased pH can positively affect their photosynthetic efficiency and maximum quantum yield; however, this response is dependent on the light and temperature conditions. Full article
(This article belongs to the Special Issue Advances in Algal Photosynthesis and Phytochemistry)
Show Figures

Figure 1

25 pages, 6172 KiB  
Article
Organellar Genomes of Sargassum hemiphyllum var. chinense Provide Insight into the Characteristics of Phaeophyceae
by Xuli Jia, Weizhou Chen, Tao Liu and Zepan Chen
Int. J. Mol. Sci. 2024, 25(16), 8584; https://doi.org/10.3390/ijms25168584 - 6 Aug 2024
Cited by 2 | Viewed by 1583
Abstract
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of [...] Read more.
Sargassum hemiphyllum var. chinense, a prevalent seaweed along the Chinese coast, has economic and ecological significance. However, systematic positions within Sargassum and among the three orders of Phaeophyceae, Fucales, Ectocarpales, and Laminariales are in debate. Here, we reported the organellar genomes of S. hemiphyllum var. chinense (34,686-bp mitogenome with 65 genes and 124,323 bp plastome with 173 genes) and the investigation of comparative genomics and systematics of 37 mitogenomes and 22 plastomes of Fucales (including S. hemiphyllum var. chinense), Ectocarpales, and Laminariales in Phaeophyceae. Whole genome collinearity analysis showed gene number, type, and arrangement were consistent in organellar genomes of Sargassum with 360 SNP loci identified as S. hemiphyllum var. chinense and two genes (rps7 and cox2) identified as intrageneric classifications of Sargassum. Comparative genomics of the three orders of Phaeophyceae exhibited the same content and different types (petL was only found in plastomes of the order Fucales and Ectocarpales) and arrangements (most plastomes were rearranged, but trnA and trnD in the mitogenome represented different orders) in genes. We quantified the frequency of RNA-editing (canonical C-to-U) in both organellar genomes; the proportion of edited sites corresponded to 0.02% of the plastome and 0.23% of the mitogenome (in reference to the total genome) of S. hemiphyllum var. chinense. The repetition ratio of Fucales was relatively low, with scattered and tandem repeats (nine tandem repeats of 14–24 bp) dominating, while most protein-coding genes underwent negative selection (Ka/Ks < 1). Collectively, these findings provide valuable insights to guide future species identification and evolutionary status of three important Phaeophyceae order species. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 11761 KiB  
Article
Molecular Characterization of the Actin Gene and 5′ Flanking Sequence from Brown Macroalga Saccharina japonica (Laminariales, Phaeophyta)
by Hao Xu, Zhenghua Wang, Yichen Zhang and Peng Jiang
J. Mar. Sci. Eng. 2024, 12(6), 887; https://doi.org/10.3390/jmse12060887 - 27 May 2024
Cited by 1 | Viewed by 1849
Abstract
The brown macroalga Saccharina japonica (Laminariales, Phaeophyta) is the most productive cultured seaweed in the world. In order to improve the biosafety of transgenic kelp, it is necessary to develop endogenous constitutive promoters, replacing those of virus origin. In this study, the housekeeping [...] Read more.
The brown macroalga Saccharina japonica (Laminariales, Phaeophyta) is the most productive cultured seaweed in the world. In order to improve the biosafety of transgenic kelp, it is necessary to develop endogenous constitutive promoters, replacing those of virus origin. In this study, the housekeeping actin gene from S. japonica (SjACT) was found to contain three exons and two introns, representing a unique actin gene structure pattern in brown algae. Additionally, the 5′ upstream region was obtained using genome walking, and fused to the reporter gene lacZ or EGFP to construct promoter-detective vectors. Using an established genetic transformation system, kelps in different life-cycle stages were transformed. The detection results showed that, in the diploid sporophyte stage, the transient expression from the lacZ gene could be observed in the frond, stipe, or holdfast of kelps, indicating a manner of being non-tissue-specific. And, in the haploid gametophyte stage of S. japonica, the fluorescence of the expressed EGFP were detected in vivo in gametophyte cells of both genders. These results indicate that the promoter of the SjACT gene (pSjACT) functions in a constitutive manner and is expected to be a key endogenous element in the genetic manipulation of kelps. Full article
Show Figures

Figure 1

17 pages, 3638 KiB  
Article
Cell-Autonomous and Non-Cell-Autonomous Mechanisms Concomitantly Regulate the Early Developmental Pattern in the Kelp Saccharina latissima Embryo
by Samuel Boscq, Bernard Billoud and Bénédicte Charrier
Plants 2024, 13(10), 1341; https://doi.org/10.3390/plants13101341 - 13 May 2024
Cited by 4 | Viewed by 2843
Abstract
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, [...] Read more.
Brown algae are multicellular organisms that have evolved independently from plants and animals. Knowledge of the mechanisms involved in their embryogenesis is available only for the Fucus, Dictyota, and Ectocarpus, which are brown algae belonging to three different orders. Here, we address the control of cell growth and cell division orientation in the embryo of Saccharina latissima, a brown alga belonging to the order Laminariales, which grows as a stack of cells through transverse cell divisions until growth is initiated along the perpendicular axis. Using laser ablation, we show that apical and basal cells have different functions in the embryogenesis of this alga, with the apical cell being involved mainly in growth and basal cells controlling the orientation of cell division by inhibiting longitudinal cell division and thereby the widening of the embryo. These functions were observed in the very early development before the embryo reached the 8-cell stage. In addition, the growth of the apical and basal regions appears to be cell-autonomous, because there was no compensation for the loss of a significant part of the embryo upon laser ablation, resulting in smaller and less elongated embryos compared with intact embryos. In contrast, the orientation of cell division in the apical region of the embryo appears to be controlled by the basal cell only, which suggests a polarised, non-cell-autonomous mechanism. Altogether, our results shed light on the early mechanisms of growth rate and growth orientation at the onset of the embryogenesis of Saccharina, in which non-cell-specific cell-autonomous and cell-specific non-cell-autonomous processes are involved. This complex control differs from the mechanisms described in the other brown algal embryos, in which the establishment of embryo polarity depends on environmental cues. Full article
(This article belongs to the Special Issue Current Topics in Macroalgal Research)
Show Figures

Figure 1

17 pages, 6455 KiB  
Article
Establishment of Effective Callus Induction in the Economically Important Brown Seaweed Ecklonia cava
by Jin-Hwa Lee, Khawaja Muhammad Imran Bashir, Gabriel Tirtawijaya, Bertoka Fajar Surya Perwira Negara and Jae-Suk Choi
Appl. Sci. 2024, 14(8), 3480; https://doi.org/10.3390/app14083480 - 20 Apr 2024
Cited by 2 | Viewed by 2066
Abstract
The edible brown seaweed, Ecklonia cava, is highly valued for its bioactive compounds, and is widely used in food supplements and functional foods. The increasing demand for this seaweed in the food industry emphasizes the necessity for sustainable cultivation practices. This study [...] Read more.
The edible brown seaweed, Ecklonia cava, is highly valued for its bioactive compounds, and is widely used in food supplements and functional foods. The increasing demand for this seaweed in the food industry emphasizes the necessity for sustainable cultivation practices. This study focused on inducing callus in the meristem and stipe of E. cava using different culture media: Provasoli’s enriched seawater medium (PESI), enriched artificial seawater medium (ESAW), artificial enriched seawater medium (ASP2), or Von Stosch’s enriched seawater medium (VS). Various abiotic stress factors (photoperiod, agar concentration, and temperature), growth regulators, carbon sources, polyamines, and plasma treatments were explored for their impact on callus induction. Both stipe and meristem explants developed callus within three to six weeks across all media except ASP2. Callus development was favored at temperatures between 8 to 13 °C and in the absence of light. Stipe explants showed a higher callus induction rate (up to 65.59 ± 6.24%) compared to meristem (up to 57.53 ± 8.32%). Meristem explants showed optimal callus induction in PESI medium with a low concentration of indole-3-acetic acid (IAA; 40.93 ± 8.65%). However, higher concentrations of IAA and 1-naphthaleneacetic acid (NAA) reduced meristem callus induction. Stipe showed high induced-callus (up to 50.37 ± 5.17%) in PESI medium with low concentrations of IAA, NAA, and 6-benzylaminopurine (BAP). Both stipe and meristem explants induced largest callus at 2% sucrose, but higher carbon source concentrations reduced callus induction. Spermine (Spm) at 1 µM resulted in high induced calluses; however, increasing Spm concentrations decreased callus induction. This tissue culture technique not only supports mass cultivation of E. cava, but also holds potential for extending to other seaweed species, contributing to the sustainability of seaweed stocks for the food industry. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

14 pages, 1774 KiB  
Article
Phaeoviruses Present in Cultured and Natural Kelp Species, Saccharina latissima and Laminaria hyperborea (Phaeophyceae, Laminariales), in Norway
by Eliana Ruiz Martínez, Dean A. Mckeown, Declan C. Schroeder, Gunnar Thuestad, Kjersti Sjøtun, Ruth-Anne Sandaa, Aud Larsen and Ingunn Alne Hoell
Viruses 2023, 15(12), 2331; https://doi.org/10.3390/v15122331 - 28 Nov 2023
Cited by 2 | Viewed by 1950
Abstract
Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also [...] Read more.
Phaeoviruses (Phycodnaviridae) are large icosahedral viruses in the phylum Nucleocytoviricota with dsDNA genomes ranging from 160 to 560 kb, infecting multicellular brown algae (Phaeophyceae). The phaeoviral host range is broader than expected, not only infecting algae from the Ectocarpales but also from the Laminariales order. However, despite phaeoviral infections being reported globally, Norwegian kelp species have not been screened. A molecular analysis of cultured and wild samples of two economically important kelp species in Norway (Saccharina latissima and Laminaria hyperborea) revealed that phaeoviruses are recurrently present along the Norwegian coast. We found the viral prevalence in S. latissima to be significantly higher at the present time compared to four years ago. We also observed regional differences within older samples, in which infections were significantly lower in northern areas than in the south or the fjords. Moreover, up to three different viral sequences were found in the same algal individual, one of which does not belong to the Phaeovirus genus and has never been reported before. This master variant therefore represents a putative new member of an unclassified phycodnavirus genus. Full article
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Screening of Undaria pinnatifida (Laminariales, Phaeophyceae) Lipidic Extract as a New Potential Source of Antibacterial and Antioxidant Compounds
by Loredana Stabili, Maria Immacolata Acquaviva, Ester Cecere, Carmela Gerardi, Antonella Petrocelli, Francesco Paolo Fanizzi, Federica Angilè and Lucia Rizzo
J. Mar. Sci. Eng. 2023, 11(11), 2072; https://doi.org/10.3390/jmse11112072 - 30 Oct 2023
Cited by 4 | Viewed by 2163
Abstract
The lipidic extract of Undaria pinnatifida, one of the worst invasive species, was investigated for its potential exploitation in biotechnological applications. The antimicrobial activity of the lipidic extract in three different portions (blade, sporophyll, and holdfast) was assessed by using the Kirby–Bauer [...] Read more.
The lipidic extract of Undaria pinnatifida, one of the worst invasive species, was investigated for its potential exploitation in biotechnological applications. The antimicrobial activity of the lipidic extract in three different portions (blade, sporophyll, and holdfast) was assessed by using the Kirby–Bauer method, while the antioxidant activity was evaluated by the TEAC, ORAC, and Folin–Ciocalteu assays. NMR spectroscopy and thin-layer chromatography were employed for the chemical characterization. The extracts showed antibacterial activity against several of the tested Vibrio species: V. aestuarinus, V. fischeri, V. furnisii, V. inusitatus, V. litoralis, and V. mediterranei, including some pathogens for farmed fish. Intriguing antioxidant activity was recorded, with the highest value in the blade (126.907 ± 28.993 mmol Trolox equivalent/g TEAC). Free, saturated, unsaturated, and polyunsaturated fatty acids were highlighted by 1D and 2D NMR spectroscopy. The presence of ω-3 and ω-6 PUFAs indicates the importance of this algal species in the food industry. We suggest the employment of U. pinnatifida as source of new and safer therapeutic agents to control fish and shellfish diseases due to vibriosis, as well as a source of natural antioxidants that are useful for human health, considering the growing interest in the development of strategies for invasive seaweed control. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

12 pages, 6182 KiB  
Article
Alleviative Effect of Iodine Pretreatment on the Stress of Saccharina japonica (Phaeophyceae, Laminariales) Caused by Cadmium and Its Molecular Basis Revealed by Comparative Transcriptomic Analysis
by Xuemei Wang, Tifeng Shan and Shaojun Pang
Int. J. Mol. Sci. 2023, 24(19), 14825; https://doi.org/10.3390/ijms241914825 - 2 Oct 2023
Cited by 3 | Viewed by 1520
Abstract
Iodide is accumulated by the brown alga Saccharina japonica at a high concentration and has been proven to be an inorganic antioxidant that plays an important role in oxidative metabolism. Vanadium-dependent bromoperoxidases (vBPOs) and iodoperoxidases (vIPOs), which catalyze the oxidation of iodide, are [...] Read more.
Iodide is accumulated by the brown alga Saccharina japonica at a high concentration and has been proven to be an inorganic antioxidant that plays an important role in oxidative metabolism. Vanadium-dependent bromoperoxidases (vBPOs) and iodoperoxidases (vIPOs), which catalyze the oxidation of iodide, are essential for iodine accumulation and metabolism. Heavy metal pollutant cadmium (Cd) from anthropogenic activities can cause damage to algae mainly by producing oxidative stress. Here, the effects of iodine pretreatment on the stress of S. japonica caused by cadmium were analyzed. The growth experiment showed that iodine pretreatment could reduce the damage of low concentration cadmium on S. japonica young thalli. At the transcriptomic level, gene ontology (GO) enrichment analysis confirmed that cadmium stress could cause a peroxidation reaction in S. japonica. However, the most significant GO term was “photosystem I” in the series with iodine pretreatment. Weighted gene co-expression network analysis (WGCNA) indicated that iodine pretreatment alleviated cadmium stress responses of S. japonica by affecting the photosynthesis process. Analysis of the differentially expressed genes (DEGs) showed that five enzymes from the vBPO family and 13 enzymes from the vIPO family might play crucial roles in this process. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 4923 KiB  
Article
Lipidome of the Brown Macroalga Undaria pinnatifida: Influence of Season and Endophytic Infection
by Ksenia Chadova and Peter Velansky
Mar. Drugs 2023, 21(9), 466; https://doi.org/10.3390/md21090466 - 25 Aug 2023
Cited by 6 | Viewed by 1679
Abstract
An analysis of the lipidome of the brown alga Undaria pinnatifida (Laminariales) was performed’ more than 900 molecular species were identified in 12 polar lipids and 1 neutral lipid using HPLC/MS-MS. The seasonal changes of U. pinnatifida lipidome were determined. It was shown [...] Read more.
An analysis of the lipidome of the brown alga Undaria pinnatifida (Laminariales) was performed’ more than 900 molecular species were identified in 12 polar lipids and 1 neutral lipid using HPLC/MS-MS. The seasonal changes of U. pinnatifida lipidome were determined. It was shown that acclimatization to winter and spring was accompanied by an increase in the unsaturation of both polar and neutral lipids. In autumn and summer, on the contrary, the contents of more saturated molecular species of all lipid classes increased. Based on the data obtained, a scheme for the polar and neutral lipid synthesis in brown algae was proposed. In addition, the influence of infection with the brown filamentous endophyte Laminariocolax aecidioides (Ectocarpales) on U. pinnatifida lipidome was studied. It was found that infection has the most noticeable effect on the molecular species composition of triacylglycerides, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylhydroxyethylglycine of the host macrophyte. In infected samples of algae, changes in the composition of triacylglycerides were revealed both in areas with the presence of an endophyte and in adjacent intact tissues, which may indicate the occurrence of a secondary infection. Full article
(This article belongs to the Special Issue Marine Drugs Research in Russia)
Show Figures

Figure 1

21 pages, 1708 KiB  
Article
Biochemical and Nutritional Characterization of Edible Seaweeds from the Peruvian Coast
by Natalia Arakaki, Leenin Flores Ramos, Alberto Isidoro Oscanoa Huaynate, Anthony Ruíz Soto and María Eliana Ramírez
Plants 2023, 12(9), 1795; https://doi.org/10.3390/plants12091795 - 27 Apr 2023
Cited by 14 | Viewed by 4639
Abstract
In Peru, the number of species of edible seaweeds within the genera Chondracanthus, Porphyra (hereafter P.), Pyropia (hereafter Py.), and Ulva has not been fully established, nor is there a significant level of information available related to their chemical and [...] Read more.
In Peru, the number of species of edible seaweeds within the genera Chondracanthus, Porphyra (hereafter P.), Pyropia (hereafter Py.), and Ulva has not been fully established, nor is there a significant level of information available related to their chemical and nutritional composition. This study involved the biochemical analysis of species belonging to ten genera of macroalgae, known edible and some of which have the potential to be used as food, including six red (Callophyllis, Chondracanthus, Mazzaella, Porphyra, Pyropia, and Rhodymenia), two green (Ulva and Codium), and two brown (Eisenia and Lessonia) species collected along the Peruvian coast (6°–17° S). In the evaluation of 37 specimens, differences were found in the proximal composition, amino acid composition, and fatty acid profiles, which were specific to subgroups and supported their taxonomic classification, mainly at the order level. The red algae Porphyra/Pyropia (Bangiales) had the highest average percentage of protein (24.10%) and carbohydrates (59.85%) and the lowest percentage of ash (7.95%). Conversely, the brown alga Eisenia (Laminariales) had the lowest average percentage of protein, with different values related to the structure: 14.11% at the level of the frond and 9.46% at the level of the stipe. On the other hand, Bryopsidales green algae showed the highest average percentages of lipids (5.38%). The moisture percentages ranged from 4 to 16%, and no relevant significant differences were shown between the orders. The characteristic amino acids in all of the studied groups were glutamic acid, aspartic acid, alanine, and leucine. The highest average of the essential amino acids ratio was obtained for the Gigartinales red algae (48.65%), and the highest values of the essential amino acid index (EAAI) were obtained for the Ulvales, Laminariales, Gigartinales, and Rhodymeniales algae (EAAI > 0.92). The highest average relative percentage of fatty acids was obtained for polyunsaturated fatty acids, followed by saturated fatty acids. The major component of the ω6 fatty acids from red and brown algae was arachidonic acid (C20:4n − 6). The highest level of ω3 fatty acids was observed for the eicosapentaenoic acids (EPA) in red algae. The highest median ω6/ω3 ratio was displayed by the red alga Callophyllis variegata (Gigartinales). A detailed knowledge of edible seaweeds, and those considered potentially edible, would help to diversify the diet based on macroalgae in Peru. Full article
(This article belongs to the Special Issue Seaweed Biology: Focusing on Food, Materials and Bioenergy)
Show Figures

Figure 1

15 pages, 1877 KiB  
Article
Water-Soluble Saccharina latissima Polysaccharides and Relation of Their Structural Characteristics with In Vitro Immunostimulatory and Hypocholesterolemic Activities
by Ana S. P. Moreira, Diana Gaspar, Sónia S. Ferreira, Alexandra Correia, Manuel Vilanova, Marie-Mathilde Perrineau, Philip D. Kerrison, Claire M. M. Gachon, Maria Rosário Domingues, Manuel A. Coimbra, Filipe M. Coreta-Gomes and Cláudia Nunes
Mar. Drugs 2023, 21(3), 183; https://doi.org/10.3390/md21030183 - 16 Mar 2023
Cited by 16 | Viewed by 3681
Abstract
Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure–function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure [...] Read more.
Brown macroalgae are an important source of polysaccharides, mainly fucose-containing sulphated polysaccharides (FCSPs), associated with several biological activities. However, the structural diversity and structure–function relationships for their bioactivities are still undisclosed. Thus, the aim of this work was to characterize the chemical structure of water-soluble Saccharina latissima polysaccharides and evaluate their immunostimulatory and hypocholesterolemic activities, helping to pinpoint a structure–activity relationship. Alginate, laminarans (F1, neutral glucose-rich polysaccharides), and two fractions (F2 and F3) of FCSPs (negatively charged) were studied. Whereas F2 is rich in uronic acids (45 mol%) and fucose (29 mol%), F3 is rich in fucose (59 mol%) and galactose (21 mol%). These two fractions of FCSPs showed immunostimulatory activity on B lymphocytes, which could be associated with the presence of sulphate groups. Only F2 exhibited a significant effect in reductions in in vitro cholesterol’s bioaccessibility attributed to the sequestration of bile salts. Therefore, S. latissima FCSPs were shown to have potential as immunostimulatory and hypocholesterolemic functional ingredients, where their content in uronic acids and sulphation seem to be relevant for the bioactive and healthy properties. Full article
Show Figures

Graphical abstract

18 pages, 2537 KiB  
Article
Cultivation and Imaging of S. latissima Embryo Monolayered Cell Sheets Inside Microfluidic Devices
by Thomas Clerc, Samuel Boscq, Rafaele Attia, Gabriele S. Kaminski Schierle, Bénédicte Charrier and Nino F. Läubli
Bioengineering 2022, 9(11), 718; https://doi.org/10.3390/bioengineering9110718 - 21 Nov 2022
Cited by 1 | Viewed by 3324
Abstract
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth [...] Read more.
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen’s health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device’s operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen’s cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism. Full article
(This article belongs to the Special Issue Microfluidics and Miniaturized Systems in Bioengineering)
Show Figures

Graphical abstract

13 pages, 2486 KiB  
Article
Characteristics of Polyphenolic Content in Brown Algae of the Pacific Coast of Russia
by Natalia M. Aminina, Ekaterina P. Karaulova, Tatiana I. Vishnevskaya, Evgeny V. Yakush, Yeon-Kye Kim, Ki-Ho Nam and Kwang-Tae Son
Molecules 2020, 25(17), 3909; https://doi.org/10.3390/molecules25173909 - 27 Aug 2020
Cited by 34 | Viewed by 4068
Abstract
Water and ethanol brown macroalgal extracts of nine species of Laminariales and four species of Fucales of the Pacific coast of Russia were investigated. It has been shown that brown algae species of Agarum, Thalassiophyllum, Fucus and Cystoseira can be a source of [...] Read more.
Water and ethanol brown macroalgal extracts of nine species of Laminariales and four species of Fucales of the Pacific coast of Russia were investigated. It has been shown that brown algae species of Agarum, Thalassiophyllum, Fucus and Cystoseira can be a source of the polyphenolic compounds with antioxidant activity. Phenolic content in the ethanol algal extracts (Undaria pinnatifida, Arthrothamnus bifidus, Thalassiophyllum clathrus and Agarum turneri) was 1.1–3.5 times higher than in the water extracts. In Sargassum pallidum and Kjellmaniella crassifolia, the total polyphenolic content was 2.1 and 1.6 times higher, respectively, in water extracts than in ethanol extracts. The maximum radical scavenging activity has been detected in Agarum turneri ethanol extracts (38.8 mg ascorbic acid/g and 2506.8 µmol Trolox equiv/g dry algae). Phlorotannin content varies from 16.8 μg/g dry sample of Costaria costata to 2763.2 μg/g dry sample of Agarum turneri. It is found the content of polyphenolic compounds in brown algae is determined mainly by their species-specificity and by their belonging to the genus. The presence of major phenols in the extract of Thalassiophyllum clathrus, such as phenolic acid (gallic acid), hydroxycinnamic acids (caffeic acid, chlorogenic acid, coumaric acid) and flavonols (kaempferol, quercetin) has been established. Full article
(This article belongs to the Special Issue Algae and Microalgae and Their Bioactive Molecules for Human Health)
Show Figures

Graphical abstract

13 pages, 802 KiB  
Article
Laminariales Host Does Impact Lipid Temperature Trajectories of the Fungal Endophyte Paradendryphiella salina (Sutherland.)
by Marine Vallet, Tarik Meziane, Najet Thiney, Soizic Prado and Cédric Hubas
Mar. Drugs 2020, 18(8), 379; https://doi.org/10.3390/md18080379 - 22 Jul 2020
Cited by 4 | Viewed by 3197
Abstract
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes [...] Read more.
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes under different conditions is important to have a better understanding of their impacts on host performance. In this context, fatty acid composition is essential to a given algae fitness and of interest to food web studies either to measure its nutritional quality or to infer about its contribution to consumers diets. In the present study, Paradendryphiella salina, a fungal endophyte was isolated from Saccharina latissima (L.) and Laminaria digitata (Hudson.) and its fatty acid composition was assessed at increasing salinity and temperature conditions. Results showed that fungal composition in terms of fatty acids displayed algal-dependent trajectories in response to temperature increase. This highlights that C18 unsaturated fatty acids are key components in the host-dependant acclimation of P. salina to salinity and temperature changes. Full article
(This article belongs to the Special Issue Lipids in the Ocean 2021)
Show Figures

Figure 1

Back to TopTop